1use std::collections::{BTreeMap, HashMap, HashSet};
8use std::time::{Duration, Instant, SystemTime};
9
10use scirs2_core::random::{thread_rng, Rng};
11use serde::{Deserialize, Serialize};
12use tokio::time::timeout;
13
14use quantrs2_circuit::prelude::*;
15use quantrs2_core::{
16 error::{QuantRS2Error, QuantRS2Result},
17 gate::GateOp,
18 qubit::QubitId,
19};
20
21#[cfg(feature = "scirs2")]
23use scirs2_linalg::{correlationmatrix, eig, matrix_norm, svd, LinalgResult};
24#[cfg(feature = "scirs2")]
25use scirs2_optimize::{minimize, OptimizeResult};
26#[cfg(feature = "scirs2")]
27use scirs2_stats::{
28 distributions::{chi2, norm, t},
29 ks_2samp, mean, median, pearsonr, spearmanr, std, ttest_ind, var, Alternative, TTestResult,
30};
31
32#[cfg(not(feature = "scirs2"))]
33use crate::ml_optimization::fallback_scirs2::{mean, minimize, pearsonr, std, var, OptimizeResult};
34
35use scirs2_core::ndarray::{Array1, Array2, ArrayView1, ArrayView2};
36
37#[cfg(feature = "aws")]
38use crate::aws::AWSBraketClient;
39#[cfg(feature = "azure")]
40use crate::azure::AzureQuantumClient;
41#[cfg(feature = "ibm")]
42use crate::ibm::IBMQuantumClient;
43use crate::{
44 backend_traits::{query_backend_capabilities, BackendCapabilities},
45 benchmarking::{BenchmarkConfig, DeviceExecutor, HardwareBenchmarkSuite},
46 calibration::{CalibrationManager, DeviceCalibration},
47 CircuitResult, DeviceError, DeviceResult,
48};
49
50#[derive(Debug, Clone, Serialize, Deserialize)]
52pub struct CrossPlatformBenchmarkConfig {
53 pub target_platforms: Vec<QuantumPlatform>,
55 pub complexity_levels: Vec<ComplexityLevel>,
57 pub statistical_config: StatisticalAnalysisConfig,
59 pub parallel_config: ParallelBenchmarkConfig,
61 pub benchmark_timeout: Duration,
63 pub repetitions: usize,
65 pub enable_cost_analysis: bool,
67 pub enable_latency_analysis: bool,
69 pub enable_reliability_analysis: bool,
71 pub custom_circuits: Vec<CustomBenchmarkCircuit>,
73}
74
75#[derive(Debug, Clone, PartialEq, Eq, Hash, Serialize, Deserialize)]
77pub enum QuantumPlatform {
78 IBMQuantum(String), AWSBraket(String), AzureQuantum(String), IonQ(String), Rigetti(String), GoogleQuantumAI(String), Custom(String), }
86
87#[derive(Debug, Clone, Serialize, Deserialize)]
89pub struct ComplexityLevel {
90 pub name: String,
91 pub qubit_count: usize,
92 pub circuit_depth: usize,
93 pub gate_count_range: (usize, usize),
94 pub two_qubit_gate_ratio: f64,
95 pub description: String,
96}
97
98#[derive(Debug, Clone, Serialize, Deserialize)]
100pub struct StatisticalAnalysisConfig {
101 pub confidence_level: f64,
103 pub enable_anova: bool,
105 pub enable_pairwise_comparisons: bool,
107 pub enable_outlier_detection: bool,
109 pub enable_distribution_fitting: bool,
111 pub enable_correlation_analysis: bool,
113 pub min_sample_size: usize,
115}
116
117#[derive(Debug, Clone, Serialize, Deserialize)]
119pub struct ParallelBenchmarkConfig {
120 pub enable_parallel: bool,
122 pub max_concurrent: usize,
124 pub load_balancing: LoadBalancingStrategy,
126 pub resource_allocation: HashMap<QuantumPlatform, ResourceAllocation>,
128}
129
130#[derive(Debug, Clone, PartialEq, Eq, Serialize, Deserialize)]
132pub enum LoadBalancingStrategy {
133 RoundRobin,
134 WeightedRoundRobin,
135 LeastConnections,
136 ResourceBased,
137 CostOptimized,
138 LatencyOptimized,
139}
140
141#[derive(Debug, Clone, Serialize, Deserialize)]
143pub struct ResourceAllocation {
144 pub max_shots_per_circuit: usize,
145 pub max_concurrent_circuits: usize,
146 pub priority: BenchmarkPriority,
147 pub timeout: Duration,
148}
149
150#[derive(Debug, Clone, PartialEq, Eq, Serialize, Deserialize)]
152pub enum BenchmarkPriority {
153 Low,
154 Medium,
155 High,
156 Critical,
157}
158
159#[derive(Debug, Clone, Serialize, Deserialize)]
161pub struct CustomBenchmarkCircuit {
162 pub name: String,
163 pub description: String,
164 pub qubit_count: usize,
165 pub circuit_definition: CircuitDefinition,
166 pub expected_outcomes: HashMap<String, f64>,
167 pub performance_targets: PerformanceTargets,
168}
169
170#[derive(Debug, Clone, Serialize, Deserialize)]
172pub enum CircuitDefinition {
173 QASM(String),
174 QuantumCircuit(String), PythonCode(String),
176 Custom(String),
177}
178
179#[derive(Debug, Clone, Serialize, Deserialize)]
181pub struct PerformanceTargets {
182 pub target_fidelity: f64,
183 pub max_execution_time: Duration,
184 pub max_cost_per_shot: f64,
185 pub min_success_rate: f64,
186}
187
188#[derive(Debug, Clone, Serialize, Deserialize)]
190pub struct CrossPlatformBenchmarkResult {
191 pub benchmark_id: String,
192 pub timestamp: SystemTime,
193 pub config: CrossPlatformBenchmarkConfig,
194 pub platform_results: HashMap<QuantumPlatform, PlatformBenchmarkResult>,
195 pub comparative_analysis: ComparativeAnalysisResult,
196 pub statistical_analysis: CrossPlatformStatisticalAnalysis,
197 pub cost_analysis: Option<CrossPlatformCostAnalysis>,
198 pub recommendations: Vec<PlatformRecommendation>,
199 pub execution_summary: ExecutionSummary,
200}
201
202#[derive(Debug, Clone, Serialize, Deserialize)]
204pub struct PlatformBenchmarkResult {
205 pub platform: QuantumPlatform,
206 pub device_info: DeviceInfo,
207 pub benchmark_metrics: BenchmarkMetrics,
208 pub circuit_results: HashMap<String, Vec<CircuitBenchmarkResult>>,
209 pub performance_analysis: PlatformPerformanceAnalysis,
210 pub reliability_metrics: ReliabilityMetrics,
211 pub latency_analysis: LatencyAnalysis,
212 pub error_analysis: ErrorAnalysis,
213}
214
215#[derive(Debug, Clone, Serialize, Deserialize)]
217pub struct DeviceInfo {
218 pub device_name: String,
219 pub provider: String,
220 pub technology: QuantumTechnology,
221 pub qubit_count: usize,
222 pub connectivity: ConnectivityInfo,
223 pub capabilities: BackendCapabilities,
224 pub calibration_date: Option<SystemTime>,
225}
226
