quantrs2_device/topological/
braiding.rs

1//! Braiding operations for topological quantum computing
2//!
3//! This module implements braiding operations, braid group representations,
4//! and the calculation of braiding matrices for topological quantum computation.
5
6use super::{
7    Anyon, BraidingDirection, BraidingOperation, BraidingResult, NonAbelianAnyonType,
8    TopologicalCharge, TopologicalError, TopologicalResult,
9};
10use serde::{Deserialize, Serialize};
11use std::collections::HashMap;
12use std::f64::consts::PI;
13
14/// Braid group generator for topological quantum computation
15#[derive(Debug, Clone, Serialize, Deserialize)]
16pub struct BraidGenerator {
17    /// Generator index
18    pub index: usize,
19    /// Anyon indices involved in this generator
20    pub anyon_indices: (usize, usize),
21    /// Braiding direction
22    pub direction: BraidingDirection,
23}
24
25/// Braid group element representing a sequence of generators
26#[derive(Debug, Clone, Serialize, Deserialize)]
27pub struct BraidGroupElement {
28    /// Sequence of generators
29    pub generators: Vec<BraidGenerator>,
30    /// Total number of anyons
31    pub anyon_count: usize,
32}
33
34impl BraidGroupElement {
35    /// Create a new braid group element
36    pub const fn new(anyon_count: usize) -> Self {
37        Self {
38            generators: Vec::new(),
39            anyon_count,
40        }
41    }
42
43    /// Add a generator to the braid
44    pub fn add_generator(&mut self, generator: BraidGenerator) -> TopologicalResult<()> {
45        if generator.anyon_indices.0 >= self.anyon_count
46            || generator.anyon_indices.1 >= self.anyon_count
47        {
48            return Err(TopologicalError::InvalidBraiding(
49                "Anyon indices out of bounds for braid".to_string(),
50            ));
51        }
52        self.generators.push(generator);
53        Ok(())
54    }
55
56    /// Compose with another braid element
57    pub fn compose(&self, other: &Self) -> TopologicalResult<Self> {
58        if self.anyon_count != other.anyon_count {
59            return Err(TopologicalError::InvalidBraiding(
60                "Cannot compose braids with different anyon counts".to_string(),
61            ));
62        }
63
64        let mut result = self.clone();
65        result.generators.extend(other.generators.clone());
66        Ok(result)
67    }
68
69    /// Calculate the inverse braid
70    #[must_use]
71    pub fn inverse(&self) -> Self {
72        let mut inverse_generators = Vec::new();
73
74        for generator in self.generators.iter().rev() {
75            let inverse_direction = match generator.direction {
76                BraidingDirection::Clockwise => BraidingDirection::Counterclockwise,
77                BraidingDirection::Counterclockwise => BraidingDirection::Clockwise,
78            };
79
80            inverse_generators.push(BraidGenerator {
81                index: generator.index,
82                anyon_indices: generator.anyon_indices,
83                direction: inverse_direction,
84            });
85        }
86
87        Self {
88            generators: inverse_generators,
89            anyon_count: self.anyon_count,
90        }
91    }
92}
93
94/// Braiding matrix calculator for different anyon types
95pub struct BraidingMatrixCalculator {
96    anyon_type: NonAbelianAnyonType,
97}
98
99impl BraidingMatrixCalculator {
100    /// Create a new braiding matrix calculator
101    pub const fn new(anyon_type: NonAbelianAnyonType) -> Self {
102        Self { anyon_type }
103    }
104
105    /// Calculate R-matrix for braiding two charges
106    pub fn calculate_r_matrix(
107        &self,
108        charge1: &TopologicalCharge,
109        charge2: &TopologicalCharge,
110        fusion_channel: &str,
111    ) -> TopologicalResult<Vec<Vec<f64>>> {
112        match self.anyon_type {
113            NonAbelianAnyonType::Fibonacci => {
114                self.fibonacci_r_matrix(charge1, charge2, fusion_channel)
