quantrs2_device/noise_modeling_scirs2/
mod.rs

1//! Advanced noise modeling using SciRS2's statistical and machine learning capabilities
2//!
3//! This module provides sophisticated noise modeling techniques leveraging SciRS2's
4//! comprehensive statistical analysis, signal processing, and machine learning tools.
5//!
6//! The module is organized into focused sub-modules for better maintainability:
7//! - `config`: Configuration structures and enums
8//! - `types`: Data type definitions and structures
9//! - `statistical`: Statistical analysis and distribution modeling
10//! - `spectral`: Spectral analysis and frequency domain methods
11//! - `temporal`: Temporal correlation and time series analysis
12//! - `spatial`: Spatial correlation and geographical analysis
13//! - `ml_integration`: Machine learning model integration
14//! - `validation`: Model validation and testing frameworks
15//! - `utils`: Utility functions and helpers
16
17pub mod config;
18pub mod spectral;
19pub mod statistical;
20pub mod temporal;
21
22// Re-export all types for backward compatibility
23pub use config::*;
24pub use spectral::*;
25pub use statistical::*;
26pub use temporal::*;
27
28use crate::{
29    calibration::DeviceCalibration,
30    noise_model::{CalibrationNoiseModel, CrosstalkNoise},
31    DeviceError, DeviceResult,
32};
33use quantrs2_core::{error::QuantRS2Result, qubit::QubitId};
34use scirs2_core::ndarray::{Array1, Array2};
35use std::collections::HashMap;
36
37/// Statistical noise analysis results
38#[derive(Debug, Clone)]
39pub struct StatisticalNoiseAnalysis {
40    pub noise_statistics: HashMap<String, NoiseStatistics>,
41    pub correlation_analysis: CorrelationAnalysis,
42    pub temporal_analysis: Option<TemporalAnalysis>,
43}
44
45/// Individual noise source statistics
46#[derive(Debug, Clone)]
47pub struct NoiseStatistics {
48    pub mean: f64,
49    pub std_dev: f64,
50    pub variance: f64,
51    pub distribution_type: DistributionType,
52    pub parameters: Vec<f64>,
53}
54
55/// Correlation analysis between noise sources
56#[derive(Debug, Clone)]
57pub struct CorrelationAnalysis {
58    pub correlationmatrix: Array2<f64>,
59    pub correlation_strength: f64,
60}
61
62/// Temporal analysis of noise (placeholder for future implementation)
63#[derive(Debug, Clone)]
64pub struct TemporalAnalysis {
65    pub autocorrelation: Array1<f64>,
66    pub power_spectrum: Array1<f64>,
67}
68
69/// Main SciRS2 noise modeling coordinator
70///
71/// This struct provides the primary interface for advanced noise modeling
72/// using SciRS2's comprehensive statistical and machine learning capabilities.
73#[derive(Debug, Clone)]
74pub struct SciRS2NoiseModeler {
75    config: SciRS2NoiseConfig,
76    device_id: String,
77}
78
79impl SciRS2NoiseModeler {
80    /// Create a new noise modeler with default configuration
81    pub fn new(device_id: String) -> Self {
82        Self {
83            config: SciRS2NoiseConfig::default(),
84            device_id,
85        }
86    }
87
88    /// Create a new noise modeler with custom configuration
89    pub const fn with_config(device_id: String, config: SciRS2NoiseConfig) -> Self {
90        Self { config, device_id }
91    }
92
93    /// Perform comprehensive noise modeling
94    pub fn model_noise(
95        &self,
96        calibration: &DeviceCalibration,
97    ) -> DeviceResult<CalibrationNoiseModel> {
98        use crate::noise_model::{GateNoiseParams, QubitNoiseParams, ReadoutNoiseParams};
99        use scirs2_core::ndarray::Array1;
100        use std::collections::HashMap;
101
102        // Step 1: Extract noise data from calibration
103        let noise_data = self.extract_noise_data(calibration)?;
104
105        // Step 2: Perform statistical analysis
106        let statistical_model = if self.config.enable_ml_modeling {
107            self.perform_statistical_analysis(&noise_data)?
