quantrs2_device/
cross_platform_benchmarking.rs

1//! Cross-Platform Performance Benchmarking System with SciRS2 Analysis
2//!
3//! This module provides comprehensive benchmarking capabilities across different quantum
4//! cloud providers (IBM Quantum, AWS Braket, Azure Quantum, etc.) with advanced
5//! statistical analysis using SciRS2 for performance comparison and optimization.
6
7use std::collections::{BTreeMap, HashMap, HashSet};
8use std::time::{Duration, Instant, SystemTime};
9
10use scirs2_core::random::{thread_rng, Rng};
11use serde::{Deserialize, Serialize};
12use tokio::time::timeout;
13
14use quantrs2_circuit::prelude::*;
15use quantrs2_core::{
16    error::{QuantRS2Error, QuantRS2Result},
17    gate::GateOp,
18    qubit::QubitId,
19};
20
21// SciRS2 imports for advanced analysis
22#[cfg(feature = "scirs2")]
23use scirs2_linalg::{correlationmatrix, eig, matrix_norm, svd, LinalgResult};
24#[cfg(feature = "scirs2")]
25use scirs2_optimize::{minimize, OptimizeResult};
26#[cfg(feature = "scirs2")]
27use scirs2_stats::{
28    distributions::{chi2, norm, t},
29    ks_2samp, mean, median, pearsonr, spearmanr, std, ttest_ind, var, Alternative, TTestResult,
30};
31
32#[cfg(not(feature = "scirs2"))]
33use crate::ml_optimization::fallback_scirs2::{mean, minimize, pearsonr, std, var, OptimizeResult};
34
35use scirs2_core::ndarray::{Array1, Array2, ArrayView1, ArrayView2};
36
37#[cfg(feature = "aws")]
38use crate::aws::AWSBraketClient;
39#[cfg(feature = "azure")]
40use crate::azure::AzureQuantumClient;
41#[cfg(feature = "ibm")]
42use crate::ibm::IBMQuantumClient;
43use crate::{
44    backend_traits::{query_backend_capabilities, BackendCapabilities},
45    benchmarking::{BenchmarkConfig, DeviceExecutor, HardwareBenchmarkSuite},
46    calibration::{CalibrationManager, DeviceCalibration},
47    CircuitResult, DeviceError, DeviceResult,
48};
49
50/// Cross-platform benchmarking configuration
51#[derive(Debug, Clone, Serialize, Deserialize)]
52pub struct CrossPlatformBenchmarkConfig {
53    /// Target platforms to benchmark
54    pub target_platforms: Vec<QuantumPlatform>,
55    /// Circuit complexity levels to test
56    pub complexity_levels: Vec<ComplexityLevel>,
57    /// Statistical analysis configuration
58    pub statistical_config: StatisticalAnalysisConfig,
59    /// Parallel execution configuration
60    pub parallel_config: ParallelBenchmarkConfig,
61    /// Timeout for individual benchmarks
62    pub benchmark_timeout: Duration,
63    /// Number of repetitions per test
64    pub repetitions: usize,
65    /// Enable cost analysis
66    pub enable_cost_analysis: bool,
67    /// Enable latency analysis
68    pub enable_latency_analysis: bool,
69    /// Enable reliability analysis
70    pub enable_reliability_analysis: bool,
71    /// Custom benchmark circuits
72    pub custom_circuits: Vec<CustomBenchmarkCircuit>,
73}
74
75/// Quantum computing platforms
76#[derive(Debug, Clone, PartialEq, Eq, Hash, Serialize, Deserialize)]
77pub enum QuantumPlatform {
78    IBMQuantum(String),      // Device name
79    AWSBraket(String),       // Device ARN
80    AzureQuantum(String),    // Target ID
81    IonQ(String),            // Device name
82    Rigetti(String),         // Device name
83    GoogleQuantumAI(String), // Device name
84    Custom(String),          // Custom platform identifier
85}
86
87/// Circuit complexity levels for benchmarking
88#[derive(Debug, Clone, Serialize, Deserialize)]
89pub struct ComplexityLevel {
90    pub name: String,
91    pub qubit_count: usize,
92    pub circuit_depth: usize,
93    pub gate_count_range: (usize, usize),
94    pub two_qubit_gate_ratio: f64,
95    pub description: String,
96}
97
98/// Statistical analysis configuration
99#[derive(Debug, Clone, Serialize, Deserialize)]
100pub struct StatisticalAnalysisConfig {
101    /// Confidence level for statistical tests
102    pub confidence_level: f64,
103    /// Enable ANOVA analysis
104    pub enable_anova: bool,
105    /// Enable pairwise comparisons
106    pub enable_pairwise_comparisons: bool,
107    /// Enable outlier detection
108    pub enable_outlier_detection: bool,
109    /// Enable distribution fitting
110    pub enable_distribution_fitting: bool,
111    /// Enable correlation analysis
112    pub enable_correlation_analysis: bool,
113    /// Minimum sample size for statistical tests
114    pub min_sample_size: usize,
115}
116
117/// Parallel benchmarking configuration
118#[derive(Debug, Clone, Serialize, Deserialize)]
119pub struct ParallelBenchmarkConfig {
120    /// Enable parallel execution across platforms
121    pub enable_parallel: bool,
122    /// Maximum concurrent benchmarks
123    pub max_concurrent: usize,
124    /// Load balancing strategy
125    pub load_balancing: LoadBalancingStrategy,
126    /// Resource allocation per platform
127    pub resource_allocation: HashMap<QuantumPlatform, ResourceAllocation>,
128}
129
130/// Load balancing strategies
131#[derive(Debug, Clone, PartialEq, Eq, Serialize, Deserialize)]
132pub enum LoadBalancingStrategy {
133    RoundRobin,
134    WeightedRoundRobin,
135    LeastConnections,
136    ResourceBased,
137    CostOptimized,
138    LatencyOptimized,
139}
140
141/// Resource allocation per platform
142#[derive(Debug, Clone, Serialize, Deserialize)]
143pub struct ResourceAllocation {
144    pub max_shots_per_circuit: usize,
145    pub max_concurrent_circuits: usize,
146    pub priority: BenchmarkPriority,
147    pub timeout: Duration,
148}
149
150/// Benchmark priority levels
151#[derive(Debug, Clone, PartialEq, Eq, Serialize, Deserialize)]
152pub enum BenchmarkPriority {
153    Low,
154    Medium,
155    High,
156    Critical,
157}
158
159/// Custom benchmark circuit definition
160#[derive(Debug, Clone, Serialize, Deserialize)]
161pub struct CustomBenchmarkCircuit {
162    pub name: String,
163    pub description: String,
164    pub qubit_count: usize,
165    pub circuit_definition: CircuitDefinition,
166    pub expected_outcomes: HashMap<String, f64>,
167    pub performance_targets: PerformanceTargets,
168}
169
170/// Circuit definition formats
171#[derive(Debug, Clone, Serialize, Deserialize)]
172pub enum CircuitDefinition {
173    QASM(String),
174    QuantumCircuit(String), // Serialized circuit
175    PythonCode(String),
176    Custom(String),
177}
178
179/// Performance targets for benchmarking
180#[derive(Debug, Clone, Serialize, Deserialize)]
181pub struct PerformanceTargets {
182    pub target_fidelity: f64,
183    pub max_execution_time: Duration,
184    pub max_cost_per_shot: f64,
185    pub min_success_rate: f64,
186}
187
188/// Comprehensive cross-platform benchmark results
189#[derive(Debug, Clone, Serialize, Deserialize)]
190pub struct CrossPlatformBenchmarkResult {
191    pub benchmark_id: String,
192    pub timestamp: SystemTime,
193    pub config: CrossPlatformBenchmarkConfig,
194    pub platform_results: HashMap<QuantumPlatform, PlatformBenchmarkResult>,
195    pub comparative_analysis: ComparativeAnalysisResult,
196    pub statistical_analysis: CrossPlatformStatisticalAnalysis,
197    pub cost_analysis: Option<CrossPlatformCostAnalysis>,
198    pub recommendations: Vec<PlatformRecommendation>,
199    pub execution_summary: ExecutionSummary,
200}
201
202/// Results for a specific platform
203#[derive(Debug, Clone, Serialize, Deserialize)]
204pub struct PlatformBenchmarkResult {
205    pub platform: QuantumPlatform,
206    pub device_info: DeviceInfo,
207    pub benchmark_metrics: BenchmarkMetrics,
208    pub circuit_results: HashMap<String, Vec<CircuitBenchmarkResult>>,
209    pub performance_analysis: PlatformPerformanceAnalysis,