115            }
116            NonAbelianAnyonType::Ising => self.ising_r_matrix(charge1, charge2, fusion_channel),
117            _ => {
118                // Default identity matrix for unknown types
119                Ok(vec![vec![1.0, 0.0], vec![0.0, 1.0]])
120            }
121        }
122    }
123
124    /// Calculate Fibonacci R-matrix
125    fn fibonacci_r_matrix(
126        &self,
127        charge1: &TopologicalCharge,
128        charge2: &TopologicalCharge,
129        fusion_channel: &str,
130    ) -> TopologicalResult<Vec<Vec<f64>>> {
131        let phi = f64::midpoint(1.0, 5.0_f64.sqrt()); // Golden ratio
132
133        match (
134            charge1.label.as_str(),
135            charge2.label.as_str(),
136            fusion_channel,
137        ) {
138            ("τ", "τ", "I") => {
139                // R-matrix for τ × τ → I channel
140                let phase = (-4.0 * PI / 5.0).exp();
141                Ok(vec![vec![phase, 0.0], vec![0.0, phase]])
142            }
143            ("τ", "τ", "τ") => {
144                // R-matrix for τ × τ → τ channel
145                let r11 = (-4.0 * PI / 5.0).exp();
146                let r22 = (3.0 * PI / 5.0).exp();
147                let off_diagonal = (1.0 / phi).sqrt();
148
149                Ok(vec![vec![r11, off_diagonal], vec![off_diagonal, r22]])
150            }
151            ("I", _, _) | (_, "I", _) => {
152                // Identity braiding
153                Ok(vec![vec![1.0, 0.0], vec![0.0, 1.0]])
154            }
155            _ => Err(TopologicalError::InvalidBraiding(format!(
156                "Unknown Fibonacci braiding: {} × {} → {}",
157                charge1.label, charge2.label, fusion_channel
158            ))),
159        }
160    }
161
162    /// Calculate Ising R-matrix
163    fn ising_r_matrix(
164        &self,
165        charge1: &TopologicalCharge,
166        charge2: &TopologicalCharge,
167        fusion_channel: &str,
168    ) -> TopologicalResult<Vec<Vec<f64>>> {
169        match (
170            charge1.label.as_str(),
171            charge2.label.as_str(),
172            fusion_channel,
173        ) {
174            ("σ", "σ", "I") => {
175                // R-matrix for σ × σ → I channel
176                let phase = (PI / 8.0).exp();
177                Ok(vec![vec![phase, 0.0], vec![0.0, phase]])
178            }
179            ("σ", "σ", "ψ") => {
180                // R-matrix for σ × σ → ψ channel
181                let phase = (PI / 8.0).exp();
182                Ok(vec![vec![phase, 0.0], vec![0.0, -phase]])
183            }
184            ("σ", "ψ", "σ") | ("ψ", "σ", "σ") => {
185                // R-matrix for σ × ψ → σ channel
186                let phase = (-PI / 2.0).exp();
187                Ok(vec![vec![phase, 0.0], vec![0.0, phase]])
188            }
189            ("I", _, _) | (_, "I", _) => {
190                // Identity braiding
191                Ok(vec![vec![1.0, 0.0], vec![0.0, 1.0]])
192            }
193            ("ψ", "ψ", "I") => {
194                // Fermion anticommutation
195                Ok(vec![vec![-1.0, 0.0], vec![0.0, -1.0]])
196            }
197            _ => Err(TopologicalError::InvalidBraiding(format!(
198                "Unknown Ising braiding: {} × {} → {}",
199                charge1.label, charge2.label, fusion_channel
200            ))),
201        }
202    }
203}
204
205/// Advanced braiding operations manager
206pub struct BraidingOperationManager {
207    anyon_type: NonAbelianAnyonType,
208    matrix_calculator: BraidingMatrixCalculator,
209    operation_history: Vec<BraidingOperation>,
210}
211
212impl BraidingOperationManager {
213    /// Create a new braiding operation manager
214    pub fn new(anyon_type: NonAbelianAnyonType) -> Self {
215        Self {
216            anyon_type: anyon_type.clone(),
217            matrix_calculator: BraidingMatrixCalculator::new(anyon_type),
218            operation_history: Vec::new(),
219        }
220    }
221