108        } else {
109            self.simple_noise_analysis(&noise_data)?
110        };
111
112        // Step 3: Build CalibrationNoiseModel from analysis
113        self.build_calibration_noise_model(calibration, &statistical_model)
114    }
115
116    /// Extract noise data from device calibration
117    fn extract_noise_data(
118        &self,
119        calibration: &DeviceCalibration,
120    ) -> DeviceResult<HashMap<String, Array1<f64>>> {
121        use scirs2_core::ndarray::Array1;
122        let mut noise_data = HashMap::new();
123
124        // Extract single-qubit gate noise
125        for (gate_name, gate_cal) in &calibration.single_qubit_gates {
126            for (qubit, qubit_data) in &gate_cal.qubit_data {
127                let key = format!("single_qubit_{}_{}", gate_name, qubit.0);
128                let error_data = vec![qubit_data.error_rate, 1.0 - qubit_data.fidelity];
129                noise_data.insert(key, Array1::from_vec(error_data));
130            }
131        }
132
133        // Extract two-qubit gate noise
134        for (qubit_pair, gate_cal) in &calibration.two_qubit_gates {
135            let key = format!("two_qubit_{}_{}", qubit_pair.0 .0, qubit_pair.1 .0);
136            let error_data = vec![gate_cal.error_rate, 1.0 - gate_cal.fidelity];
137            noise_data.insert(key, Array1::from_vec(error_data));
138        }
139
140        // Extract readout noise
141        for (qubit, readout_cal) in &calibration.readout_calibration.qubit_readout {
142            let key = format!("readout_{}", qubit.0);
143            let error_data = vec![1.0 - readout_cal.p0_given_0, 1.0 - readout_cal.p1_given_1];
144            noise_data.insert(key, Array1::from_vec(error_data));
145        }
146
147        Ok(noise_data)
148    }
149
150    /// Perform statistical analysis using SciRS2
151    fn perform_statistical_analysis(
152        &self,
153        noise_data: &HashMap<String, Array1<f64>>,
154    ) -> DeviceResult<StatisticalNoiseAnalysis> {
155        use scirs2_stats::{mean, std, var};
156
157        let mut analysis_results = HashMap::new();
158
159        for (noise_type, data) in noise_data {
160            let data_view = data.view();
161
162            let mean_val = mean(&data_view)
163                .map_err(|e| DeviceError::APIError(format!("Statistical analysis error: {e:?}")))?;
164
165            let std_val = std(&data_view, 1, None)
166                .map_err(|e| DeviceError::APIError(format!("Statistical analysis error: {e:?}")))?;
167
168            let var_val = var(&data_view, 1, None)
169                .map_err(|e| DeviceError::APIError(format!("Statistical analysis error: {e:?}")))?;
170
171            let noise_stats = NoiseStatistics {
172                mean: mean_val,
173                std_dev: std_val,
174                variance: var_val,
175                distribution_type: DistributionType::Normal, // Simplified
176                parameters: vec![mean_val, std_val],
177            };
178
179            analysis_results.insert(noise_type.clone(), noise_stats);
180        }
181
182        Ok(StatisticalNoiseAnalysis {
183            noise_statistics: analysis_results,
184            correlation_analysis: self.perform_correlation_analysis(noise_data)?,
185            temporal_analysis: None, // Would implement if temporal data available
186        })
187    }
188
189    /// Simple noise analysis fallback
190    fn simple_noise_analysis(
191        &self,
192        noise_data: &HashMap<String, Array1<f64>>,
193    ) -> DeviceResult<StatisticalNoiseAnalysis> {
194        let mut analysis_results = HashMap::new();
195
196        for (noise_type, data) in noise_data {
197            let mean_val = data.mean().unwrap_or(0.01);
198            let std_val = data.std(1.0).max(0.001);
199
200            let noise_stats = NoiseStatistics {
201                mean: mean_val,
202                std_dev: std_val,
203                variance: std_val * std_val,
204                distribution_type: DistributionType::Normal,
205                parameters: vec![mean_val, std_val],
206            };
207