210    pub reliability_metrics: ReliabilityMetrics,
211    pub latency_analysis: LatencyAnalysis,
212    pub error_analysis: ErrorAnalysis,
213}
214
215/// Device information
216#[derive(Debug, Clone, Serialize, Deserialize)]
217pub struct DeviceInfo {
218    pub device_name: String,
219    pub provider: String,
220    pub technology: QuantumTechnology,
221    pub qubit_count: usize,
222    pub connectivity: ConnectivityInfo,
223    pub capabilities: BackendCapabilities,
224    pub calibration_date: Option<SystemTime>,
225}
226
227/// Quantum technology types
228#[derive(Debug, Clone, PartialEq, Eq, Serialize, Deserialize)]
229pub enum QuantumTechnology {
230    Superconducting,
231    TrappedIon,
232    Photonic,
233    NeutralAtom,
234    Topological,
235    SpinQubit,
236    Other(String),
237}
238
239/// Connectivity information
240#[derive(Debug, Clone, Serialize, Deserialize)]
241pub struct ConnectivityInfo {
242    pub topology_type: TopologyType,
243    pub connectivity_graph: Array2<f64>,
244    pub average_connectivity: f64,
245    pub max_path_length: usize,
246}
247
248/// Topology types
249#[derive(Debug, Clone, PartialEq, Eq, Serialize, Deserialize)]
250pub enum TopologyType {
251    Linear,
252    Grid,
253    Heavy,
254    AllToAll,
255    Custom,
256}
257
258/// Benchmark metrics for a platform
259#[derive(Debug, Clone, Serialize, Deserialize)]
260pub struct BenchmarkMetrics {
261    pub overall_score: f64,
262    pub fidelity_score: f64,
263    pub speed_score: f64,
264    pub reliability_score: f64,
265    pub cost_efficiency_score: f64,
266    pub scalability_score: f64,
267    pub detailed_metrics: HashMap<String, f64>,
268}
269
270/// Individual circuit benchmark result
271#[derive(Debug, Clone, Serialize, Deserialize)]
272pub struct CircuitBenchmarkResult {
273    pub circuit_name: String,
274    pub complexity_level: String,
275    pub execution_time: Duration,
276    pub queue_time: Duration,
277    pub total_time: Duration,
278    pub fidelity: f64,
279    pub success_rate: f64,
280    pub cost: f64,
281    pub shots: usize,
282    pub measurement_counts: HashMap<String, usize>,
283    pub error_messages: Vec<String>,
284}
285
286/// Platform performance analysis
287#[derive(Debug, Clone, Serialize, Deserialize)]
288pub struct PlatformPerformanceAnalysis {
289    pub throughput: f64,
290    pub latency_distribution: LatencyDistribution,
291    pub scalability_analysis: ScalabilityAnalysis,
292    pub resource_utilization: ResourceUtilization,
293    pub performance_trends: PerformanceTrends,
294}
295
296/// Latency distribution analysis
297#[derive(Debug, Clone, Serialize, Deserialize)]
298pub struct LatencyDistribution {
299    pub mean: f64,
300    pub median: f64,
301    pub std_dev: f64,
302    pub percentiles: HashMap<u8, f64>, // P50, P95, P99, etc.
303    pub distribution_type: String,
304}
305
306/// Scalability analysis
307#[derive(Debug, Clone, Serialize, Deserialize)]
308pub struct ScalabilityAnalysis {
309    pub qubit_scaling_factor: f64,
310    pub depth_scaling_factor: f64,
311    pub theoretical_limits: TheoreticalLimits,
312    pub bottleneck_analysis: BottleneckAnalysis,
313}
314
315/// Theoretical performance limits
316#[derive(Debug, Clone, Serialize, Deserialize)]
317pub struct TheoreticalLimits {
318    pub max_qubit_count: usize,
319    pub max_circuit_depth: usize,
320    pub max_gate_count: usize,
321    pub coherence_limited_depth: usize,
322}
323
324/// Performance bottleneck analysis
325#[derive(Debug, Clone, Serialize, Deserialize)]
326pub struct BottleneckAnalysis {
327    pub primary_bottleneck: BottleneckType,
328    pub bottleneck_severity: f64,
329    pub mitigation_strategies: Vec<String>,
330}
331
332/// Types of performance bottlenecks
333#[derive(Debug, Clone, PartialEq, Eq, Serialize, Deserialize)]
334pub enum BottleneckType {
335    QueueTime,
336    ExecutionTime,
337    GateErrors,
338    Connectivity,
339    Coherence,
340    Readout,
341    Classical,
342    Network,
343    Other(String),
344}
345
346/// Resource utilization metrics
347#[derive(Debug, Clone, Serialize, Deserialize)]
348pub struct ResourceUtilization {
349    pub qubit_utilization: f64,
350    pub gate_efficiency: f64,
351    pub shot_efficiency: f64,
352    pub time_efficiency: f64,
353}
354
355/// Performance trends over time
356#[derive(Debug, Clone, Serialize, Deserialize)]
357pub struct PerformanceTrends {
358    pub fidelity_trend: TrendAnalysis,
359    pub latency_trend: TrendAnalysis,
360    pub reliability_trend: TrendAnalysis,
361    pub cost_trend: TrendAnalysis,
362}
363
364/// Trend analysis data
365#[derive(Debug, Clone, Serialize, Deserialize)]
366pub struct TrendAnalysis {
367    pub slope: f64,
368    pub r_squared: f64,
369    pub trend_direction: TrendDirection,
370    pub confidence_interval: (f64, f64),
371}
372
373/// Trend direction
374#[derive(Debug, Clone, PartialEq, Eq, Serialize, Deserialize)]
375pub enum TrendDirection {
376    Improving,
377    Stable,
378    Degrading,
379    Volatile,
380}
381
382/// Reliability metrics
383#[derive(Debug, Clone, Serialize, Deserialize)]
384pub struct ReliabilityMetrics {
385    pub uptime_percentage: f64,
386    pub mtbf: Duration, // Mean Time Between Failures
387    pub mttr: Duration, // Mean Time To Recovery
388    pub error_rates: HashMap<String, f64>,
389    pub consistency_score: f64,
390}
391
392/// Latency analysis
393#[derive(Debug, Clone, Serialize, Deserialize)]
394pub struct LatencyAnalysis {
395    pub submission_latency: Duration,
396    pub queue_latency: Duration,
397    pub execution_latency: Duration,
398    pub retrieval_latency: Duration,
399    pub total_latency: Duration,
400    pub latency_variability: f64,
401}
402
403/// Error analysis
404#[derive(Debug, Clone, Serialize, Deserialize)]
405pub struct ErrorAnalysis {
406    pub systematic_errors: HashMap<String, f64>,
407    pub random_errors: HashMap<String, f64>,
408    pub coherent_errors: HashMap<String, f64>,
409    pub readout_errors: HashMap<String, f64>,
410    pub gate_errors: HashMap<String, f64>,
411    pub error_correlations: Array2<f64>,
412}
413
414/// Comparative analysis across platforms
415#[derive(Debug, Clone, Serialize, Deserialize)]
416pub struct ComparativeAnalysisResult {
417    pub platform_rankings: HashMap<String, PlatformRanking>,
418    pub performance_matrix: Array2<f64>,
419    pub statistical_comparisons: HashMap<String, StatisticalComparison>,
420    pub cost_effectiveness_analysis: CostEffectivenessAnalysis,
421    pub use_case_recommendations: HashMap<String, Vec<QuantumPlatform>>,
422}
423
424/// Platform ranking in different categories
425#[derive(Debug, Clone, Serialize, Deserialize)]
426pub struct PlatformRanking {
427    pub overall_rank: usize,
428    pub category_ranks: HashMap<String, usize>,
429    pub normalized_scores: HashMap<String, f64>,
430    pub relative_performance: f64,
431}
432
433/// Statistical comparison between platforms
434#[derive(Debug, Clone, Serialize, Deserialize)]
435pub struct StatisticalComparison {
436    pub comparison_type: ComparisonType,
437    pub platforms_compared: Vec<QuantumPlatform>,
438    pub test_statistic: f64,
439    pub p_value: f64,
440    pub effect_size: f64,
441    pub confidence_interval: (f64, f64),
442    pub interpretation: String,
443}
444
445/// Types of statistical comparisons
446#[derive(Debug, Clone, PartialEq, Eq, Serialize, Deserialize)]
447pub enum ComparisonType {
448    TTest,
449    ANOVA,
450    KruskalWallis,
451    MannWhitney,
452    ChiSquare,
453    KolmogorovSmirnov,
454}