227#[derive(Debug, Clone, PartialEq, Eq, Serialize, Deserialize)]
229pub enum QuantumTechnology {
230 Superconducting,
231 TrappedIon,
232 Photonic,
233 NeutralAtom,
234 Topological,
235 SpinQubit,
236 Other(String),
237}
238
239#[derive(Debug, Clone, Serialize, Deserialize)]
241pub struct ConnectivityInfo {
242 pub topology_type: TopologyType,
243 pub connectivity_graph: Array2<f64>,
244 pub average_connectivity: f64,
245 pub max_path_length: usize,
246}
247
248#[derive(Debug, Clone, PartialEq, Eq, Serialize, Deserialize)]
250pub enum TopologyType {
251 Linear,
252 Grid,
253 Heavy,
254 AllToAll,
255 Custom,
256}
257
258#[derive(Debug, Clone, Serialize, Deserialize)]
260pub struct BenchmarkMetrics {
261 pub overall_score: f64,
262 pub fidelity_score: f64,
263 pub speed_score: f64,
264 pub reliability_score: f64,
265 pub cost_efficiency_score: f64,
266 pub scalability_score: f64,
267 pub detailed_metrics: HashMap<String, f64>,
268}
269
270#[derive(Debug, Clone, Serialize, Deserialize)]
272pub struct CircuitBenchmarkResult {
273 pub circuit_name: String,
274 pub complexity_level: String,
275 pub execution_time: Duration,
276 pub queue_time: Duration,
277 pub total_time: Duration,
278 pub fidelity: f64,
279 pub success_rate: f64,
280 pub cost: f64,
281 pub shots: usize,
282 pub measurement_counts: HashMap<String, usize>,
283 pub error_messages: Vec<String>,
284}
285
286#[derive(Debug, Clone, Serialize, Deserialize)]
288pub struct PlatformPerformanceAnalysis {
289 pub throughput: f64,
290 pub latency_distribution: LatencyDistribution,
291 pub scalability_analysis: ScalabilityAnalysis,
292 pub resource_utilization: ResourceUtilization,
293 pub performance_trends: PerformanceTrends,
294}
295
296#[derive(Debug, Clone, Serialize, Deserialize)]
298pub struct LatencyDistribution {
299 pub mean: f64,
300 pub median: f64,
301 pub std_dev: f64,
302 pub percentiles: HashMap<u8, f64>, pub distribution_type: String,
304}
305
306#[derive(Debug, Clone, Serialize, Deserialize)]
308pub struct ScalabilityAnalysis {
309 pub qubit_scaling_factor: f64,
310 pub depth_scaling_factor: f64,
311 pub theoretical_limits: TheoreticalLimits,
312 pub bottleneck_analysis: BottleneckAnalysis,
313}
314
315#[derive(Debug, Clone, Serialize, Deserialize)]
317pub struct TheoreticalLimits {
318 pub max_qubit_count: usize,
319 pub max_circuit_depth: usize,
320 pub max_gate_count: usize,
321 pub coherence_limited_depth: usize,
322}
323
324#[derive(Debug, Clone, Serialize, Deserialize)]
326pub struct BottleneckAnalysis {
327 pub primary_bottleneck: BottleneckType,
328 pub bottleneck_severity: f64,
329 pub mitigation_strategies: Vec<String>,
330}
331
332#[derive(Debug, Clone, PartialEq, Eq, Serialize, Deserialize)]
334pub enum BottleneckType {
335 QueueTime,
336 ExecutionTime,
337 GateErrors,
338 Connectivity,
339 Coherence,
340 Readout,
341 Classical,
342 Network,
343 Other(String),
344}
345
346#[derive(Debug, Clone, Serialize, Deserialize)]
348pub struct ResourceUtilization {
349 pub qubit_utilization: f64,
350 pub gate_efficiency: f64,
351 pub shot_efficiency: f64,
352 pub time_efficiency: f64,
353}
354
355#[derive(Debug, Clone, Serialize, Deserialize)]
357pub struct PerformanceTrends {
358 pub fidelity_trend: TrendAnalysis,
359 pub latency_trend: TrendAnalysis,
360 pub reliability_trend: TrendAnalysis,
361 pub cost_trend: TrendAnalysis,
362}
363
364#[derive(Debug, Clone, Serialize, Deserialize)]
366pub struct TrendAnalysis {
367 pub slope: f64,
368 pub r_squared: f64,
369 pub trend_direction: TrendDirection,
370 pub confidence_interval: (f64, f64),
371}
372
373#[derive(Debug, Clone, PartialEq, Eq, Serialize, Deserialize)]
375pub enum TrendDirection {
376 Improving,
377 Stable,
378 Degrading,
379 Volatile,
380}
381
382#[derive(Debug, Clone, Serialize, Deserialize)]
384pub struct ReliabilityMetrics {
385 pub uptime_percentage: f64,
386 pub mtbf: Duration, pub mttr: Duration, pub error_rates: HashMap<String, f64>,
389 pub consistency_score: f64,
390}
391
392#[derive(Debug, Clone, Serialize, Deserialize)]
394pub struct LatencyAnalysis {
395 pub submission_latency: Duration,
396 pub queue_latency: Duration,
397 pub execution_latency: Duration,
398 pub retrieval_latency: Duration,
399 pub total_latency: Duration,
400 pub latency_variability: f64,
401}
402
403#[derive(Debug, Clone, Serialize, Deserialize)]
405pub struct ErrorAnalysis {
406 pub systematic_errors: HashMap<String, f64>,
407 pub random_errors: HashMap<String, f64>,
408 pub coherent_errors: HashMap<String, f64>,
409 pub readout_errors: HashMap<String, f64>,
410 pub gate_errors: HashMap<String, f64>,
411 pub error_correlations: Array2<f64>,
412}
413
414#[derive(Debug, Clone, Serialize, Deserialize)]
416pub struct ComparativeAnalysisResult {
417 pub platform_rankings: HashMap<String, PlatformRanking>,
418 pub performance_matrix: Array2<f64>,
419 pub statistical_comparisons: HashMap<String, StatisticalComparison>,
420 pub cost_effectiveness_analysis: CostEffectivenessAnalysis,
421 pub use_case_recommendations: HashMap<String, Vec<QuantumPlatform>>,
422}
423
424#[derive(Debug, Clone, Serialize, Deserialize)]
426pub struct PlatformRanking {
427 pub overall_rank: usize,
428 pub category_ranks: HashMap<String, usize>,
429 pub normalized_scores: HashMap<String, f64>,
430 pub relative_performance: f64,
431}
432
433#[derive(Debug, Clone, Serialize, Deserialize)]
435pub struct StatisticalComparison {
436 pub comparison_type: ComparisonType,
437 pub platforms_compared: Vec<QuantumPlatform>,
438 pub test_statistic: f64,
439 pub p_value: f64,
440 pub effect_size: f64,
441 pub confidence_interval: (f64, f64),
442 pub interpretation: String,
443}
444
445#[derive(Debug, Clone, PartialEq, Eq, Serialize, Deserialize)]
447pub enum ComparisonType {
448 TTest,
449 ANOVA,
450 KruskalWallis,
451 MannWhitney,
452 ChiSquare,
453 KolmogorovSmirnov,
454}
455
456#[derive(Debug, Clone, Serialize, Deserialize)]