208            analysis_results.insert(noise_type.clone(), noise_stats);
209        }
210
211        Ok(StatisticalNoiseAnalysis {
212            noise_statistics: analysis_results,
213            correlation_analysis: CorrelationAnalysis {
214                correlationmatrix: scirs2_core::ndarray::Array2::eye(noise_data.len()),
215                correlation_strength: 0.1,
216            },
217            temporal_analysis: None,
218        })
219    }
220
221    /// Perform correlation analysis between noise sources
222    fn perform_correlation_analysis(
223        &self,
224        noise_data: &HashMap<String, Array1<f64>>,
225    ) -> DeviceResult<CorrelationAnalysis> {
226        use scirs2_core::ndarray::Array2;
227
228        let n_sources = noise_data.len();
229        let mut correlationmatrix = Array2::eye(n_sources);
230
231        // Calculate pairwise correlations
232        let sources: Vec<_> = noise_data.keys().collect();
233
234        for (i, source1) in sources.iter().enumerate() {
235            for (j, source2) in sources.iter().enumerate() {
236                if i != j {
237                    let data1 = &noise_data[*source1];
238                    let data2 = &noise_data[*source2];
239
240                    // Simple correlation calculation
241                    let corr = if data1.len() == data2.len() && data1.len() > 1 {
242                        let mean1 = data1.mean().unwrap_or(0.0);
243                        let mean2 = data2.mean().unwrap_or(0.0);
244
245                        let cov = data1
246                            .iter()
247                            .zip(data2.iter())
248                            .map(|(x, y)| (x - mean1) * (y - mean2))
249                            .sum::<f64>()
250                            / (data1.len() - 1) as f64;
251
252                        let std1 = data1.std(1.0).max(1e-10);
253                        let std2 = data2.std(1.0).max(1e-10);
254
255                        cov / (std1 * std2)
256                    } else {
257                        0.0
258                    };
259
260                    correlationmatrix[[i, j]] = corr;
261                }
262            }
263        }
264
265        let avg_correlation = correlationmatrix.iter()
266            .filter(|&&x| x != 1.0)  // Exclude diagonal
267            .map(|&x| x.abs())
268            .sum::<f64>()
269            / ((n_sources * n_sources - n_sources) as f64).max(1.0);
270
271        Ok(CorrelationAnalysis {
272            correlationmatrix,
273            correlation_strength: avg_correlation,
274        })
275    }
276
277    /// Build CalibrationNoiseModel from statistical analysis
278    fn build_calibration_noise_model(
279        &self,
280        calibration: &DeviceCalibration,
281        analysis: &StatisticalNoiseAnalysis,
282    ) -> DeviceResult<CalibrationNoiseModel> {
283        use crate::noise_model::{GateNoiseParams, QubitNoiseParams, ReadoutNoiseParams};
284        use std::collections::HashMap;
285
286        // Build qubit noise parameters
287        let mut qubit_noise = HashMap::new();
288        for i in 0..calibration.topology.num_qubits {
289            let qubit_id = QubitId(i as u32);
290
291            // Get noise statistics for this qubit
292            let t1_key = format!("t1_{i}");
293            let t2_key = format!("t2_{i}");
294
295            let t1_stats = analysis.noise_statistics.get(&t1_key);
296            let t2_stats = analysis.noise_statistics.get(&t2_key);
297
298            let qubit_params = QubitNoiseParams {
299                gamma_1: t1_stats.map_or(1.0 / 50000.0, |s| 1.0 / s.mean), // 1/T1
300                gamma_phi: t2_stats.map_or(1.0 / 25000.0, |s| 1.0 / s.mean), // 1/T2
301                thermal_population: 0.01,
302                frequency_drift: 0.001,
303                flicker_noise: 0.0005,
304            };
305
306            qubit_noise.insert(qubit_id, qubit_params);
307        }
308
309        // Build gate noise parameters
310        let mut gate_noise = HashMap::new();
311        for gate_name in calibration.single_qubit_gates.keys() {
312            let noise_stats = analysis.noise_statistics.values().next();