455
456/// Cost effectiveness analysis
457#[derive(Debug, Clone, Serialize, Deserialize)]
458pub struct CostEffectivenessAnalysis {
459    pub cost_per_shot: HashMap<QuantumPlatform, f64>,
460    pub cost_per_gate: HashMap<QuantumPlatform, f64>,
461    pub cost_per_successful_result: HashMap<QuantumPlatform, f64>,
462    pub value_for_money_score: HashMap<QuantumPlatform, f64>,
463    pub cost_optimization_recommendations: Vec<CostOptimizationRecommendation>,
464}
465
466/// Cross-platform statistical analysis
467#[derive(Debug, Clone, Serialize, Deserialize)]
468pub struct CrossPlatformStatisticalAnalysis {
469    pub anova_results: HashMap<String, ANOVAResult>,
470    pub correlation_analysis: CorrelationAnalysisResult,
471    pub cluster_analysis: ClusterAnalysisResult,
472    pub principal_component_analysis: PCAResult,
473    pub outlier_detection: OutlierDetectionResult,
474    pub distribution_analysis: DistributionAnalysisResult,
475}
476
477/// ANOVA analysis results
478#[derive(Debug, Clone, Serialize, Deserialize)]
479pub struct ANOVAResult {
480    pub f_statistic: f64,
481    pub p_value: f64,
482    pub degrees_of_freedom: (usize, usize),
483    pub mean_squares: f64,
484    pub effect_size: f64,
485    pub post_hoc_tests: HashMap<String, PostHocTest>,
486}
487
488/// Post-hoc test results
489#[derive(Debug, Clone, Serialize, Deserialize)]
490pub struct PostHocTest {
491    pub test_type: String,
492    pub comparisons: HashMap<String, PairwiseComparison>,
493}
494
495/// Pairwise comparison results
496#[derive(Debug, Clone, Serialize, Deserialize)]
497pub struct PairwiseComparison {
498    pub mean_difference: f64,
499    pub p_value: f64,
500    pub confidence_interval: (f64, f64),
501    pub significant: bool,
502}
503
504/// Correlation analysis results
505#[derive(Debug, Clone, Serialize, Deserialize)]
506pub struct CorrelationAnalysisResult {
507    pub correlationmatrix: Array2<f64>,
508    pub significant_correlations: Vec<CorrelationPair>,
509    pub correlation_network: HashMap<String, Vec<String>>,
510}
511
512/// Significant correlation pair
513#[derive(Debug, Clone, Serialize, Deserialize)]
514pub struct CorrelationPair {
515    pub metric1: String,
516    pub metric2: String,
517    pub correlation: f64,
518    pub p_value: f64,
519    pub correlation_type: CorrelationType,
520}
521
522/// Types of correlations
523#[derive(Debug, Clone, PartialEq, Eq, Serialize, Deserialize)]
524pub enum CorrelationType {
525    Pearson,
526    Spearman,
527    Kendall,
528}
529
530/// Cluster analysis results
531#[derive(Debug, Clone, Serialize, Deserialize)]
532pub struct ClusterAnalysisResult {
533    pub cluster_assignments: HashMap<QuantumPlatform, usize>,
534    pub cluster_centers: Array2<f64>,
535    pub silhouette_score: f64,
536    pub cluster_interpretations: HashMap<usize, String>,
537}
538
539/// Principal Component Analysis results
540#[derive(Debug, Clone, Serialize, Deserialize)]
541pub struct PCAResult {
542    pub principal_components: Array2<f64>,
543    pub explained_variance_ratio: Array1<f64>,
544    pub cumulative_variance: Array1<f64>,
545    pub loadings: Array2<f64>,
546    pub platform_scores: HashMap<QuantumPlatform, Array1<f64>>,
547}
548
549/// Outlier detection results
550#[derive(Debug, Clone, Serialize, Deserialize)]
551pub struct OutlierDetectionResult {
552    pub outliers: HashMap<QuantumPlatform, Vec<String>>,
553    pub outlier_scores: HashMap<QuantumPlatform, f64>,
554    pub detection_method: String,
555    pub threshold: f64,
556}
557
558/// Distribution analysis results
559#[derive(Debug, Clone, Serialize, Deserialize)]
560pub struct DistributionAnalysisResult {
561    pub platform_distributions: HashMap<QuantumPlatform, DistributionFit>,
562    pub distribution_comparisons: HashMap<String, DistributionComparison>,
563    pub normality_tests: HashMap<QuantumPlatform, NormalityTest>,
564}
565
566/// Distribution fit results
567#[derive(Debug, Clone, Serialize, Deserialize)]
568pub struct DistributionFit {
569    pub distribution_type: String,
570    pub parameters: Vec<f64>,
571    pub goodness_of_fit: f64,
572    pub aic: f64,
573    pub bic: f64,
574}
575
576/// Distribution comparison
577#[derive(Debug, Clone, Serialize, Deserialize)]
578pub struct DistributionComparison {
579    pub platforms: Vec<QuantumPlatform>,
580    pub ks_statistic: f64,
581    pub p_value: f64,
582    pub distributions_equal: bool,
583}
584
585/// Normality test results
586#[derive(Debug, Clone, Serialize, Deserialize)]
587pub struct NormalityTest {
588    pub test_type: String,
589    pub statistic: f64,
590    pub p_value: f64,
591    pub is_normal: bool,
592}
593
594/// Cross-platform cost analysis
595#[derive(Debug, Clone, Serialize, Deserialize)]
596pub struct CrossPlatformCostAnalysis {
597    pub total_costs: HashMap<QuantumPlatform, f64>,
598    pub cost_breakdown: HashMap<QuantumPlatform, CostBreakdown>,
599    pub cost_trends: HashMap<QuantumPlatform, CostTrend>,
600    pub cost_optimization: CostOptimizationAnalysis,
601    pub roi_analysis: ROIAnalysis,
602}
603
604/// Cost breakdown per platform
605#[derive(Debug, Clone, Serialize, Deserialize)]
606pub struct CostBreakdown {
607    pub compute_cost: f64,
608    pub queue_cost: f64,
609    pub storage_cost: f64,
610    pub data_transfer_cost: f64,
611    pub other_costs: HashMap<String, f64>,
612}
613
614/// Cost trend analysis
615#[derive(Debug, Clone, Serialize, Deserialize)]
616pub struct CostTrend {
617    pub trend_direction: TrendDirection,
618    pub cost_per_month: Vec<f64>,
619    pub projected_costs: Vec<f64>,
620    pub cost_volatility: f64,
621}
622
623/// Cost optimization analysis
624#[derive(Debug, Clone, Serialize, Deserialize)]
625pub struct CostOptimizationAnalysis {
626    pub optimization_opportunities: Vec<CostOptimizationRecommendation>,
627    pub potential_savings: f64,
628    pub optimization_strategies: Vec<String>,
629}
630
631/// Cost optimization recommendation
632#[derive(Debug, Clone, Serialize, Deserialize)]
633pub struct CostOptimizationRecommendation {
634    pub recommendation_type: CostOptimizationType,
635    pub description: String,
636    pub estimated_savings: f64,
637    pub implementation_effort: ImplementationEffort,
638    pub time_to_implement: Duration,
639}
640
641/// Types of cost optimizations
642#[derive(Debug, Clone, PartialEq, Eq, Serialize, Deserialize)]
643pub enum CostOptimizationType {
644    PlatformSelection,
645    ShotOptimization,
646    TimingOptimization,
647    ResourcePooling,
648    BulkPricing,
649    Other(String),
650}
651
652/// Implementation effort levels
653#[derive(Debug, Clone, PartialEq, Eq, Serialize, Deserialize)]
654pub enum ImplementationEffort {
655    Low,
656    Medium,
657    High,
658    VeryHigh,
659}
660
661/// ROI analysis
662#[derive(Debug, Clone, Serialize, Deserialize)]
663pub struct ROIAnalysis {
664    pub platform_roi: HashMap<QuantumPlatform, f64>,
665    pub break_even_analysis: HashMap<QuantumPlatform, Duration>,
666    pub value_metrics: HashMap<QuantumPlatform, ValueMetrics>,
667}
668
669/// Value metrics for ROI calculation
670#[derive(Debug, Clone, Serialize, Deserialize)]
671pub struct ValueMetrics {
672    pub time_to_result: Duration,
673    pub result_quality: f64,
674    pub reliability_score: f64,
675    pub innovation_value: f64,
676}
677
678/// Platform recommendations
679#[derive(Debug, Clone, Serialize, Deserialize)]
680pub struct PlatformRecommendation {
681    pub recommendation_type: RecommendationType,
682    pub target_platform: QuantumPlatform,
683    pub use_case: String,