458pub struct CostEffectivenessAnalysis {
459 pub cost_per_shot: HashMap<QuantumPlatform, f64>,
460 pub cost_per_gate: HashMap<QuantumPlatform, f64>,
461 pub cost_per_successful_result: HashMap<QuantumPlatform, f64>,
462 pub value_for_money_score: HashMap<QuantumPlatform, f64>,
463 pub cost_optimization_recommendations: Vec<CostOptimizationRecommendation>,
464}
465
466#[derive(Debug, Clone, Serialize, Deserialize)]
468pub struct CrossPlatformStatisticalAnalysis {
469 pub anova_results: HashMap<String, ANOVAResult>,
470 pub correlation_analysis: CorrelationAnalysisResult,
471 pub cluster_analysis: ClusterAnalysisResult,
472 pub principal_component_analysis: PCAResult,
473 pub outlier_detection: OutlierDetectionResult,
474 pub distribution_analysis: DistributionAnalysisResult,
475}
476
477#[derive(Debug, Clone, Serialize, Deserialize)]
479pub struct ANOVAResult {
480 pub f_statistic: f64,
481 pub p_value: f64,
482 pub degrees_of_freedom: (usize, usize),
483 pub mean_squares: f64,
484 pub effect_size: f64,
485 pub post_hoc_tests: HashMap<String, PostHocTest>,
486}
487
488#[derive(Debug, Clone, Serialize, Deserialize)]
490pub struct PostHocTest {
491 pub test_type: String,
492 pub comparisons: HashMap<String, PairwiseComparison>,
493}
494
495#[derive(Debug, Clone, Serialize, Deserialize)]
497pub struct PairwiseComparison {
498 pub mean_difference: f64,
499 pub p_value: f64,
500 pub confidence_interval: (f64, f64),
501 pub significant: bool,
502}
503
504#[derive(Debug, Clone, Serialize, Deserialize)]
506pub struct CorrelationAnalysisResult {
507 pub correlationmatrix: Array2<f64>,
508 pub significant_correlations: Vec<CorrelationPair>,
509 pub correlation_network: HashMap<String, Vec<String>>,
510}
511
512#[derive(Debug, Clone, Serialize, Deserialize)]
514pub struct CorrelationPair {
515 pub metric1: String,
516 pub metric2: String,
517 pub correlation: f64,
518 pub p_value: f64,
519 pub correlation_type: CorrelationType,
520}
521
522#[derive(Debug, Clone, PartialEq, Eq, Serialize, Deserialize)]
524pub enum CorrelationType {
525 Pearson,
526 Spearman,
527 Kendall,
528}
529
530#[derive(Debug, Clone, Serialize, Deserialize)]
532pub struct ClusterAnalysisResult {
533 pub cluster_assignments: HashMap<QuantumPlatform, usize>,
534 pub cluster_centers: Array2<f64>,
535 pub silhouette_score: f64,
536 pub cluster_interpretations: HashMap<usize, String>,
537}
538
539#[derive(Debug, Clone, Serialize, Deserialize)]
541pub struct PCAResult {
542 pub principal_components: Array2<f64>,
543 pub explained_variance_ratio: Array1<f64>,
544 pub cumulative_variance: Array1<f64>,
545 pub loadings: Array2<f64>,
546 pub platform_scores: HashMap<QuantumPlatform, Array1<f64>>,
547}
548
549#[derive(Debug, Clone, Serialize, Deserialize)]
551pub struct OutlierDetectionResult {
552 pub outliers: HashMap<QuantumPlatform, Vec<String>>,
553 pub outlier_scores: HashMap<QuantumPlatform, f64>,
554 pub detection_method: String,
555 pub threshold: f64,
556}
557
558#[derive(Debug, Clone, Serialize, Deserialize)]
560pub struct DistributionAnalysisResult {
561 pub platform_distributions: HashMap<QuantumPlatform, DistributionFit>,
562 pub distribution_comparisons: HashMap<String, DistributionComparison>,
563 pub normality_tests: HashMap<QuantumPlatform, NormalityTest>,
564}
565
566#[derive(Debug, Clone, Serialize, Deserialize)]
568pub struct DistributionFit {
569 pub distribution_type: String,
570 pub parameters: Vec<f64>,
571 pub goodness_of_fit: f64,
572 pub aic: f64,
573 pub bic: f64,
574}
575
576#[derive(Debug, Clone, Serialize, Deserialize)]
578pub struct DistributionComparison {
579 pub platforms: Vec<QuantumPlatform>,
580 pub ks_statistic: f64,
581 pub p_value: f64,
582 pub distributions_equal: bool,
583}
584
585#[derive(Debug, Clone, Serialize, Deserialize)]
587pub struct NormalityTest {
588 pub test_type: String,
589 pub statistic: f64,
590 pub p_value: f64,
591 pub is_normal: bool,
592}
593
594#[derive(Debug, Clone, Serialize, Deserialize)]
596pub struct CrossPlatformCostAnalysis {
597 pub total_costs: HashMap<QuantumPlatform, f64>,
598 pub cost_breakdown: HashMap<QuantumPlatform, CostBreakdown>,
599 pub cost_trends: HashMap<QuantumPlatform, CostTrend>,
600 pub cost_optimization: CostOptimizationAnalysis,
601 pub roi_analysis: ROIAnalysis,
602}
603
604#[derive(Debug, Clone, Serialize, Deserialize)]
606pub struct CostBreakdown {
607 pub compute_cost: f64,
608 pub queue_cost: f64,
609 pub storage_cost: f64,
610 pub data_transfer_cost: f64,
611 pub other_costs: HashMap<String, f64>,
612}
613
614#[derive(Debug, Clone, Serialize, Deserialize)]
616pub struct CostTrend {
617 pub trend_direction: TrendDirection,
618 pub cost_per_month: Vec<f64>,
619 pub projected_costs: Vec<f64>,
620 pub cost_volatility: f64,
621}
622
623#[derive(Debug, Clone, Serialize, Deserialize)]
625pub struct CostOptimizationAnalysis {
626 pub optimization_opportunities: Vec<CostOptimizationRecommendation>,
627 pub potential_savings: f64,
628 pub optimization_strategies: Vec<String>,
629}
630
631#[derive(Debug, Clone, Serialize, Deserialize)]
633pub struct CostOptimizationRecommendation {
634 pub recommendation_type: CostOptimizationType,
635 pub description: String,
636 pub estimated_savings: f64,
637 pub implementation_effort: ImplementationEffort,
638 pub time_to_implement: Duration,
639}
640
641#[derive(Debug, Clone, PartialEq, Eq, Serialize, Deserialize)]
643pub enum CostOptimizationType {
644 PlatformSelection,
645 ShotOptimization,
646 TimingOptimization,
647 ResourcePooling,
648 BulkPricing,
649 Other(String),
650}
651
652#[derive(Debug, Clone, PartialEq, Eq, Serialize, Deserialize)]
654pub enum ImplementationEffort {
655 Low,
656 Medium,
657 High,
658 VeryHigh,
659}
660
661#[derive(Debug, Clone, Serialize, Deserialize)]
663pub struct ROIAnalysis {
664 pub platform_roi: HashMap<QuantumPlatform, f64>,
