quantrs2_device/process_tomography/reconstruction/
machine_learning.rs

1//! Machine learning based reconstruction method
2
3use scirs2_core::ndarray::{Array1, Array2, Array4};
4use scirs2_core::Complex64;
5
6use super::super::core::SciRS2ProcessTomographer;
7use super::super::results::{ExperimentalData, ReconstructionQuality};
8use super::utils::calculate_reconstruction_quality;
9use crate::DeviceResult;
10
11/// Machine learning reconstruction implementation
12pub fn reconstruct_machine_learning(
13    tomographer: &SciRS2ProcessTomographer,
14    experimental_data: &ExperimentalData,
15) -> DeviceResult<(Array4<Complex64>, ReconstructionQuality)> {
16    let num_qubits = (experimental_data.input_states[0].dim().0 as f64).log2() as usize;
17    let dim = 1 << num_qubits;
18
19    // Extract features from experimental data
20    let features = extract_features(experimental_data)?;
21
22    // Apply ML model (simplified neural network simulation)
23    let ml_output = apply_ml_model(&features)?;
24
25    // Convert ML output to process matrix
26    let process_matrix = ml_output_to_process_matrix(&ml_output, dim)?;
27
28    let log_likelihood = calculate_ml_log_likelihood(&process_matrix, experimental_data)?;
29    let reconstruction_quality =
30        calculate_reconstruction_quality(&process_matrix, experimental_data, log_likelihood);
31
32    Ok((process_matrix, reconstruction_quality))
33}
34
35/// Extract features from experimental data for ML
36fn extract_features(experimental_data: &ExperimentalData) -> DeviceResult<Array1<f64>> {
37    let num_measurements = experimental_data.measurement_results.len();
38    let num_states = experimental_data.input_states.len();
39    let num_operators = experimental_data.measurement_operators.len();
40
41    let mut features = Vec::new();
42
43    // Statistical features
44    let mean_result =
45        experimental_data.measurement_results.iter().sum::<f64>() / num_measurements as f64;
46    let var_result = experimental_data
47        .measurement_results
48        .iter()
49        .map(|&x| (x - mean_result).powi(2))
50        .sum::<f64>()
51        / num_measurements as f64;
52
53    features.push(mean_result);
54    features.push(var_result.sqrt());
55    features.push(num_measurements as f64);
56    features.push(num_states as f64);
57    features.push(num_operators as f64);
58
59    // Add measurement results as features (truncated/padded to fixed size)
60    let max_features = 100;
61    for i in 0..max_features {
62        if i < experimental_data.measurement_results.len() {
63            features.push(experimental_data.measurement_results[i]);
64        } else {
65            features.push(0.0);
66        }
67    }
68
69    Ok(Array1::from_vec(features))
70}
71
72/// Apply ML model to features (simplified neural network simulation)
73fn apply_ml_model(features: &Array1<f64>) -> DeviceResult<Array1<f64>> {
74    let input_size = features.len();
75    let hidden_size = 64;
76    let output_size = 16; // Simplified output for 2x2x2x2 process matrix
77
78    // Simplified neural network forward pass
79    let mut hidden_layer = Array1::zeros(hidden_size);
80
81    // Hidden layer computation (simplified)
82    for i in 0..hidden_size {
83        let mut sum = 0.0;
84        for j in 0..input_size {
85            // Simplified weights (in practice, these would be learned)
86            let weight = 0.1 * ((i + j) as f64).sin();
87            sum += features[j] * weight;
88        }
89        hidden_layer[i] = tanh_activation(sum);
90    }
91
92    // Output layer computation
93    let mut output = Array1::zeros(output_size);
94    for i in 0..output_size {
95        let mut sum = 0.0;
96        for j in 0..hidden_size {
97            let weight = 0.1 * ((i * hidden_size + j) as f64).cos();
98            sum += hidden_layer[j] * weight;
99        }
100        output[i] = sigmoid_activation(sum);
101    }
102
103    Ok(output)
104}
105
106/// Convert ML output to process matrix
107fn ml_output_to_process_matrix(
108    ml_output: &Array1<f64>,
109    dim: usize,
110) -> DeviceResult<Array4<Complex64>> {
111    let mut process_matrix = Array4::zeros((dim, dim, dim, dim));
112
113    // Map ML output to process matrix elements
114    let mut idx = 0;
115    for i in 0..dim {
116        for j in 0..dim {
117            for k in 0..dim {
118                for l in 0..dim {
119                    if idx < ml_output.len() {
120                        // Convert real output to complex with appropriate scaling
121                        let real_part = ml_output[idx].mul_add(2.0, -1.0); // Scale from [0,1] to [-1,1]
122                        let imag_part = if idx + 1 < ml_output.len() {
123                            ml_output[idx + 1].mul_add(2.0, -1.0)
124                        } else {
125                            0.0
126                        };
127                        process_matrix[[i, j, k, l]] = Complex64::new(real_part, imag_part);
128                        idx += 1;
129                    } else {
130                        // Default to identity-like behavior for missing elements
131                        if i == j && k == l && i == k {
132                            process_matrix[[i, j, k, l]] = Complex64::new(1.0, 0.0);
133                        }
134                    }
135                }
136            }
137        }
138    }
139
140    // Normalize to ensure trace preservation
141    let mut trace = Complex64::new(0.0, 0.0);
142    for i in 0..dim {
143        for j in 0..dim {
144            trace += process_matrix[[i, j, i, j]];
145        }
146    }
147
148    if trace.norm() > 1e-12 {
149        let scale_factor = Complex64::new(1.0, 0.0) / trace;
150        for i in 0..dim {
151            for j in 0..dim {
152                for k in 0..dim {
153                    for l in 0..dim {
154                        process_matrix[[i, j, k, l]] *= scale_factor;
155                    }
156                }
157            }
158        }
159    }
160
161    Ok(process_matrix)
162}
163
164/// Calculate ML-specific log-likelihood
165fn calculate_ml_log_likelihood(
166    process_matrix: &Array4<Complex64>,
167    experimental_data: &ExperimentalData,
168) -> DeviceResult<f64> {
169    let mut log_likelihood = 0.0;
170
171    for (observed, &uncertainty) in experimental_data
172        .measurement_results
173        .iter()
174        .zip(experimental_data.measurement_uncertainties.iter())
175    {
176        let predicted = 0.5; // Placeholder prediction from ML model
177        let diff = observed - predicted;
178        let variance = uncertainty * uncertainty;
179        log_likelihood -= 0.5 * (diff * diff / variance);
180    }
181
182    Ok(log_likelihood)
183}
184
185/// Activation functions
186fn tanh_activation(x: f64) -> f64 {
187    x.tanh()
188}
189
190fn sigmoid_activation(x: f64) -> f64 {
191    1.0 / (1.0 + (-x).exp())
192}
193
194const fn relu_activation(x: f64) -> f64 {
195    x.max(0.0)
196}