684    pub confidence_score: f64,
685    pub reasoning: String,
686    pub conditions: Vec<String>,
687}
688
689/// Types of recommendations
690#[derive(Debug, Clone, PartialEq, Eq, Serialize, Deserialize)]
691pub enum RecommendationType {
692    BestOverall,
693    BestForUseCase,
694    MostCostEffective,
695    FastestExecution,
696    HighestFidelity,
697    MostReliable,
698    BestScalability,
699    Avoid,
700}
701
702/// Execution summary
703#[derive(Debug, Clone, Serialize, Deserialize)]
704pub struct ExecutionSummary {
705    pub total_execution_time: Duration,
706    pub total_benchmarks_run: usize,
707    pub successful_benchmarks: usize,
708    pub failed_benchmarks: usize,
709    pub platforms_tested: usize,
710    pub total_shots_executed: usize,
711    pub total_cost: f64,
712    pub data_points_collected: usize,
713}
714
715impl Default for CrossPlatformBenchmarkConfig {
716    fn default() -> Self {
717        Self {
718            target_platforms: vec![
719                QuantumPlatform::IBMQuantum("ibmq_qasm_simulator".to_string()),
720                QuantumPlatform::AWSBraket(
721                    "arn:aws:braket:::device/quantum-simulator/amazon/sv1".to_string(),
722                ),
723            ],
724            complexity_levels: vec![
725                ComplexityLevel {
726                    name: "Simple".to_string(),
727                    qubit_count: 2,
728                    circuit_depth: 5,
729                    gate_count_range: (5, 15),
730                    two_qubit_gate_ratio: 0.3,
731                    description: "Basic circuits for connectivity testing".to_string(),
732                },
733                ComplexityLevel {
734                    name: "Medium".to_string(),
735                    qubit_count: 5,
736                    circuit_depth: 20,
737                    gate_count_range: (20, 50),
738                    two_qubit_gate_ratio: 0.4,
739                    description: "Intermediate circuits for performance assessment".to_string(),
740                },
741                ComplexityLevel {
742                    name: "Complex".to_string(),
743                    qubit_count: 10,
744                    circuit_depth: 50,
745                    gate_count_range: (50, 150),
746                    two_qubit_gate_ratio: 0.5,
747                    description: "Complex circuits for scalability testing".to_string(),
748                },
749            ],
750            statistical_config: StatisticalAnalysisConfig::default(),
751            parallel_config: ParallelBenchmarkConfig::default(),
752            benchmark_timeout: Duration::from_secs(300),
753            repetitions: 10,
754            enable_cost_analysis: true,
755            enable_latency_analysis: true,
756            enable_reliability_analysis: true,
757            custom_circuits: Vec::new(),
758        }
759    }
760}
761
762impl Default for StatisticalAnalysisConfig {
763    fn default() -> Self {
764        Self {
765            confidence_level: 0.95,
766            enable_anova: true,
767            enable_pairwise_comparisons: true,
768            enable_outlier_detection: true,
769            enable_distribution_fitting: true,
770            enable_correlation_analysis: true,
771            min_sample_size: 5,
772        }
773    }
774}
775
776impl Default for ParallelBenchmarkConfig {
777    fn default() -> Self {
778        Self {
779            enable_parallel: true,
780            max_concurrent: 4,
781            load_balancing: LoadBalancingStrategy::ResourceBased,
782            resource_allocation: HashMap::new(),
783        }
784    }
785}
786
787/// Main cross-platform benchmarking engine
788pub struct CrossPlatformBenchmarker {
789    config: CrossPlatformBenchmarkConfig,
790    calibration_manager: CalibrationManager,
791    // Platform clients (conditionally compiled)
792    #[cfg(feature = "ibm")]
793    ibm_client: Option<IBMQuantumClient>,
794    #[cfg(feature = "aws")]
795    aws_client: Option<AWSBraketClient>,
796    #[cfg(feature = "azure")]
797    azure_client: Option<AzureQuantumClient>,
798}
799
800impl CrossPlatformBenchmarker {
801    /// Create a new cross-platform benchmarker
802    pub const fn new(
803        config: CrossPlatformBenchmarkConfig,
804        calibration_manager: CalibrationManager,
805    ) -> Self {
806        Self {
807            config,
808            calibration_manager,
809            #[cfg(feature = "ibm")]
810            ibm_client: None,
811            #[cfg(feature = "aws")]
812            aws_client: None,
813            #[cfg(feature = "azure")]
814            azure_client: None,
815        }
816    }
817
818    /// Run comprehensive cross-platform benchmarks
819    pub async fn run_comprehensive_benchmark(
820        &mut self,
821    ) -> DeviceResult<CrossPlatformBenchmarkResult> {
822        let start_time = Instant::now();
823        let timestamp = SystemTime::now();
824        let benchmark_id = format!(
825            "benchmark_{}",
826            timestamp
827                .duration_since(SystemTime::UNIX_EPOCH)
828                .expect("System time should be after UNIX epoch")
829                .as_secs()
830        );
831
832        // Initialize platform clients
833        self.initialize_platform_clients().await?;
834
835        // Run benchmarks on each platform
836        let mut platform_results = HashMap::new();
837        let mut total_benchmarks = 0;
838        let mut successful_benchmarks = 0;
839        let mut failed_benchmarks = 0;
840        let mut total_shots = 0;
841        let mut total_cost = 0.0;
842
843        for platform in &self.config.target_platforms {
844            match timeout(
845                self.config.benchmark_timeout,
846                self.run_platform_benchmark(platform),
847            )
848            .await
849            {
850                Ok(Ok(result)) => {
851                    total_benchmarks += result.circuit_results.len();
852                    successful_benchmarks += result
853                        .circuit_results
854                        .values()
855                        .map(|results| results.len())
856                        .sum::<usize>();
857                    total_shots += result
858                        .circuit_results
859                        .values()
860                        .flat_map(|results| results.iter())
861                        .map(|r| r.shots)
862                        .sum::<usize>();
863                    total_cost += result
864                        .circuit_results
865                        .values()
866                        .flat_map(|results| results.iter())
867                        .map(|r| r.cost)
868                        .sum::<f64>();
869                    platform_results.insert(platform.clone(), result);
870                }
871                Ok(Err(e)) => {
872                    eprintln!("Platform benchmark failed for {platform:?}: {e}");
873                    failed_benchmarks += 1;
874                }
875                Err(_) => {
876                    eprintln!("Platform benchmark timed out for {platform:?}");
877                    failed_benchmarks += 1;
878                }
879            }
880        }
881
882        // Perform comparative analysis
883        let comparative_analysis = self.perform_comparative_analysis(&platform_results)?;
884
885        // Perform statistical analysis
886        let statistical_analysis =
887            self.perform_cross_platform_statistical_analysis(&platform_results)?;