665 pub break_even_analysis: HashMap<QuantumPlatform, Duration>,
666 pub value_metrics: HashMap<QuantumPlatform, ValueMetrics>,
667}
668
669#[derive(Debug, Clone, Serialize, Deserialize)]
671pub struct ValueMetrics {
672 pub time_to_result: Duration,
673 pub result_quality: f64,
674 pub reliability_score: f64,
675 pub innovation_value: f64,
676}
677
678#[derive(Debug, Clone, Serialize, Deserialize)]
680pub struct PlatformRecommendation {
681 pub recommendation_type: RecommendationType,
682 pub target_platform: QuantumPlatform,
683 pub use_case: String,
684 pub confidence_score: f64,
685 pub reasoning: String,
686 pub conditions: Vec<String>,
687}
688
689#[derive(Debug, Clone, PartialEq, Eq, Serialize, Deserialize)]
691pub enum RecommendationType {
692 BestOverall,
693 BestForUseCase,
694 MostCostEffective,
695 FastestExecution,
696 HighestFidelity,
697 MostReliable,
698 BestScalability,
699 Avoid,
700}
701
702#[derive(Debug, Clone, Serialize, Deserialize)]
704pub struct ExecutionSummary {
705 pub total_execution_time: Duration,
706 pub total_benchmarks_run: usize,
707 pub successful_benchmarks: usize,
708 pub failed_benchmarks: usize,
709 pub platforms_tested: usize,
710 pub total_shots_executed: usize,
711 pub total_cost: f64,
712 pub data_points_collected: usize,
713}
714
715impl Default for CrossPlatformBenchmarkConfig {
716 fn default() -> Self {
717 Self {
718 target_platforms: vec![
719 QuantumPlatform::IBMQuantum("ibmq_qasm_simulator".to_string()),
720 QuantumPlatform::AWSBraket(
721 "arn:aws:braket:::device/quantum-simulator/amazon/sv1".to_string(),
722 ),
723 ],
724 complexity_levels: vec![
725 ComplexityLevel {
726 name: "Simple".to_string(),
727 qubit_count: 2,
728 circuit_depth: 5,
729 gate_count_range: (5, 15),
730 two_qubit_gate_ratio: 0.3,
731 description: "Basic circuits for connectivity testing".to_string(),
732 },
733 ComplexityLevel {
734 name: "Medium".to_string(),
735 qubit_count: 5,
736 circuit_depth: 20,
737 gate_count_range: (20, 50),
738 two_qubit_gate_ratio: 0.4,
739 description: "Intermediate circuits for performance assessment".to_string(),
740 },
741 ComplexityLevel {
742 name: "Complex".to_string(),
743 qubit_count: 10,
744 circuit_depth: 50,
745 gate_count_range: (50, 150),
746 two_qubit_gate_ratio: 0.5,
747 description: "Complex circuits for scalability testing".to_string(),
748 },
749 ],
750 statistical_config: StatisticalAnalysisConfig::default(),
751 parallel_config: ParallelBenchmarkConfig::default(),
752 benchmark_timeout: Duration::from_secs(300),
753 repetitions: 10,
754 enable_cost_analysis: true,
755 enable_latency_analysis: true,
756 enable_reliability_analysis: true,
757 custom_circuits: Vec::new(),
758 }
759 }
760}
761
762impl Default for StatisticalAnalysisConfig {
763 fn default() -> Self {
764 Self {
765 confidence_level: 0.95,
766 enable_anova: true,
767 enable_pairwise_comparisons: true,
768 enable_outlier_detection: true,
769 enable_distribution_fitting: true,
770 enable_correlation_analysis: true,
771 min_sample_size: 5,
772 }
773 }
774}
775
776impl Default for ParallelBenchmarkConfig {
777 fn default() -> Self {
778 Self {
779 enable_parallel: true,
780 max_concurrent: 4,
781 load_balancing: LoadBalancingStrategy::ResourceBased,
782 resource_allocation: HashMap::new(),
783 }
784 }
785}
786
787pub struct CrossPlatformBenchmarker {
789 config: CrossPlatformBenchmarkConfig,
790 calibration_manager: CalibrationManager,
791 #[cfg(feature = "ibm")]
793 ibm_client: Option<IBMQuantumClient>,
794 #[cfg(feature = "aws")]
795 aws_client: Option<AWSBraketClient>,
796 #[cfg(feature = "azure")]
797 azure_client: Option<AzureQuantumClient>,
798}
799
800impl CrossPlatformBenchmarker {
801 pub const fn new(
803 config: CrossPlatformBenchmarkConfig,
804 calibration_manager: CalibrationManager,
805 ) -> Self {
806 Self {
807 config,
808 calibration_manager,
809 #[cfg(feature = "ibm")]
810 ibm_client: None,
811 #[cfg(feature = "aws")]
812 aws_client: None,
813 #[cfg(feature = "azure")]
814 azure_client: None,
815 }
816 }
817
818 pub async fn run_comprehensive_benchmark(
820 &mut self,
821 ) -> DeviceResult<CrossPlatformBenchmarkResult> {
822 let start_time = Instant::now();
823 let timestamp = SystemTime::now();
824 let benchmark_id = format!(
825 "benchmark_{}",
826 timestamp
827 .duration_since(SystemTime::UNIX_EPOCH)
828 .expect("System time should be after UNIX epoch")
829 .as_secs()
830 );
831
832 self.initialize_platform_clients().await?;
834
835 let mut platform_results = HashMap::new();
837 let mut total_benchmarks = 0;
838 let mut successful_benchmarks = 0;
839 let mut failed_benchmarks = 0;
840 let mut total_shots = 0;
841 let mut total_cost = 0.0;
842
843 for platform in &self.config.target_platforms {
844 match timeout(
845 self.config.benchmark_timeout,
846 self.run_platform_benchmark(platform),
847 )
848 .await
849 {
850 Ok(Ok(result)) => {
851 total_benchmarks += result.circuit_results.len();
852 successful_benchmarks += result
853 .circuit_results
854 .values()
855 .map(|results| results.len())
856 .sum::<usize>();
857 total_shots += result
858 .circuit_results
859 .values()
860 .flat_map(|results| results.iter())
861 .map(|r| r.shots)
862 .sum::<usize>();
863 total_cost += result
864 .circuit_results
865 .values()
866 .flat_map(|results| results.iter())
867 .map(|r| r.cost)
868 .sum::<f64>();
869 platform_results.insert(platform.clone(), result);
870 }
871 Ok(Err(e)) => {
872 eprintln!("Platform benchmark failed for {platform:?}: {e}");
873 failed_benchmarks += 1;
874 }
875 Err(_) => {
876 eprintln!("Platform benchmark timed out for {platform:?}");
877 failed_benchmarks += 1;
878 }
879 }
880 }
881
882 let comparative_analysis = self.perform_comparative_analysis(&platform_results)?;
884
885 let statistical_analysis =
887 self.perform_cross_platform_statistical_analysis(&platform_results)?;