222    /// Perform a braiding operation with detailed tracking
223    pub fn perform_braiding(
224        &mut self,
225        anyon1: &Anyon,
226        anyon2: &Anyon,
227        direction: BraidingDirection,
228        braid_count: usize,
229        fusion_channel: Option<&str>,
230    ) -> TopologicalResult<BraidingResult> {
231        // Calculate the braiding result
232        let result = self.calculate_braiding_result(
233            &anyon1.charge,
234            &anyon2.charge,
235            &direction,
236            braid_count,
237            fusion_channel,
238        )?;
239
240        // Record the operation
241        let operation = BraidingOperation {
242            operation_id: self.operation_history.len(),
243            anyon1: anyon1.anyon_id,
244            anyon2: anyon2.anyon_id,
245            direction,
246            braid_count,
247            result: result.clone(),
248            timestamp: 0.0, // Would be set to current time in practice
249        };
250
251        self.operation_history.push(operation);
252        Ok(result)
253    }
254
255    /// Calculate braiding result with matrix computation
256    fn calculate_braiding_result(
257        &self,
258        charge1: &TopologicalCharge,
259        charge2: &TopologicalCharge,
260        direction: &BraidingDirection,
261        braid_count: usize,
262        fusion_channel: Option<&str>,
263    ) -> TopologicalResult<BraidingResult> {
264        let channel = fusion_channel.unwrap_or("I");
265
266        // Get the R-matrix for single braid
267        let r_matrix = self
268            .matrix_calculator
269            .calculate_r_matrix(charge1, charge2, channel)?;
270
271        // For multiple braids, raise the matrix to the power of braid_count
272        let final_matrix = self.matrix_power(&r_matrix, braid_count)?;
273
274        // Adjust for braiding direction
275        let result_matrix = match direction {
276            BraidingDirection::Clockwise => final_matrix,
277            BraidingDirection::Counterclockwise => self.matrix_inverse(&final_matrix)?,
278        };
279
280        // Extract the braiding phase or return the full matrix
281        if result_matrix.len() == 2 && result_matrix[0].len() == 2 {
282            // For 2x2 matrices, extract phase from diagonal
283            if (result_matrix[0][0] - result_matrix[1][1]).abs() < 1e-10 {
284                let phase = 0.0; // For real matrices, imaginary part is 0
285                Ok(BraidingResult::Phase(phase))
286            } else {
287                Ok(BraidingResult::UnitaryMatrix(result_matrix))
288            }
289        } else {
290            Ok(BraidingResult::UnitaryMatrix(result_matrix))
291        }
292    }
293
294    /// Calculate matrix power
295    fn matrix_power(&self, matrix: &[Vec<f64>], power: usize) -> TopologicalResult<Vec<Vec<f64>>> {
296        if power == 0 {
297            // Return identity matrix
298            let size = matrix.len();
299            let mut identity = vec![vec![0.0; size]; size];
300            for i in 0..size {
301                identity[i][i] = 1.0;
302            }
303            return Ok(identity);
304        }
305
306        let mut result = matrix.to_vec();
307        for _ in 1..power {
308            result = self.matrix_multiply(&result, matrix)?;
309        }
310        Ok(result)
311    }
312
313    /// Matrix multiplication
314    fn matrix_multiply(&self, a: &[Vec<f64>], b: &[Vec<f64>]) -> TopologicalResult<Vec<Vec<f64>>> {
315        if a[0].len() != b.len() {
316            return Err(TopologicalError::InvalidBraiding(
317                "Matrix dimensions incompatible for multiplication".to_string(),
318            ));
319        }
320
321        let rows = a.len();
322        let cols = b[0].len();
323        let inner = a[0].len();
324
325        let mut result = vec![vec![0.0; cols]; rows];
326        for i in 0..rows {
327            for j in 0..cols {
328                for k in 0..inner {