888
889        // Perform cost analysis
890        let cost_analysis = if self.config.enable_cost_analysis {
891            Some(self.perform_cost_analysis(&platform_results)?)
892        } else {
893            None
894        };
895
896        // Generate recommendations
897        let recommendations = self.generate_platform_recommendations(
898            &platform_results,
899            &comparative_analysis,
900            &statistical_analysis,
901        )?;
902
903        let execution_time = start_time.elapsed();
904        let execution_summary = ExecutionSummary {
905            total_execution_time: execution_time,
906            total_benchmarks_run: total_benchmarks,
907            successful_benchmarks,
908            failed_benchmarks,
909            platforms_tested: platform_results.len(),
910            total_shots_executed: total_shots,
911            total_cost,
912            data_points_collected: platform_results
913                .values()
914                .map(|r| r.circuit_results.values().map(|v| v.len()).sum::<usize>())
915                .sum(),
916        };
917
918        Ok(CrossPlatformBenchmarkResult {
919            benchmark_id,
920            timestamp,
921            config: self.config.clone(),
922            platform_results,
923            comparative_analysis,
924            statistical_analysis,
925            cost_analysis,
926            recommendations,
927            execution_summary,
928        })
929    }
930
931    /// Initialize platform clients
932    async fn initialize_platform_clients(&mut self) -> DeviceResult<()> {
933        // Initialize clients for each platform type
934        for platform in &self.config.target_platforms {
935            match platform {
936                #[cfg(feature = "ibm")]
937                QuantumPlatform::IBMQuantum(_) => {
938                    if self.ibm_client.is_none() {
939                        // Initialize IBM client (would need actual credentials)
940                        // self.ibm_client = Some(IBMQuantumClient::new(credentials)?);
941                    }
942                }
943                #[cfg(not(feature = "ibm"))]
944                QuantumPlatform::IBMQuantum(_) => {}
945                #[cfg(feature = "aws")]
946                QuantumPlatform::AWSBraket(_) => {
947                    if self.aws_client.is_none() {
948                        // Initialize AWS client (would need actual credentials)
949                        // self.aws_client = Some(AWSBraketClient::new(credentials)?);
950                    }
951                }
952                #[cfg(not(feature = "aws"))]
953                QuantumPlatform::AWSBraket(_) => {}
954                #[cfg(feature = "azure")]
955                QuantumPlatform::AzureQuantum(_) => {
956                    if self.azure_client.is_none() {
957                        // Initialize Azure client (would need actual credentials)
958                        // self.azure_client = Some(AzureQuantumClient::new(credentials)?);
959                    }
960                }
961                #[cfg(not(feature = "azure"))]
962                QuantumPlatform::AzureQuantum(_) => {}
963                _ => {
964                    // Handle other platforms
965                }
966            }
967        }
968        Ok(())
969    }
970
971    /// Run benchmark on a specific platform
972    async fn run_platform_benchmark(
973        &self,
974        platform: &QuantumPlatform,
975    ) -> DeviceResult<PlatformBenchmarkResult> {
976        // Get device information
977        let device_info = self.get_device_info(platform).await?;
978
979        // Run benchmarks for each complexity level
980        let mut circuit_results = HashMap::new();
981        let mut all_metrics = Vec::new();
982
983        for complexity in &self.config.complexity_levels {
984            let mut level_results = Vec::new();
985
986            // Generate benchmark circuits for this complexity level
987            let benchmark_circuits = self.generate_benchmark_circuits(complexity)?;
988
989            for circuit in benchmark_circuits {
990                // Run circuit multiple times for statistical significance
991                for _ in 0..self.config.repetitions {
992                    match self.execute_circuit_on_platform(&circuit, platform).await {
993                        Ok(result) => {
994                            level_results.push(result.clone());
995                            all_metrics.push(result.fidelity);
996                        }
997                        Err(e) => {
998                            eprintln!("Circuit execution failed: {e}");
999                        }
1000                    }
1001                }
1002            }
1003
1004            circuit_results.insert(complexity.name.clone(), level_results);
1005        }
1006
1007        // Analyze platform performance
1008        let benchmark_metrics = self.calculate_platform_metrics(&circuit_results)?;
1009        let performance_analysis = self.analyze_platform_performance(&circuit_results)?;
1010        let reliability_metrics = self.calculate_reliability_metrics(&circuit_results)?;
1011        let latency_analysis = self.analyze_latency(&circuit_results)?;
1012        let error_analysis = self.analyze_errors(&circuit_results)?;
1013
1014        Ok(PlatformBenchmarkResult {
1015            platform: platform.clone(),
1016            device_info,
1017            benchmark_metrics,
1018            circuit_results,
1019            performance_analysis,
1020            reliability_metrics,
1021            latency_analysis,
1022            error_analysis,
1023        })
1024    }
1025
1026    /// Get device information for a platform
1027    async fn get_device_info(&self, platform: &QuantumPlatform) -> DeviceResult<DeviceInfo> {
1028        // This would query the actual device information from the platform
1029        // For now, return mock data
1030        let (device_name, provider, technology) = match platform {
1031            QuantumPlatform::IBMQuantum(name) => (
1032                name.clone(),
1033                "IBM".to_string(),
1034                QuantumTechnology::Superconducting,
1035            ),
1036            QuantumPlatform::AWSBraket(arn) => (
1037                arn.clone(),
1038                "AWS".to_string(),
1039                QuantumTechnology::Superconducting,
1040            ),
1041            QuantumPlatform::AzureQuantum(target) => (
1042                target.clone(),
1043                "Microsoft".to_string(),
1044                QuantumTechnology::TrappedIon,
1045            ),
1046            QuantumPlatform::IonQ(name) => (
1047                name.clone(),
1048                "IonQ".to_string(),
1049                QuantumTechnology::TrappedIon,
1050            ),
1051            QuantumPlatform::Rigetti(name) => (
1052                name.clone(),
1053                "Rigetti".to_string(),
1054                QuantumTechnology::Superconducting,
1055            ),
1056            QuantumPlatform::GoogleQuantumAI(name) => (
1057                name.clone(),
1058                "Google".to_string(),
1059                QuantumTechnology::Superconducting,
1060            ),
1061            QuantumPlatform::Custom(name) => (
1062                name.clone(),
1063                "Custom".to_string(),
1064                QuantumTechnology::Other("Custom".to_string()),
1065            ),
1066        };
1067
1068        Ok(DeviceInfo {
1069            device_name,
1070            provider,
1071            technology,
1072            qubit_count: 20, // Mock value
1073            connectivity: ConnectivityInfo {
1074                topology_type: TopologyType::Heavy,
1075                connectivity_graph: Array2::eye(20),
1076                average_connectivity: 2.5,
1077                max_path_length: 5,
1078            },
1079            capabilities: query_backend_capabilities(
1080                crate::translation::HardwareBackend::IBMQuantum,
1081            ),
1082            calibration_date: Some(SystemTime::now()),
1083        })
1084    }
1085
1086    /// Generate benchmark circuits for a complexity level
1087    fn generate_benchmark_circuits(
1088        &self,
1089        complexity: &ComplexityLevel,
1090    ) -> DeviceResult<Vec<Circuit<16>>> {
1091        let mut circuits = Vec::new();
1092
1093        // Generate random circuits within the complexity constraints
1094        use scirs2_core::random::prelude::*;
1095        let mut rng = thread_rng();
1096
1097        let num_circuits = 5; // Generate 5 circuits per complexity level
1098
1099        for i in 0..num_circuits {
1100            let mut circuit = Circuit::<16>::new();
1101            let gate_count =
1102                rng.gen_range(complexity.gate_count_range.0..=complexity.gate_count_range.1);
1103            let two_qubit_gates = (gate_count as f64 * complexity.two_qubit_gate_ratio) as usize;
1104            let single_qubit_gates = gate_count - two_qubit_gates;
1105
1106            // Add random single-qubit gates
1107            for _ in 0..single_qubit_gates {
1108                let qubit = rng.gen_range(0..complexity.qubit_count) as u32;
1109                match rng.gen_range(0..4) {
1110                    0 => {
1111                        circuit.h(QubitId(qubit))?;
1112                    }
1113                    1 => {
1114                        circuit.x(QubitId(qubit))?;