888
889 let cost_analysis = if self.config.enable_cost_analysis {
891 Some(self.perform_cost_analysis(&platform_results)?)
892 } else {
893 None
894 };
895
896 let recommendations = self.generate_platform_recommendations(
898 &platform_results,
899 &comparative_analysis,
900 &statistical_analysis,
901 )?;
902
903 let execution_time = start_time.elapsed();
904 let execution_summary = ExecutionSummary {
905 total_execution_time: execution_time,
906 total_benchmarks_run: total_benchmarks,
907 successful_benchmarks,
908 failed_benchmarks,
909 platforms_tested: platform_results.len(),
910 total_shots_executed: total_shots,
911 total_cost,
912 data_points_collected: platform_results
913 .values()
914 .map(|r| r.circuit_results.values().map(|v| v.len()).sum::<usize>())
915 .sum(),
916 };
917
918 Ok(CrossPlatformBenchmarkResult {
919 benchmark_id,
920 timestamp,
921 config: self.config.clone(),
922 platform_results,
923 comparative_analysis,
924 statistical_analysis,
925 cost_analysis,
926 recommendations,
927 execution_summary,
928 })
929 }
930
931 async fn initialize_platform_clients(&mut self) -> DeviceResult<()> {
933 for platform in &self.config.target_platforms {
935 match platform {
936 #[cfg(feature = "ibm")]
937 QuantumPlatform::IBMQuantum(_) => {
938 if self.ibm_client.is_none() {
939 }
942 }
943 #[cfg(not(feature = "ibm"))]
944 QuantumPlatform::IBMQuantum(_) => {}
945 #[cfg(feature = "aws")]
946 QuantumPlatform::AWSBraket(_) => {
947 if self.aws_client.is_none() {
948 }
951 }
952 #[cfg(not(feature = "aws"))]
953 QuantumPlatform::AWSBraket(_) => {}
954 #[cfg(feature = "azure")]
955 QuantumPlatform::AzureQuantum(_) => {
956 if self.azure_client.is_none() {
957 }
960 }
961 #[cfg(not(feature = "azure"))]
962 QuantumPlatform::AzureQuantum(_) => {}
963 _ => {
964 }
966 }
967 }
968 Ok(())
969 }
970
971 async fn run_platform_benchmark(
973 &self,
974 platform: &QuantumPlatform,
975 ) -> DeviceResult<PlatformBenchmarkResult> {
976 let device_info = self.get_device_info(platform).await?;
978
979 let mut circuit_results = HashMap::new();
981 let mut all_metrics = Vec::new();
982
983 for complexity in &self.config.complexity_levels {
984 let mut level_results = Vec::new();
985
986 let benchmark_circuits = self.generate_benchmark_circuits(complexity)?;
988
989 for circuit in benchmark_circuits {
990 for _ in 0..self.config.repetitions {
992 match self.execute_circuit_on_platform(&circuit, platform).await {
993 Ok(result) => {
994 level_results.push(result.clone());
995 all_metrics.push(result.fidelity);
996 }
997 Err(e) => {
998 eprintln!("Circuit execution failed: {e}");
999 }
1000 }
1001 }
1002 }
1003
1004 circuit_results.insert(complexity.name.clone(), level_results);
1005 }
1006
1007 let benchmark_metrics = self.calculate_platform_metrics(&circuit_results)?;
1009 let performance_analysis = self.analyze_platform_performance(&circuit_results)?;
1010 let reliability_metrics = self.calculate_reliability_metrics(&circuit_results)?;
1011 let latency_analysis = self.analyze_latency(&circuit_results)?;
1012 let error_analysis = self.analyze_errors(&circuit_results)?;
1013
1014 Ok(PlatformBenchmarkResult {
1015 platform: platform.clone(),
1016 device_info,
1017 benchmark_metrics,
1018 circuit_results,
1019 performance_analysis,
1020 reliability_metrics,
1021 latency_analysis,
1022 error_analysis,
1023 })
1024 }
1025
1026 async fn get_device_info(&self, platform: &QuantumPlatform) -> DeviceResult<DeviceInfo> {
1028 let (device_name, provider, technology) = match platform {
1031 QuantumPlatform::IBMQuantum(name) => (
1032 name.clone(),
1033 "IBM".to_string(),
1034 QuantumTechnology::Superconducting,
1035 ),
1036 QuantumPlatform::AWSBraket(arn) => (
1037 arn.clone(),
1038 "AWS".to_string(),
1039 QuantumTechnology::Superconducting,
1040 ),
1041 QuantumPlatform::AzureQuantum(target) => (
1042 target.clone(),
1043 "Microsoft".to_string(),
1044 QuantumTechnology::TrappedIon,
1045 ),
1046 QuantumPlatform::IonQ(name) => (
1047 name.clone(),
1048 "IonQ".to_string(),
1049 QuantumTechnology::TrappedIon,
1050 ),
1051 QuantumPlatform::Rigetti(name) => (
1052 name.clone(),
1053 "Rigetti".to_string(),
1054 QuantumTechnology::Superconducting,
1055 ),
1056 QuantumPlatform::GoogleQuantumAI(name) => (
1057 name.clone(),
1058 "Google".to_string(),
1059 QuantumTechnology::Superconducting,
1060 ),
1061 QuantumPlatform::Custom(name) => (
1062 name.clone(),
1063 "Custom".to_string(),
1064 QuantumTechnology::Other("Custom".to_string()),
1065 ),
1066 };
1067
1068 Ok(DeviceInfo {
1069 device_name,
1070 provider,
1071 technology,
1072 qubit_count: 20, connectivity: ConnectivityInfo {
1074 topology_type: TopologyType::Heavy,
1075 connectivity_graph: Array2::eye(20),
1076 average_connectivity: 2.5,
1077 max_path_length: 5,
1078 },
1079 capabilities: query_backend_capabilities(
1080 crate::translation::HardwareBackend::IBMQuantum,
1081 ),
1082 calibration_date: Some(SystemTime::now()),
1083 })
1084 }
1085
1086 fn generate_benchmark_circuits(
1088 &self,
1089 complexity: &ComplexityLevel,
1090 ) -> DeviceResult<Vec<Circuit<16>>> {
1091 let mut circuits = Vec::new();
1092
1093 use scirs2_core::random::prelude::*;
1095 let mut rng = thread_rng();
1096
1097 let num_circuits = 5; for i in 0..num_circuits {
1100 let mut circuit = Circuit::<16>::new();
1101 let gate_count =
1102 rng.gen_range(complexity.gate_count_range.0..=complexity.gate_count_range.1);
1103 let two_qubit_gates = (gate_count as f64 * complexity.two_qubit_gate_ratio) as usize;
1104 let single_qubit_gates = gate_count - two_qubit_gates;
1105
1106 for _ in 0..single_qubit_gates {
1108 let qubit = rng.gen_range(0..complexity.qubit_count) as u32;
1109 match rng.gen_range(0..4) {
1110 0 => {
1111 circuit.h(QubitId(qubit))?;
1112 }
1113 1 => {
1114 circuit.x(QubitId(qubit))?;
1115 }
1116 2 => {
1117 circuit.y(QubitId(qubit))?;
1118 }
1119 3 => {
1120 circuit.z(QubitId(qubit))?;
1121 }
1122 _ => unreachable!(),
1123 }
1124 }
1125
1126 for _ in 0..two_qubit_gates {
1128 let qubit1 = rng.gen_range(0..complexity.qubit_count) as u32;
1129 let mut qubit2 = rng.gen_range(0..complexity.qubit_count) as u32;
1130 while qubit2 == qubit1 {
1131 qubit2 = rng.gen_range(0..complexity.qubit_count) as u32;
1132 }
1133 let _ = circuit.cnot(QubitId(qubit1), QubitId(qubit2));
1134 }
1135
1136 circuits.push(circuit);
1137 }
1138
1139 for custom_circuit in &self.config.custom_circuits {
1141 if custom_circuit.qubit_count <= complexity.qubit_count {
1142 let circuit = self.parse_custom_circuit(custom_circuit)?;
1144 circuits.push(circuit);
1145 }
1146 }
1147
1148 Ok(circuits)
1149 }
1150
1151 async fn execute_circuit_on_platform(
1153 &self,
1154 circuit: &Circuit<16>,
