quantrs2_device/process_tomography/reconstruction/
machine_learning.rs1use scirs2_core::ndarray::{Array1, Array2, Array4};
4use scirs2_core::Complex64;
5
6use super::super::core::SciRS2ProcessTomographer;
7use super::super::results::{ExperimentalData, ReconstructionQuality};
8use super::utils::calculate_reconstruction_quality;
9use crate::DeviceResult;
10
11pub fn reconstruct_machine_learning(
13 tomographer: &SciRS2ProcessTomographer,
14 experimental_data: &ExperimentalData,
15) -> DeviceResult<(Array4<Complex64>, ReconstructionQuality)> {
16 let num_qubits = (experimental_data.input_states[0].dim().0 as f64).log2() as usize;
17 let dim = 1 << num_qubits;
18
19 let features = extract_features(experimental_data)?;
21
22 let ml_output = apply_ml_model(&features)?;
24
25 let process_matrix = ml_output_to_process_matrix(&ml_output, dim)?;
27
28 let log_likelihood = calculate_ml_log_likelihood(&process_matrix, experimental_data)?;
29 let reconstruction_quality =
30 calculate_reconstruction_quality(&process_matrix, experimental_data, log_likelihood);
31
32 Ok((process_matrix, reconstruction_quality))
33}
34
35fn extract_features(experimental_data: &ExperimentalData) -> DeviceResult<Array1<f64>> {
37 let num_measurements = experimental_data.measurement_results.len();
38 let num_states = experimental_data.input_states.len();
39 let num_operators = experimental_data.measurement_operators.len();
40
41 let mut features = Vec::new();
42
43 let mean_result =
45 experimental_data.measurement_results.iter().sum::<f64>() / num_measurements as f64;
46 let var_result = experimental_data
47 .measurement_results
48 .iter()
49 .map(|&x| (x - mean_result).powi(2))
50 .sum::<f64>()
51 / num_measurements as f64;
52
53 features.push(mean_result);
54 features.push(var_result.sqrt());
55 features.push(num_measurements as f64);
56 features.push(num_states as f64);
57 features.push(num_operators as f64);
58
59 let max_features = 100;
61 for i in 0..max_features {
62 if i < experimental_data.measurement_results.len() {
63 features.push(experimental_data.measurement_results[i]);
64 } else {
65 features.push(0.0);
66 }
67 }
68
69 Ok(Array1::from_vec(features))
70}
71
72fn apply_ml_model(features: &Array1<f64>) -> DeviceResult<Array1<f64>> {
74 let input_size = features.len();
75 let hidden_size = 64;
76 let output_size = 16; let mut hidden_layer = Array1::zeros(hidden_size);
80
81 for i in 0..hidden_size {
83 let mut sum = 0.0;
84 for j in 0..input_size {
85 let weight = 0.1 * ((i + j) as f64).sin();
87 sum += features[j] * weight;
88 }
89 hidden_layer[i] = tanh_activation(sum);
90 }
91
92 let mut output = Array1::zeros(output_size);
94 for i in 0..output_size {
95 let mut sum = 0.0;
96 for j in 0..hidden_size {
97 let weight = 0.1 * ((i * hidden_size + j) as f64).cos();
98 sum += hidden_layer[j] * weight;
99 }
100 output[i] = sigmoid_activation(sum);
101 }
102
103 Ok(output)
104}
105
106fn ml_output_to_process_matrix(
108 ml_output: &Array1<f64>,
109 dim: usize,
110) -> DeviceResult<Array4<Complex64>> {
111 let mut process_matrix = Array4::zeros((dim, dim, dim, dim));
112
113 let mut idx = 0;
115 for i in 0..dim {
116 for j in 0..dim {
117 for k in 0..dim {
118 for l in 0..dim {
119 if idx < ml_output.len() {
120 let real_part = ml_output[idx].mul_add(2.0, -1.0); let imag_part = if idx + 1 < ml_output.len() {
123 ml_output[idx + 1].mul_add(2.0, -1.0)
124 } else {
125 0.0
126 };
127 process_matrix[[i, j, k, l]] = Complex64::new(real_part, imag_part);
128 idx += 1;
129 } else {
130 if i == j && k == l && i == k {
132 process_matrix[[i, j, k, l]] = Complex64::new(1.0, 0.0);
133 }
134 }
135 }
136 }
137 }
138 }
139
140 let mut trace = Complex64::new(0.0, 0.0);
142 for i in 0..dim {
143 for j in 0..dim {
144 trace += process_matrix[[i, j, i, j]];
145 }
146 }
147
148 if trace.norm() > 1e-12 {
149 let scale_factor = Complex64::new(1.0, 0.0) / trace;
150 for i in 0..dim {
151 for j in 0..dim {
152 for k in 0..dim {
153 for l in 0..dim {
154 process_matrix[[i, j, k, l]] *= scale_factor;
155 }
156 }
157 }
158 }
159 }
160
161 Ok(process_matrix)
162}
163
164fn calculate_ml_log_likelihood(
166 process_matrix: &Array4<Complex64>,
167 experimental_data: &ExperimentalData,
168) -> DeviceResult<f64> {
169 let mut log_likelihood = 0.0;
170
171 for (observed, &uncertainty) in experimental_data
172 .measurement_results
173 .iter()
174 .zip(experimental_data.measurement_uncertainties.iter())
175 {
176 let predicted = 0.5; let diff = observed - predicted;
178 let variance = uncertainty * uncertainty;
179 log_likelihood -= 0.5 * (diff * diff / variance);
180 }
181
182 Ok(log_likelihood)
183}
184
185fn tanh_activation(x: f64) -> f64 {
187 x.tanh()
188}
189
190fn sigmoid_activation(x: f64) -> f64 {
191 1.0 / (1.0 + (-x).exp())
192}
193
194const fn relu_activation(x: f64) -> f64 {
195 x.max(0.0)
196}