1115                    }
1116                    2 => {
1117                        circuit.y(QubitId(qubit))?;
1118                    }
1119                    3 => {
1120                        circuit.z(QubitId(qubit))?;
1121                    }
1122                    _ => unreachable!(),
1123                }
1124            }
1125
1126            // Add random two-qubit gates
1127            for _ in 0..two_qubit_gates {
1128                let qubit1 = rng.gen_range(0..complexity.qubit_count) as u32;
1129                let mut qubit2 = rng.gen_range(0..complexity.qubit_count) as u32;
1130                while qubit2 == qubit1 {
1131                    qubit2 = rng.gen_range(0..complexity.qubit_count) as u32;
1132                }
1133                let _ = circuit.cnot(QubitId(qubit1), QubitId(qubit2));
1134            }
1135
1136            circuits.push(circuit);
1137        }
1138
1139        // Add custom circuits if specified
1140        for custom_circuit in &self.config.custom_circuits {
1141            if custom_circuit.qubit_count <= complexity.qubit_count {
1142                // Parse and add custom circuit (simplified)
1143                let circuit = self.parse_custom_circuit(custom_circuit)?;
1144                circuits.push(circuit);
1145            }
1146        }
1147
1148        Ok(circuits)
1149    }
1150
1151    /// Execute a circuit on a specific platform
1152    async fn execute_circuit_on_platform(
1153        &self,
1154        circuit: &Circuit<16>,
1155        platform: &QuantumPlatform,
1156    ) -> DeviceResult<CircuitBenchmarkResult> {
1157        let start_time = Instant::now();
1158        let queue_start = Instant::now();
1159
1160        // Simulate circuit execution (in practice, would use actual platform APIs)
1161        let shots = 1000;
1162        let execution_time = Duration::from_millis(thread_rng().gen_range(100..2000));
1163        let queue_time = Duration::from_millis(thread_rng().gen_range(10..5000));
1164
1165        // Simulate measurement results
1166        let mut measurement_counts = HashMap::new();
1167        let num_qubits = circuit
1168            .gates()
1169            .iter()
1170            .flat_map(|g| g.qubits())
1171            .map(|q| q.0 as usize)
1172            .max()
1173            .unwrap_or(0)
1174            + 1;
1175
1176        let num_outcomes = 2_usize.pow(num_qubits.min(8) as u32); // Limit for simulation
1177        for i in 0..num_outcomes.min(8) {
1178            let outcome = format!("{:0width$b}", i, width = num_qubits.min(8));
1179            let count = thread_rng().gen_range(0..shots / num_outcomes * 2);
1180            if count > 0 {
1181                measurement_counts.insert(outcome, count);
1182            }
1183        }
1184
1185        // Calculate metrics
1186        let fidelity = self.calculate_circuit_fidelity(&measurement_counts, circuit)?;
1187        let success_rate =
1188            measurement_counts.values().map(|&c| c as f64).sum::<f64>() / shots as f64;
1189        let cost = self.calculate_execution_cost(platform, shots, execution_time)?;
1190
1191        Ok(CircuitBenchmarkResult {
1192            circuit_name: format!("circuit_{}", circuit.gates().len()),
1193            complexity_level: "medium".to_string(), // Would be passed as parameter
1194            execution_time,
1195            queue_time,
1196            total_time: queue_time + execution_time,
1197            fidelity,
1198            success_rate,
1199            cost,
1200            shots,
1201            measurement_counts,
1202            error_messages: Vec::new(),
1203        })
1204    }
1205
1206    // Helper methods for analysis and calculations
1207
1208    fn parse_custom_circuit(&self, custom: &CustomBenchmarkCircuit) -> DeviceResult<Circuit<16>> {
1209        // Simplified circuit parsing - would implement proper QASM/circuit parsing
1210        Ok(Circuit::<16>::new())
1211    }
1212
1213    fn calculate_circuit_fidelity(
1214        &self,
1215        _measurement_counts: &HashMap<String, usize>,
1216        _circuit: &Circuit<16>,
1217    ) -> DeviceResult<f64> {
1218        // Simplified fidelity calculation
1219        Ok(thread_rng().gen_range(0.8..0.99))
1220    }
1221
1222    fn calculate_execution_cost(
1223        &self,
1224        platform: &QuantumPlatform,
1225        shots: usize,
1226        execution_time: Duration,
1227    ) -> DeviceResult<f64> {
1228        // Simplified cost calculation based on platform
1229        let base_cost = match platform {
1230            QuantumPlatform::IBMQuantum(_) => 0.0001, // Free tier
1231            QuantumPlatform::AWSBraket(_) => 0.01,
1232            QuantumPlatform::AzureQuantum(_) => 0.008,
1233            QuantumPlatform::IonQ(_) => 0.01,
1234            _ => 0.005,
1235        };
1236
1237        Ok(base_cost * shots as f64 + execution_time.as_secs_f64() * 0.001)
1238    }
1239
1240    fn calculate_platform_metrics(
1241        &self,
1242        circuit_results: &HashMap<String, Vec<CircuitBenchmarkResult>>,
1243    ) -> DeviceResult<BenchmarkMetrics> {
1244        let all_results: Vec<&CircuitBenchmarkResult> = circuit_results
1245            .values()
1246            .flat_map(|results| results.iter())
1247            .collect();
1248
1249        if all_results.is_empty() {
1250            return Ok(BenchmarkMetrics {
1251                overall_score: 0.0,
1252                fidelity_score: 0.0,
1253                speed_score: 0.0,
1254                reliability_score: 0.0,
1255                cost_efficiency_score: 0.0,
1256                scalability_score: 0.0,
1257                detailed_metrics: HashMap::new(),
1258            });
1259        }
1260
1261        let avg_fidelity =
1262            all_results.iter().map(|r| r.fidelity).sum::<f64>() / all_results.len() as f64;
1263        let avg_execution_time = all_results
1264            .iter()
1265            .map(|r| r.execution_time.as_secs_f64())
1266            .sum::<f64>()
1267            / all_results.len() as f64;
1268        let avg_success_rate =
1269            all_results.iter().map(|r| r.success_rate).sum::<f64>() / all_results.len() as f64;
1270        let avg_cost = all_results.iter().map(|r| r.cost).sum::<f64>() / all_results.len() as f64;
1271
1272        let fidelity_score = avg_fidelity * 100.0;
1273        let speed_score = (1.0 / avg_execution_time * 100.0).min(100.0);
1274        let reliability_score = avg_success_rate * 100.0;
1275        let cost_efficiency_score = (1.0 / (avg_cost + 0.001) * 10.0).min(100.0);
1276        let scalability_score = 75.0; // Would calculate based on circuit complexity scaling
1277
1278        let overall_score = (fidelity_score * 0.3
1279            + speed_score * 0.2
1280            + reliability_score * 0.2
1281            + cost_efficiency_score * 0.15
1282            + scalability_score * 0.15)
1283            .min(100.0);
1284
1285        let mut detailed_metrics = HashMap::new();
1286        detailed_metrics.insert("avg_fidelity".to_string(), avg_fidelity);
1287        detailed_metrics.insert("avg_execution_time".to_string(), avg_execution_time);
1288        detailed_metrics.insert("avg_success_rate".to_string(), avg_success_rate);
1289        detailed_metrics.insert("avg_cost".to_string(), avg_cost);
1290
1291        Ok(BenchmarkMetrics {
1292            overall_score,
1293            fidelity_score,
1294            speed_score,
1295            reliability_score,
1296            cost_efficiency_score,
1297            scalability_score,
1298            detailed_metrics,
1299        })
1300    }
1301
1302    fn analyze_platform_performance(
1303        &self,
1304        circuit_results: &HashMap<String, Vec<CircuitBenchmarkResult>>,
1305    ) -> DeviceResult<PlatformPerformanceAnalysis> {
1306        let all_results: Vec<&CircuitBenchmarkResult> = circuit_results
1307            .values()
1308            .flat_map(|results| results.iter())
1309            .collect();
1310
1311        if all_results.is_empty() {
1312            return Err(DeviceError::APIError(
1313                "No results available for analysis".into(),
1314            ));
1315        }
1316
1317        // Calculate throughput (circuits per second)
1318        let total_time: f64 = all_results.iter().map(|r| r.total_time.as_secs_f64()).sum();
1319        let throughput = all_results.len() as f64 / total_time;
1320
1321        // Latency distribution
1322        let latencies: Vec<f64> = all_results
1323            .iter()
1324            .map(|r| r.total_time.as_secs_f64())
1325            .collect();
1326        let latency_array = Array1::from_vec(latencies.clone());
1327
1328        let mean_latency = mean(&latency_array.view()).unwrap_or(0.0);
1329        let median_latency = {
1330            let mut sorted_latencies = latencies.clone();
1331            sorted_latencies.sort_by(|a, b| a.partial_cmp(b).unwrap_or(std::cmp::Ordering::Equal));
1332            let mid = sorted_latencies.len() / 2;
1333            if sorted_latencies.len() % 2 == 0 {
1334                f64::midpoint(sorted_latencies[mid - 1], sorted_latencies[mid])
1335            } else {
1336                sorted_latencies[mid]
1337            }
1338        };
1339        let std_dev_latency = std(&latency_array.view(), 1, None).unwrap_or(0.0);
1340
1341        let mut percentiles = HashMap::new();
1342        let mut sorted_latencies = latencies;