1155 platform: &QuantumPlatform,
1156 ) -> DeviceResult<CircuitBenchmarkResult> {
1157 let start_time = Instant::now();
1158 let queue_start = Instant::now();
1159
1160 let shots = 1000;
1162 let execution_time = Duration::from_millis(thread_rng().gen_range(100..2000));
1163 let queue_time = Duration::from_millis(thread_rng().gen_range(10..5000));
1164
1165 let mut measurement_counts = HashMap::new();
1167 let num_qubits = circuit
1168 .gates()
1169 .iter()
1170 .flat_map(|g| g.qubits())
1171 .map(|q| q.0 as usize)
1172 .max()
1173 .unwrap_or(0)
1174 + 1;
1175
1176 let num_outcomes = 2_usize.pow(num_qubits.min(8) as u32); for i in 0..num_outcomes.min(8) {
1178 let outcome = format!("{:0width$b}", i, width = num_qubits.min(8));
1179 let count = thread_rng().gen_range(0..shots / num_outcomes * 2);
1180 if count > 0 {
1181 measurement_counts.insert(outcome, count);
1182 }
1183 }
1184
1185 let fidelity = self.calculate_circuit_fidelity(&measurement_counts, circuit)?;
1187 let success_rate =
1188 measurement_counts.values().map(|&c| c as f64).sum::<f64>() / shots as f64;
1189 let cost = self.calculate_execution_cost(platform, shots, execution_time)?;
1190
1191 Ok(CircuitBenchmarkResult {
1192 circuit_name: format!("circuit_{}", circuit.gates().len()),
1193 complexity_level: "medium".to_string(), execution_time,
1195 queue_time,
1196 total_time: queue_time + execution_time,
1197 fidelity,
1198 success_rate,
1199 cost,
1200 shots,
1201 measurement_counts,
1202 error_messages: Vec::new(),
1203 })
1204 }
1205
1206 fn parse_custom_circuit(&self, custom: &CustomBenchmarkCircuit) -> DeviceResult<Circuit<16>> {
1209 Ok(Circuit::<16>::new())
1211 }
1212
1213 fn calculate_circuit_fidelity(
1214 &self,
1215 _measurement_counts: &HashMap<String, usize>,
1216 _circuit: &Circuit<16>,
1217 ) -> DeviceResult<f64> {
1218 Ok(thread_rng().gen_range(0.8..0.99))
1220 }
1221
1222 fn calculate_execution_cost(
1223 &self,
1224 platform: &QuantumPlatform,
1225 shots: usize,
1226 execution_time: Duration,
1227 ) -> DeviceResult<f64> {
1228 let base_cost = match platform {
1230 QuantumPlatform::IBMQuantum(_) => 0.0001, QuantumPlatform::AWSBraket(_) => 0.01,
1232 QuantumPlatform::AzureQuantum(_) => 0.008,
1233 QuantumPlatform::IonQ(_) => 0.01,
1234 _ => 0.005,
1235 };
1236
1237 Ok(base_cost * shots as f64 + execution_time.as_secs_f64() * 0.001)
1238 }
1239
1240 fn calculate_platform_metrics(
1241 &self,
1242 circuit_results: &HashMap<String, Vec<CircuitBenchmarkResult>>,
1243 ) -> DeviceResult<BenchmarkMetrics> {
1244 let all_results: Vec<&CircuitBenchmarkResult> = circuit_results
1245 .values()
1246 .flat_map(|results| results.iter())
1247 .collect();
1248
1249 if all_results.is_empty() {
1250 return Ok(BenchmarkMetrics {
1251 overall_score: 0.0,
1252 fidelity_score: 0.0,
1253 speed_score: 0.0,
1254 reliability_score: 0.0,
1255 cost_efficiency_score: 0.0,
1256 scalability_score: 0.0,
1257 detailed_metrics: HashMap::new(),
1258 });
1259 }
1260
1261 let avg_fidelity =
1262 all_results.iter().map(|r| r.fidelity).sum::<f64>() / all_results.len() as f64;
1263 let avg_execution_time = all_results
1264 .iter()
1265 .map(|r| r.execution_time.as_secs_f64())
1266 .sum::<f64>()
1267 / all_results.len() as f64;
1268 let avg_success_rate =
1269 all_results.iter().map(|r| r.success_rate).sum::<f64>() / all_results.len() as f64;
1270 let avg_cost = all_results.iter().map(|r| r.cost).sum::<f64>() / all_results.len() as f64;
1271
1272 let fidelity_score = avg_fidelity * 100.0;
1273 let speed_score = (1.0 / avg_execution_time * 100.0).min(100.0);
1274 let reliability_score = avg_success_rate * 100.0;
1275 let cost_efficiency_score = (1.0 / (avg_cost + 0.001) * 10.0).min(100.0);
1276 let scalability_score = 75.0; let overall_score = (fidelity_score * 0.3
1279 + speed_score * 0.2
1280 + reliability_score * 0.2
1281 + cost_efficiency_score * 0.15
1282 + scalability_score * 0.15)
1283 .min(100.0);
1284
1285 let mut detailed_metrics = HashMap::new();
1286 detailed_metrics.insert("avg_fidelity".to_string(), avg_fidelity);
1287 detailed_metrics.insert("avg_execution_time".to_string(), avg_execution_time);
1288 detailed_metrics.insert("avg_success_rate".to_string(), avg_success_rate);
1289 detailed_metrics.insert("avg_cost".to_string(), avg_cost);
1290
1291 Ok(BenchmarkMetrics {
1292 overall_score,
1293 fidelity_score,
1294 speed_score,
1295 reliability_score,
1296 cost_efficiency_score,
1297 scalability_score,
1298 detailed_metrics,
1299 })
1300 }
1301
1302 fn analyze_platform_performance(
1303 &self,
1304 circuit_results: &HashMap<String, Vec<CircuitBenchmarkResult>>,
1305 ) -> DeviceResult<PlatformPerformanceAnalysis> {
1306 let all_results: Vec<&CircuitBenchmarkResult> = circuit_results
1307 .values()
1308 .flat_map(|results| results.iter())
1309 .collect();
1310
1311 if all_results.is_empty() {
1312 return Err(DeviceError::APIError(
1313 "No results available for analysis".into(),
1314 ));
1315 }
1316
1317 let total_time: f64 = all_results.iter().map(|r| r.total_time.as_secs_f64()).sum();
1319 let throughput = all_results.len() as f64 / total_time;
1320
1321 let latencies: Vec<f64> = all_results
1323 .iter()
1324 .map(|r| r.total_time.as_secs_f64())
1325 .collect();
1326 let latency_array = Array1::from_vec(latencies.clone());
1327
1328 let mean_latency = mean(&latency_array.view()).unwrap_or(0.0);
1329 let median_latency = {
1330 let mut sorted_latencies = latencies.clone();
1331 sorted_latencies.sort_by(|a, b| a.partial_cmp(b).unwrap_or(std::cmp::Ordering::Equal));
1332 let mid = sorted_latencies.len() / 2;
1333 if sorted_latencies.len() % 2 == 0 {
1334 f64::midpoint(sorted_latencies[mid - 1], sorted_latencies[mid])
1335 } else {
1336 sorted_latencies[mid]
1337 }
1338 };
1339 let std_dev_latency = std(&latency_array.view(), 1, None).unwrap_or(0.0);
1340
1341 let mut percentiles = HashMap::new();
1342 let mut sorted_latencies = latencies;
1343 sorted_latencies.sort_by(|a, b| a.partial_cmp(b).unwrap_or(std::cmp::Ordering::Equal));
1344 percentiles.insert(50, median_latency);
1345 percentiles.insert(
1346 95,
1347 sorted_latencies[(sorted_latencies.len() as f64 * 0.95) as usize],
1348 );
1349 percentiles.insert(
1350 99,
1351 sorted_latencies[(sorted_latencies.len() as f64 * 0.99) as usize],
1352 );
1353
1354 let latency_distribution = LatencyDistribution {
1355 mean: mean_latency,
1356 median: median_latency,
1357 std_dev: std_dev_latency,
1358 percentiles,
1359 distribution_type: "Normal".to_string(), };
1361
1362 let scalability_analysis = ScalabilityAnalysis {
1364 qubit_scaling_factor: 1.2, depth_scaling_factor: 1.5,
1366 theoretical_limits: TheoreticalLimits {
1367 max_qubit_count: 100,
1368 max_circuit_depth: 1000,