329                    result[i][j] += a[i][k] * b[k][j];
330                }
331            }
332        }
333        Ok(result)
334    }
335
336    /// Matrix inverse (simplified for 2x2 matrices)
337    fn matrix_inverse(&self, matrix: &[Vec<f64>]) -> TopologicalResult<Vec<Vec<f64>>> {
338        if matrix.len() != 2 || matrix[0].len() != 2 {
339            return Err(TopologicalError::InvalidBraiding(
340                "Matrix inverse only implemented for 2x2 matrices".to_string(),
341            ));
342        }
343
344        let det = matrix[0][0].mul_add(matrix[1][1], -(matrix[0][1] * matrix[1][0]));
345        if det.abs() < 1e-10 {
346            return Err(TopologicalError::InvalidBraiding(
347                "Matrix is singular and cannot be inverted".to_string(),
348            ));
349        }
350
351        let inv_det = 1.0 / det;
352        Ok(vec![
353            vec![matrix[1][1] * inv_det, -matrix[0][1] * inv_det],
354            vec![-matrix[1][0] * inv_det, matrix[0][0] * inv_det],
355        ])
356    }
357
358    /// Get braiding operation history
359    pub fn get_operation_history(&self) -> &[BraidingOperation] {
360        &self.operation_history
361    }
362
363    /// Calculate total accumulated phase from all operations
364    pub fn calculate_total_phase(&self) -> f64 {
365        self.operation_history
366            .iter()
367            .map(|op| match &op.result {
368                BraidingResult::Phase(phase) => *phase,
369                _ => 0.0,
370            })
371            .sum()
372    }
373}
374
375/// Braid word optimizer for reducing braid complexity
376pub struct BraidWordOptimizer {
377    anyon_count: usize,
378}
379
380impl BraidWordOptimizer {
381    /// Create a new braid word optimizer
382    pub const fn new(anyon_count: usize) -> Self {
383        Self { anyon_count }
384    }
385
386    /// Optimize a braid word by removing redundant operations
387    pub fn optimize(&self, braid: &BraidGroupElement) -> BraidGroupElement {
388        let mut optimized = braid.clone();
389
390        // Remove inverse pairs
391        self.remove_inverse_pairs(&mut optimized);
392
393        // Apply braid relations
394        self.apply_braid_relations(&mut optimized);
395
396        optimized
397    }
398
399    /// Remove adjacent inverse pairs from the braid word
400    fn remove_inverse_pairs(&self, braid: &mut BraidGroupElement) {
401        let mut i = 0;
402        while i < braid.generators.len().saturating_sub(1) {
403            let current = &braid.generators[i];
404            let next = &braid.generators[i + 1];
405
406            if current.anyon_indices == next.anyon_indices && current.direction != next.direction {
407                // Remove the inverse pair
408                braid.generators.remove(i);
409                braid.generators.remove(i);
410                i = i.saturating_sub(1);
411            } else {
412                i += 1;
413            }
414        }
415    }
416
417    /// Apply braid group relations to simplify the word
418    fn apply_braid_relations(&self, braid: &mut BraidGroupElement) {
419        // Apply Yang-Baxter relation: σᵢσᵢ₊₁σᵢ = σᵢ₊₁σᵢσᵢ₊₁
420        // This is a simplified implementation
421        let mut changed = true;
422        while changed {
423            changed = false;
424
425            for i in 0..braid.generators.len().saturating_sub(2) {
426                if self.is_yang_baxter_pattern(&braid.generators[i..i + 3]) {
427                    // Apply the relation
428                    self.apply_yang_baxter_relation(braid, i);
429                    changed = true;
430                    break;
431                }
432            }
433        }
434    }
435
436    /// Check if a sequence matches Yang-Baxter pattern
437    fn is_yang_baxter_pattern(&self, generators: &[BraidGenerator]) -> bool {
438        if generators.len() < 3 {
439            return false;
440        }
441
442        // Check for σᵢσᵢ₊₁σᵢ pattern