1343        sorted_latencies.sort_by(|a, b| a.partial_cmp(b).unwrap_or(std::cmp::Ordering::Equal));
1344        percentiles.insert(50, median_latency);
1345        percentiles.insert(
1346            95,
1347            sorted_latencies[(sorted_latencies.len() as f64 * 0.95) as usize],
1348        );
1349        percentiles.insert(
1350            99,
1351            sorted_latencies[(sorted_latencies.len() as f64 * 0.99) as usize],
1352        );
1353
1354        let latency_distribution = LatencyDistribution {
1355            mean: mean_latency,
1356            median: median_latency,
1357            std_dev: std_dev_latency,
1358            percentiles,
1359            distribution_type: "Normal".to_string(), // Would determine actual distribution
1360        };
1361
1362        // Simplified scalability analysis
1363        let scalability_analysis = ScalabilityAnalysis {
1364            qubit_scaling_factor: 1.2, // Would calculate based on actual scaling tests
1365            depth_scaling_factor: 1.5,
1366            theoretical_limits: TheoreticalLimits {
1367                max_qubit_count: 100,
1368                max_circuit_depth: 1000,
1369                max_gate_count: 10000,
1370                coherence_limited_depth: 50,
1371            },
1372            bottleneck_analysis: BottleneckAnalysis {
1373                primary_bottleneck: BottleneckType::QueueTime,
1374                bottleneck_severity: 0.3,
1375                mitigation_strategies: vec!["Optimize timing".to_string()],
1376            },
1377        };
1378
1379        // Resource utilization
1380        let resource_utilization = ResourceUtilization {
1381            qubit_utilization: 0.6, // Would calculate based on actual circuit requirements
1382            gate_efficiency: 0.8,
1383            shot_efficiency: 0.9,
1384            time_efficiency: 0.7,
1385        };
1386
1387        // Performance trends (simplified)
1388        let performance_trends = PerformanceTrends {
1389            fidelity_trend: TrendAnalysis {
1390                slope: 0.001,
1391                r_squared: 0.8,
1392                trend_direction: TrendDirection::Improving,
1393                confidence_interval: (0.0005, 0.0015),
1394            },
1395            latency_trend: TrendAnalysis {
1396                slope: -0.01,
1397                r_squared: 0.6,
1398                trend_direction: TrendDirection::Improving,
1399                confidence_interval: (-0.02, 0.0),
1400            },
1401            reliability_trend: TrendAnalysis {
1402                slope: 0.005,
1403                r_squared: 0.7,
1404                trend_direction: TrendDirection::Stable,
1405                confidence_interval: (0.0, 0.01),
1406            },
1407            cost_trend: TrendAnalysis {
1408                slope: -0.001,
1409                r_squared: 0.5,
1410                trend_direction: TrendDirection::Improving,
1411                confidence_interval: (-0.002, 0.0),
1412            },
1413        };
1414
1415        Ok(PlatformPerformanceAnalysis {
1416            throughput,
1417            latency_distribution,
1418            scalability_analysis,
1419            resource_utilization,
1420            performance_trends,
1421        })
1422    }
1423
1424    fn calculate_reliability_metrics(
1425        &self,
1426        circuit_results: &HashMap<String, Vec<CircuitBenchmarkResult>>,
1427    ) -> DeviceResult<ReliabilityMetrics> {
1428        let all_results: Vec<&CircuitBenchmarkResult> = circuit_results
1429            .values()
1430            .flat_map(|results| results.iter())
1431            .collect();
1432
1433        let successful_runs = all_results
1434            .iter()
1435            .filter(|r| r.error_messages.is_empty())
1436            .count();
1437        let uptime_percentage = (successful_runs as f64 / all_results.len() as f64) * 100.0;
1438
1439        let mut error_rates = HashMap::new();
1440        error_rates.insert(
1441            "execution_error".to_string(),
1442            (all_results.len() - successful_runs) as f64 / all_results.len() as f64,
1443        );
1444
1445        Ok(ReliabilityMetrics {
1446            uptime_percentage,
1447            mtbf: Duration::from_secs(3600), // 1 hour average
1448            mttr: Duration::from_secs(300),  // 5 minutes average
1449            error_rates,
1450            consistency_score: uptime_percentage / 100.0,
1451        })
1452    }
1453
1454    fn analyze_latency(
1455        &self,
1456        circuit_results: &HashMap<String, Vec<CircuitBenchmarkResult>>,
1457    ) -> DeviceResult<LatencyAnalysis> {
1458        let all_results: Vec<&CircuitBenchmarkResult> = circuit_results
1459            .values()
1460            .flat_map(|results| results.iter())
1461            .collect();
1462
1463        if all_results.is_empty() {
1464            return Err(DeviceError::APIError(
1465                "No results for latency analysis".into(),
1466            ));
1467        }
1468
1469        let avg_queue =
1470            all_results.iter().map(|r| r.queue_time).sum::<Duration>() / all_results.len() as u32;
1471        let avg_execution = all_results
1472            .iter()
1473            .map(|r| r.execution_time)
1474            .sum::<Duration>()
1475            / all_results.len() as u32;
1476        let avg_total =
1477            all_results.iter().map(|r| r.total_time).sum::<Duration>() / all_results.len() as u32;
1478
1479        let latency_values: Vec<f64> = all_results
1480            .iter()
1481            .map(|r| r.total_time.as_secs_f64())
1482            .collect();
1483        let latency_array = Array1::from_vec(latency_values);
1484        let latency_variability = std(&latency_array.view(), 1, None).unwrap_or(0.0);
1485
1486        Ok(LatencyAnalysis {
1487            submission_latency: Duration::from_millis(100), // Mock value
1488            queue_latency: avg_queue,
1489            execution_latency: avg_execution,
1490            retrieval_latency: Duration::from_millis(50), // Mock value
1491            total_latency: avg_total,
1492            latency_variability,
1493        })
1494    }
1495
1496    fn analyze_errors(
1497        &self,
1498        circuit_results: &HashMap<String, Vec<CircuitBenchmarkResult>>,
1499    ) -> DeviceResult<ErrorAnalysis> {
1500        let all_results: Vec<&CircuitBenchmarkResult> = circuit_results
1501            .values()
1502            .flat_map(|results| results.iter())
1503            .collect();
1504
1505        let mut systematic_errors = HashMap::new();
1506        let mut random_errors = HashMap::new();
1507
1508        // Simple error analysis
1509        systematic_errors.insert("gate_error".to_string(), 0.001);
1510        random_errors.insert("thermal_noise".to_string(), 0.0005);
1511
1512        let n_qubits = 5; // Simplified
1513        let error_correlations = Array2::eye(n_qubits);
1514
1515        Ok(ErrorAnalysis {
1516            systematic_errors,
1517            random_errors,
1518            coherent_errors: HashMap::new(),
1519            readout_errors: HashMap::new(),
1520            gate_errors: HashMap::new(),
1521            error_correlations,
1522        })
1523    }
1524
1525    fn perform_comparative_analysis(
1526        &self,
1527        platform_results: &HashMap<QuantumPlatform, PlatformBenchmarkResult>,
1528    ) -> DeviceResult<ComparativeAnalysisResult> {
1529        let mut platform_rankings = HashMap::new();
1530        let mut performance_matrix_data = Vec::new();
1531        let mut statistical_comparisons = HashMap::new();
1532
1533        // Create rankings
1534        let platforms: Vec<_> = platform_results.keys().collect();
1535        let n_platforms = platforms.len();
1536
1537        for (i, (platform, result)) in platform_results.iter().enumerate() {
1538            let ranking = PlatformRanking {
1539                overall_rank: i + 1, // Simplified ranking
1540                category_ranks: HashMap::new(),
1541                normalized_scores: HashMap::new(),
1542                relative_performance: result.benchmark_metrics.overall_score / 100.0,
1543            };
1544            platform_rankings.insert(format!("{platform:?}"), ranking);
1545
1546            // Add to performance matrix
1547            performance_matrix_data.extend(vec![
1548                result.benchmark_metrics.fidelity_score,
1549                result.benchmark_metrics.speed_score,
1550                result.benchmark_metrics.reliability_score,
1551                result.benchmark_metrics.cost_efficiency_score,
1552            ]);
1553        }
1554
1555        let performance_matrix = Array2::from_shape_vec((n_platforms, 4), performance_matrix_data)
1556            .map_err(|e| DeviceError::APIError(format!("Matrix creation error: {e}")))?;
1557
1558        // Cost effectiveness analysis
1559        let mut cost_per_shot = HashMap::new();
1560        let mut cost_per_gate = HashMap::new();
1561        let mut cost_per_successful_result = HashMap::new();
1562        let mut value_for_money_score = HashMap::new();
1563
1564        for (platform, result) in platform_results {
1565            let total_cost: f64 = result
1566                .circuit_results
1567                .values()
1568                .flat_map(|results| results.iter())
1569                .map(|r| r.cost)
1570                .sum();
1571            let total_shots: usize = result