1369 max_gate_count: 10000,
1370 coherence_limited_depth: 50,
1371 },
1372 bottleneck_analysis: BottleneckAnalysis {
1373 primary_bottleneck: BottleneckType::QueueTime,
1374 bottleneck_severity: 0.3,
1375 mitigation_strategies: vec!["Optimize timing".to_string()],
1376 },
1377 };
1378
1379 let resource_utilization = ResourceUtilization {
1381 qubit_utilization: 0.6, gate_efficiency: 0.8,
1383 shot_efficiency: 0.9,
1384 time_efficiency: 0.7,
1385 };
1386
1387 let performance_trends = PerformanceTrends {
1389 fidelity_trend: TrendAnalysis {
1390 slope: 0.001,
1391 r_squared: 0.8,
1392 trend_direction: TrendDirection::Improving,
1393 confidence_interval: (0.0005, 0.0015),
1394 },
1395 latency_trend: TrendAnalysis {
1396 slope: -0.01,
1397 r_squared: 0.6,
1398 trend_direction: TrendDirection::Improving,
1399 confidence_interval: (-0.02, 0.0),
1400 },
1401 reliability_trend: TrendAnalysis {
1402 slope: 0.005,
1403 r_squared: 0.7,
1404 trend_direction: TrendDirection::Stable,
1405 confidence_interval: (0.0, 0.01),
1406 },
1407 cost_trend: TrendAnalysis {
1408 slope: -0.001,
1409 r_squared: 0.5,
1410 trend_direction: TrendDirection::Improving,
1411 confidence_interval: (-0.002, 0.0),
1412 },
1413 };
1414
1415 Ok(PlatformPerformanceAnalysis {
1416 throughput,
1417 latency_distribution,
1418 scalability_analysis,
1419 resource_utilization,
1420 performance_trends,
1421 })
1422 }
1423
1424 fn calculate_reliability_metrics(
1425 &self,
1426 circuit_results: &HashMap<String, Vec<CircuitBenchmarkResult>>,
1427 ) -> DeviceResult<ReliabilityMetrics> {
1428 let all_results: Vec<&CircuitBenchmarkResult> = circuit_results
1429 .values()
1430 .flat_map(|results| results.iter())
1431 .collect();
1432
1433 let successful_runs = all_results
1434 .iter()
1435 .filter(|r| r.error_messages.is_empty())
1436 .count();
1437 let uptime_percentage = (successful_runs as f64 / all_results.len() as f64) * 100.0;
1438
1439 let mut error_rates = HashMap::new();
1440 error_rates.insert(
1441 "execution_error".to_string(),
1442 (all_results.len() - successful_runs) as f64 / all_results.len() as f64,
1443 );
1444
1445 Ok(ReliabilityMetrics {
1446 uptime_percentage,
1447 mtbf: Duration::from_secs(3600), mttr: Duration::from_secs(300), error_rates,
1450 consistency_score: uptime_percentage / 100.0,
1451 })
1452 }
1453
1454 fn analyze_latency(
1455 &self,
1456 circuit_results: &HashMap<String, Vec<CircuitBenchmarkResult>>,
1457 ) -> DeviceResult<LatencyAnalysis> {
1458 let all_results: Vec<&CircuitBenchmarkResult> = circuit_results
1459 .values()
1460 .flat_map(|results| results.iter())
1461 .collect();
1462
1463 if all_results.is_empty() {
1464 return Err(DeviceError::APIError(
1465 "No results for latency analysis".into(),
1466 ));
1467 }
1468
1469 let avg_queue =
1470 all_results.iter().map(|r| r.queue_time).sum::<Duration>() / all_results.len() as u32;
1471 let avg_execution = all_results
1472 .iter()
1473 .map(|r| r.execution_time)
1474 .sum::<Duration>()
1475 / all_results.len() as u32;
1476 let avg_total =
1477 all_results.iter().map(|r| r.total_time).sum::<Duration>() / all_results.len() as u32;
1478
1479 let latency_values: Vec<f64> = all_results
1480 .iter()
1481 .map(|r| r.total_time.as_secs_f64())
1482 .collect();
1483 let latency_array = Array1::from_vec(latency_values);
1484 let latency_variability = std(&latency_array.view(), 1, None).unwrap_or(0.0);
1485
1486 Ok(LatencyAnalysis {
1487 submission_latency: Duration::from_millis(100), queue_latency: avg_queue,
1489 execution_latency: avg_execution,
1490 retrieval_latency: Duration::from_millis(50), total_latency: avg_total,
1492 latency_variability,
1493 })
1494 }
1495
1496 fn analyze_errors(
1497 &self,
1498 circuit_results: &HashMap<String, Vec<CircuitBenchmarkResult>>,
1499 ) -> DeviceResult<ErrorAnalysis> {
1500 let all_results: Vec<&CircuitBenchmarkResult> = circuit_results
1501 .values()
1502 .flat_map(|results| results.iter())
1503 .collect();
1504
1505 let mut systematic_errors = HashMap::new();
1506 let mut random_errors = HashMap::new();
1507
1508 systematic_errors.insert("gate_error".to_string(), 0.001);
1510 random_errors.insert("thermal_noise".to_string(), 0.0005);
1511
1512 let n_qubits = 5; let error_correlations = Array2::eye(n_qubits);
1514
1515 Ok(ErrorAnalysis {
1516 systematic_errors,
1517 random_errors,
1518 coherent_errors: HashMap::new(),
1519 readout_errors: HashMap::new(),
1520 gate_errors: HashMap::new(),
1521 error_correlations,
1522 })
1523 }
1524
1525 fn perform_comparative_analysis(
1526 &self,
1527 platform_results: &HashMap<QuantumPlatform, PlatformBenchmarkResult>,
1528 ) -> DeviceResult<ComparativeAnalysisResult> {
1529 let mut platform_rankings = HashMap::new();
1530 let mut performance_matrix_data = Vec::new();
1531 let mut statistical_comparisons = HashMap::new();
1532
1533 let platforms: Vec<_> = platform_results.keys().collect();
1535 let n_platforms = platforms.len();
1536
1537 for (i, (platform, result)) in platform_results.iter().enumerate() {
1538 let ranking = PlatformRanking {
1539 overall_rank: i + 1, category_ranks: HashMap::new(),
1541 normalized_scores: HashMap::new(),
1542 relative_performance: result.benchmark_metrics.overall_score / 100.0,
1543 };
1544 platform_rankings.insert(format!("{platform:?}"), ranking);
1545
1546 performance_matrix_data.extend(vec![
1548 result.benchmark_metrics.fidelity_score,
1549 result.benchmark_metrics.speed_score,
1550 result.benchmark_metrics.reliability_score,
1551 result.benchmark_metrics.cost_efficiency_score,
1552 ]);
1553 }
1554
1555 let performance_matrix = Array2::from_shape_vec((n_platforms, 4), performance_matrix_data)
1556 .map_err(|e| DeviceError::APIError(format!("Matrix creation error: {e}")))?;
1557
1558 let mut cost_per_shot = HashMap::new();
1560 let mut cost_per_gate = HashMap::new();
1561 let mut cost_per_successful_result = HashMap::new();
1562 let mut value_for_money_score = HashMap::new();
1563
1564 for (platform, result) in platform_results {
1565 let total_cost: f64 = result
1566 .circuit_results
1567 .values()
1568 .flat_map(|results| results.iter())
1569 .map(|r| r.cost)
1570 .sum();
1571 let total_shots: usize = result
1572 .circuit_results
1573 .values()
1574 .flat_map(|results| results.iter())
1575 .map(|r| r.shots)
1576 .sum();
1577
1578 cost_per_shot.insert(platform.clone(), total_cost / total_shots as f64);
1579 cost_per_gate.insert(platform.clone(), total_cost / 100.0); cost_per_successful_result.insert(
1581 platform.clone(),
1582 total_cost
1583 / (total_shots as f64 * result.benchmark_metrics.reliability_score / 100.0),
1584 );
1585 value_for_money_score.insert(
1586 platform.clone(),
1587 result.benchmark_metrics.overall_score / (total_cost + 0.001),