443        let g1 = &generators[0];
444        let g2 = &generators[1];
445        let g3 = &generators[2];
446
447        // Adjacent generators and proper ordering
448        g1.anyon_indices == g3.anyon_indices
449            && g1.direction == g3.direction
450            && ((g2.anyon_indices.0 == g1.anyon_indices.1
451                && g2.anyon_indices.1 == g1.anyon_indices.1 + 1)
452                || (g2.anyon_indices.1 == g1.anyon_indices.0
453                    && g2.anyon_indices.0 == g1.anyon_indices.0 - 1))
454    }
455
456    /// Apply Yang-Baxter relation transformation
457    fn apply_yang_baxter_relation(&self, braid: &mut BraidGroupElement, start_index: usize) {
458        // This is a placeholder for the actual Yang-Baxter transformation
459        // In practice, this would swap the order according to the relation
460        // σᵢσᵢ₊₁σᵢ → σᵢ₊₁σᵢσᵢ₊₁
461
462        if start_index + 2 < braid.generators.len() {
463            let g1 = braid.generators[start_index].clone();
464            let g2 = braid.generators[start_index + 1].clone();
465            let g3 = braid.generators[start_index + 2].clone();
466
467            // Apply the transformation (simplified)
468            braid.generators[start_index] = g2.clone();
469            braid.generators[start_index + 1] = g1;
470            braid.generators[start_index + 2] = g2;
471        }
472    }
473}
474
475#[cfg(test)]
476mod tests {
477    use super::*;
478
479    #[test]
480    fn test_braid_group_element() {
481        let mut braid = BraidGroupElement::new(4);
482
483        let generator = BraidGenerator {
484            index: 0,
485            anyon_indices: (0, 1),
486            direction: BraidingDirection::Clockwise,
487        };
488
489        assert!(braid.add_generator(generator).is_ok());
490        assert_eq!(braid.generators.len(), 1);
491    }
492
493    #[test]
494    fn test_braid_inverse() {
495        let mut braid = BraidGroupElement::new(3);
496
497        let generator = BraidGenerator {
498            index: 0,
499            anyon_indices: (0, 1),
500            direction: BraidingDirection::Clockwise,
501        };
502
503        braid
504            .add_generator(generator)
505            .expect("Generator should be valid for 3-anyon braid");
506        let inverse = braid.inverse();
507
508        assert_eq!(inverse.generators.len(), 1);
509        assert_eq!(
510            inverse.generators[0].direction,
511            BraidingDirection::Counterclockwise
512        );
513    }
514
515    #[test]
516    fn test_fibonacci_r_matrix() {
517        let calculator = BraidingMatrixCalculator::new(NonAbelianAnyonType::Fibonacci);
518        let tau_charge = TopologicalCharge::fibonacci_tau();
519
520        let r_matrix = calculator
521            .calculate_r_matrix(&tau_charge, &tau_charge, "I")
522            .expect("Fibonacci tau x tau -> I R-matrix should be valid");
523        assert_eq!(r_matrix.len(), 2);
524        assert_eq!(r_matrix[0].len(), 2);
525    }
526
527    #[test]
528    fn test_braiding_operation_manager() {
529        let mut manager = BraidingOperationManager::new(NonAbelianAnyonType::Fibonacci);
530
531        let anyon1 = Anyon {
532            anyon_id: 0,
533            charge: TopologicalCharge::fibonacci_tau(),
534            position: (0.0, 0.0),
535            is_qubit_part: false,
536            qubit_id: None,
537            creation_time: 0.0,
538        };
539
540        let anyon2 = Anyon {
541            anyon_id: 1,
542            charge: TopologicalCharge::fibonacci_tau(),
543            position: (1.0, 0.0),
544            is_qubit_part: false,
545            qubit_id: None,
546            creation_time: 0.0,
547        };
548
549        let result =
550            manager.perform_braiding(&anyon1, &anyon2, BraidingDirection::Clockwise, 1, Some("I"));
551
552        assert!(result.is_ok());
553        assert_eq!(manager.get_operation_history().len(), 1);
554    }
555}