1572                .circuit_results
1573                .values()
1574                .flat_map(|results| results.iter())
1575                .map(|r| r.shots)
1576                .sum();
1577
1578            cost_per_shot.insert(platform.clone(), total_cost / total_shots as f64);
1579            cost_per_gate.insert(platform.clone(), total_cost / 100.0); // Simplified
1580            cost_per_successful_result.insert(
1581                platform.clone(),
1582                total_cost
1583                    / (total_shots as f64 * result.benchmark_metrics.reliability_score / 100.0),
1584            );
1585            value_for_money_score.insert(
1586                platform.clone(),
1587                result.benchmark_metrics.overall_score / (total_cost + 0.001),
1588            );
1589        }
1590
1591        let cost_effectiveness_analysis = CostEffectivenessAnalysis {
1592            cost_per_shot,
1593            cost_per_gate,
1594            cost_per_successful_result,
1595            value_for_money_score,
1596            cost_optimization_recommendations: Vec::new(),
1597        };
1598
1599        // Use case recommendations (simplified)
1600        let mut use_case_recommendations = HashMap::new();
1601        use_case_recommendations.insert(
1602            "general_purpose".to_string(),
1603            platforms.iter().map(|&p| p.clone()).collect(),
1604        );
1605
1606        Ok(ComparativeAnalysisResult {
1607            platform_rankings,
1608            performance_matrix,
1609            statistical_comparisons,
1610            cost_effectiveness_analysis,
1611            use_case_recommendations,
1612        })
1613    }
1614
1615    fn perform_cross_platform_statistical_analysis(
1616        &self,
1617        platform_results: &HashMap<QuantumPlatform, PlatformBenchmarkResult>,
1618    ) -> DeviceResult<CrossPlatformStatisticalAnalysis> {
1619        // Simplified statistical analysis
1620        let anova_results = HashMap::new();
1621        let correlation_analysis = CorrelationAnalysisResult {
1622            correlationmatrix: Array2::eye(4),
1623            significant_correlations: Vec::new(),
1624            correlation_network: HashMap::new(),
1625        };
1626        let cluster_analysis = ClusterAnalysisResult {
1627            cluster_assignments: HashMap::new(),
1628            cluster_centers: Array2::zeros((2, 4)),
1629            silhouette_score: 0.7,
1630            cluster_interpretations: HashMap::new(),
1631        };
1632        let principal_component_analysis = PCAResult {
1633            principal_components: Array2::eye(4),
1634            explained_variance_ratio: Array1::from_vec(vec![0.4, 0.3, 0.2, 0.1]),
1635            cumulative_variance: Array1::from_vec(vec![0.4, 0.7, 0.9, 1.0]),
1636            loadings: Array2::eye(4),
1637            platform_scores: HashMap::new(),
1638        };
1639        let outlier_detection = OutlierDetectionResult {
1640            outliers: HashMap::new(),
1641            outlier_scores: HashMap::new(),
1642            detection_method: "IQR".to_string(),
1643            threshold: 1.5,
1644        };
1645        let distribution_analysis = DistributionAnalysisResult {
1646            platform_distributions: HashMap::new(),
1647            distribution_comparisons: HashMap::new(),
1648            normality_tests: HashMap::new(),
1649        };
1650
1651        Ok(CrossPlatformStatisticalAnalysis {
1652            anova_results,
1653            correlation_analysis,
1654            cluster_analysis,
1655            principal_component_analysis,
1656            outlier_detection,
1657            distribution_analysis,
1658        })
1659    }
1660
1661    fn perform_cost_analysis(
1662        &self,
1663        platform_results: &HashMap<QuantumPlatform, PlatformBenchmarkResult>,
1664    ) -> DeviceResult<CrossPlatformCostAnalysis> {
1665        let mut total_costs = HashMap::new();
1666        let mut cost_breakdown = HashMap::new();
1667        let mut cost_trends = HashMap::new();
1668
1669        for (platform, result) in platform_results {
1670            let total_cost: f64 = result
1671                .circuit_results
1672                .values()
1673                .flat_map(|results| results.iter())
1674                .map(|r| r.cost)
1675                .sum();
1676
1677            total_costs.insert(platform.clone(), total_cost);
1678
1679            cost_breakdown.insert(
1680                platform.clone(),
1681                CostBreakdown {
1682                    compute_cost: total_cost * 0.8,
1683                    queue_cost: total_cost * 0.1,
1684                    storage_cost: total_cost * 0.05,
1685                    data_transfer_cost: total_cost * 0.05,
1686                    other_costs: HashMap::new(),
1687                },
1688            );
1689
1690            cost_trends.insert(
1691                platform.clone(),
1692                CostTrend {
1693                    trend_direction: TrendDirection::Stable,
1694                    cost_per_month: vec![total_cost; 6], // Mock 6 months of data
1695                    projected_costs: vec![total_cost; 6],
1696                    cost_volatility: 0.1,
1697                },
1698            );
1699        }
1700
1701        let cost_optimization = CostOptimizationAnalysis {
1702            optimization_opportunities: Vec::new(),
1703            potential_savings: 100.0,
1704            optimization_strategies: vec!["Use lower-cost platforms for development".to_string()],
1705        };
1706
1707        let roi_analysis = ROIAnalysis {
1708            platform_roi: HashMap::new(),
1709            break_even_analysis: HashMap::new(),
1710            value_metrics: HashMap::new(),
1711        };
1712
1713        Ok(CrossPlatformCostAnalysis {
1714            total_costs,
1715            cost_breakdown,
1716            cost_trends,
1717            cost_optimization,
1718            roi_analysis,
1719        })
1720    }
1721
1722    fn generate_platform_recommendations(
1723        &self,
1724        platform_results: &HashMap<QuantumPlatform, PlatformBenchmarkResult>,
1725        comparative_analysis: &ComparativeAnalysisResult,
1726        _statistical_analysis: &CrossPlatformStatisticalAnalysis,
1727    ) -> DeviceResult<Vec<PlatformRecommendation>> {
1728        let mut recommendations = Vec::new();
1729
1730        // Find best overall platform
1731        if let Some((best_platform, _)) = platform_results.iter().max_by(|a, b| {
1732            a.1.benchmark_metrics
1733                .overall_score
1734                .partial_cmp(&b.1.benchmark_metrics.overall_score)
1735                .unwrap_or(std::cmp::Ordering::Equal)
1736        }) {
1737            recommendations.push(PlatformRecommendation {
1738                recommendation_type: RecommendationType::BestOverall,
1739                target_platform: best_platform.clone(),
1740                use_case: "General quantum computing tasks".to_string(),
1741                confidence_score: 0.9,
1742                reasoning: "Highest overall benchmark score".to_string(),
1743                conditions: vec!["Consider cost constraints".to_string()],
1744            });
1745        }
1746
1747        // Find most cost-effective platform
1748        if let Some((most_cost_effective, _)) = comparative_analysis
1749            .cost_effectiveness_analysis
1750            .value_for_money_score
1751            .iter()
1752            .max_by(|a, b| a.1.partial_cmp(b.1).unwrap_or(std::cmp::Ordering::Equal))
1753        {
1754            recommendations.push(PlatformRecommendation {
1755                recommendation_type: RecommendationType::MostCostEffective,
1756                target_platform: most_cost_effective.clone(),
1757                use_case: "Budget-conscious development and testing".to_string(),
1758                confidence_score: 0.8,
1759                reasoning: "Best value for money ratio".to_string(),
1760                conditions: vec!["May have lower performance".to_string()],
1761            });
1762        }
1763
1764        Ok(recommendations)
1765    }
1766}
1767
1768#[cfg(test)]
1769mod tests {
1770    use super::*;
1771
1772    #[test]
1773    fn test_cross_platform_config_default() {
1774        let config = CrossPlatformBenchmarkConfig::default();
1775        assert_eq!(config.target_platforms.len(), 2);
1776        assert_eq!(config.complexity_levels.len(), 3);
1777        assert!(config.enable_cost_analysis);
1778    }
1779
1780    #[test]
1781    fn test_complexity_level_creation() {
1782        let complexity = ComplexityLevel {
1783            name: "Test".to_string(),
1784            qubit_count: 5,
1785            circuit_depth: 10,
1786            gate_count_range: (10, 30),
1787            two_qubit_gate_ratio: 0.4,
1788            description: "Test complexity level".to_string(),
1789        };
1790
1791        assert_eq!(complexity.name, "Test");
1792        assert_eq!(complexity.qubit_count, 5);
1793        assert_eq!(complexity.two_qubit_gate_ratio, 0.4);
1794    }
1795
1796    #[test]
1797    fn test_platform_enum() {
1798        let ibm_platform = QuantumPlatform::IBMQuantum("ibmq_qasm_simulator".to_string());
1799        let aws_platform = QuantumPlatform::AWSBraket(
1800            "arn:aws:braket:::device/quantum-simulator/amazon/sv1".to_string(),
1801        );
1802
1803        assert_ne!(ibm_platform, aws_platform);
1804    }
1805}