1588 );
1589 }
1590
1591 let cost_effectiveness_analysis = CostEffectivenessAnalysis {
1592 cost_per_shot,
1593 cost_per_gate,
1594 cost_per_successful_result,
1595 value_for_money_score,
1596 cost_optimization_recommendations: Vec::new(),
1597 };
1598
1599 let mut use_case_recommendations = HashMap::new();
1601 use_case_recommendations.insert(
1602 "general_purpose".to_string(),
1603 platforms.iter().map(|&p| p.clone()).collect(),
1604 );
1605
1606 Ok(ComparativeAnalysisResult {
1607 platform_rankings,
1608 performance_matrix,
1609 statistical_comparisons,
1610 cost_effectiveness_analysis,
1611 use_case_recommendations,
1612 })
1613 }
1614
1615 fn perform_cross_platform_statistical_analysis(
1616 &self,
1617 platform_results: &HashMap<QuantumPlatform, PlatformBenchmarkResult>,
1618 ) -> DeviceResult<CrossPlatformStatisticalAnalysis> {
1619 let anova_results = HashMap::new();
1621 let correlation_analysis = CorrelationAnalysisResult {
1622 correlationmatrix: Array2::eye(4),
1623 significant_correlations: Vec::new(),
1624 correlation_network: HashMap::new(),
1625 };
1626 let cluster_analysis = ClusterAnalysisResult {
1627 cluster_assignments: HashMap::new(),
1628 cluster_centers: Array2::zeros((2, 4)),
1629 silhouette_score: 0.7,
1630 cluster_interpretations: HashMap::new(),
1631 };
1632 let principal_component_analysis = PCAResult {
1633 principal_components: Array2::eye(4),
1634 explained_variance_ratio: Array1::from_vec(vec![0.4, 0.3, 0.2, 0.1]),
1635 cumulative_variance: Array1::from_vec(vec![0.4, 0.7, 0.9, 1.0]),
1636 loadings: Array2::eye(4),
1637 platform_scores: HashMap::new(),
1638 };
1639 let outlier_detection = OutlierDetectionResult {
1640 outliers: HashMap::new(),
1641 outlier_scores: HashMap::new(),
1642 detection_method: "IQR".to_string(),
1643 threshold: 1.5,
1644 };
1645 let distribution_analysis = DistributionAnalysisResult {
1646 platform_distributions: HashMap::new(),
1647 distribution_comparisons: HashMap::new(),
1648 normality_tests: HashMap::new(),
1649 };
1650
1651 Ok(CrossPlatformStatisticalAnalysis {
1652 anova_results,
1653 correlation_analysis,
1654 cluster_analysis,
1655 principal_component_analysis,
1656 outlier_detection,
1657 distribution_analysis,
1658 })
1659 }
1660
1661 fn perform_cost_analysis(
1662 &self,
1663 platform_results: &HashMap<QuantumPlatform, PlatformBenchmarkResult>,
1664 ) -> DeviceResult<CrossPlatformCostAnalysis> {
1665 let mut total_costs = HashMap::new();
1666 let mut cost_breakdown = HashMap::new();
1667 let mut cost_trends = HashMap::new();
1668
1669 for (platform, result) in platform_results {
1670 let total_cost: f64 = result
1671 .circuit_results
1672 .values()
1673 .flat_map(|results| results.iter())
1674 .map(|r| r.cost)
1675 .sum();
1676
1677 total_costs.insert(platform.clone(), total_cost);
1678
1679 cost_breakdown.insert(
1680 platform.clone(),
1681 CostBreakdown {
1682 compute_cost: total_cost * 0.8,
1683 queue_cost: total_cost * 0.1,
1684 storage_cost: total_cost * 0.05,
1685 data_transfer_cost: total_cost * 0.05,
1686 other_costs: HashMap::new(),
1687 },
1688 );
1689
1690 cost_trends.insert(
1691 platform.clone(),
1692 CostTrend {
1693 trend_direction: TrendDirection::Stable,
1694 cost_per_month: vec![total_cost; 6], projected_costs: vec![total_cost; 6],
1696 cost_volatility: 0.1,
1697 },
1698 );
1699 }
1700
1701 let cost_optimization = CostOptimizationAnalysis {
1702 optimization_opportunities: Vec::new(),
1703 potential_savings: 100.0,
1704 optimization_strategies: vec!["Use lower-cost platforms for development".to_string()],
1705 };
1706
1707 let roi_analysis = ROIAnalysis {
1708 platform_roi: HashMap::new(),
1709 break_even_analysis: HashMap::new(),
1710 value_metrics: HashMap::new(),
1711 };
1712
1713 Ok(CrossPlatformCostAnalysis {
1714 total_costs,
1715 cost_breakdown,
1716 cost_trends,
1717 cost_optimization,
1718 roi_analysis,
1719 })
1720 }
1721
1722 fn generate_platform_recommendations(
1723 &self,
1724 platform_results: &HashMap<QuantumPlatform, PlatformBenchmarkResult>,
1725 comparative_analysis: &ComparativeAnalysisResult,
1726 _statistical_analysis: &CrossPlatformStatisticalAnalysis,
1727 ) -> DeviceResult<Vec<PlatformRecommendation>> {
1728 let mut recommendations = Vec::new();
1729
1730 if let Some((best_platform, _)) = platform_results.iter().max_by(|a, b| {
1732 a.1.benchmark_metrics
1733 .overall_score
1734 .partial_cmp(&b.1.benchmark_metrics.overall_score)
1735 .unwrap_or(std::cmp::Ordering::Equal)
1736 }) {
1737 recommendations.push(PlatformRecommendation {
1738 recommendation_type: RecommendationType::BestOverall,
1739 target_platform: best_platform.clone(),
1740 use_case: "General quantum computing tasks".to_string(),
1741 confidence_score: 0.9,
1742 reasoning: "Highest overall benchmark score".to_string(),
1743 conditions: vec!["Consider cost constraints".to_string()],
1744 });
1745 }
1746
1747 if let Some((most_cost_effective, _)) = comparative_analysis
1749 .cost_effectiveness_analysis
1750 .value_for_money_score
1751 .iter()
1752 .max_by(|a, b| a.1.partial_cmp(b.1).unwrap_or(std::cmp::Ordering::Equal))
1753 {
1754 recommendations.push(PlatformRecommendation {
1755 recommendation_type: RecommendationType::MostCostEffective,
1756 target_platform: most_cost_effective.clone(),
1757 use_case: "Budget-conscious development and testing".to_string(),
1758 confidence_score: 0.8,
1759 reasoning: "Best value for money ratio".to_string(),
1760 conditions: vec!["May have lower performance".to_string()],
1761 });
1762 }
1763
1764 Ok(recommendations)
1765 }
1766}
1767
1768#[cfg(test)]
1769mod tests {
1770 use super::*;
1771
1772 #[test]
1773 fn test_cross_platform_config_default() {
1774 let config = CrossPlatformBenchmarkConfig::default();
1775 assert_eq!(config.target_platforms.len(), 2);
1776 assert_eq!(config.complexity_levels.len(), 3);
1777 assert!(config.enable_cost_analysis);
1778 }
1779
1780 #[test]
1781 fn test_complexity_level_creation() {
1782 let complexity = ComplexityLevel {
1783 name: "Test".to_string(),
1784 qubit_count: 5,
1785 circuit_depth: 10,
1786 gate_count_range: (10, 30),
1787 two_qubit_gate_ratio: 0.4,
1788 description: "Test complexity level".to_string(),
1789 };
1790
1791 assert_eq!(complexity.name, "Test");
1792 assert_eq!(complexity.qubit_count, 5);
1793 assert_eq!(complexity.two_qubit_gate_ratio, 0.4);
1794 }
1795
1796 #[test]
1797 fn test_platform_enum() {
1798 let ibm_platform = QuantumPlatform::IBMQuantum("ibmq_qasm_simulator".to_string());
1799 let aws_platform = QuantumPlatform::AWSBraket(
1800 "arn:aws:braket:::device/quantum-simulator/amazon/sv1".to_string(),
1801 );
1802
1803 assert_ne!(ibm_platform, aws_platform);
1804 }
1805}