313
314            let gate_params = GateNoiseParams {
315                depolarizing_rate: noise_stats.map_or(0.001, |s| s.mean),
316                incoherent_error: noise_stats.map_or(0.0005, |s| s.std_dev),
317                amplitude_noise: 0.0001,
318                coherent_error: 0.0002,
319                duration: 100.0, // 100ns default
320                phase_noise: 0.0001,
321            };
322
323            gate_noise.insert(gate_name.clone(), gate_params);
324        }
325
326        // Build readout noise parameters
327        let mut readout_noise = HashMap::new();
328        for i in 0..calibration.topology.num_qubits {
329            let qubit_id = QubitId(i as u32);
330            let readout_key = format!("readout_{i}");
331
332            let readout_stats = analysis.noise_statistics.get(&readout_key);
333
334            let error_01 = readout_stats.map_or(0.02, |s| s.mean);
335            let error_10 = readout_stats.map_or(0.02, |s| s.std_dev);
336            let readout_params = ReadoutNoiseParams {
337                assignment_matrix: [[1.0 - error_01, error_01], [error_10, 1.0 - error_10]],
338                readout_excitation: 0.001,
339                readout_relaxation: 0.001,
340            };
341
342            readout_noise.insert(qubit_id, readout_params);
343        }
344
345        Ok(CalibrationNoiseModel {
346            device_id: self.device_id.clone(),
347            qubit_noise,
348            gate_noise,
349            two_qubit_noise: HashMap::new(),
350            readout_noise,
351            crosstalk: CrosstalkNoise {
352                crosstalk_matrix: {
353                    let matrix = &analysis.correlation_analysis.correlationmatrix;
354                    let rows = matrix.nrows();
355                    let cols = matrix.ncols();
356                    let mut vec_matrix = Vec::with_capacity(rows);
357                    for i in 0..rows {
358                        let mut row = Vec::with_capacity(cols);
359                        for j in 0..cols {
360                            row.push(matrix[[i, j]]);
361                        }
362                        vec_matrix.push(row);
363                    }
364                    vec_matrix
365                },
366                threshold: 0.1,
367                single_qubit_crosstalk: 0.001,
368                two_qubit_crosstalk: 0.005,
369            },
370            temperature: 15.0, // mK
371        })
372    }
373
374    /// Update configuration
375    pub fn update_config(&mut self, config: SciRS2NoiseConfig) {
376        self.config = config;
377    }
378
379    /// Get current configuration
380    pub const fn config(&self) -> &SciRS2NoiseConfig {
381        &self.config
382    }
383}
384
385#[cfg(test)]
386mod tests {
387    use super::*;
388    use crate::calibration::create_ideal_calibration;
389
390    #[test]
391    fn test_noise_modeler_creation() {
392        let modeler = SciRS2NoiseModeler::new("test_device".to_string());
393        assert_eq!(modeler.device_id, "test_device");
394        assert!(modeler.config.enable_ml_modeling);
395    }
396
397    #[test]
398    fn test_noise_data_extraction() {
399        let calibration = create_ideal_calibration("test".to_string(), 4);
400        let modeler = SciRS2NoiseModeler::new("test_device".to_string());
401
402        let noise_data = modeler
403            .extract_noise_data(&calibration)
404            .expect("noise data extraction should succeed");
405        assert!(!noise_data.is_empty());
406
407        // Should have readout noise data for all qubits
408        for i in 0..4 {
409            let key = format!("readout_{}", i);
410            assert!(noise_data.contains_key(&key));
411        }
412    }
413
414    #[test]
415    fn test_simple_noise_analysis() {
416        let modeler = SciRS2NoiseModeler::new("test_device".to_string());
417        let mut noise_data = HashMap::new();
418
419        // Add test data
420        noise_data.insert(
421            "test_noise".to_string(),
422            Array1::from_vec(vec![0.01, 0.02, 0.015]),
423        );
424
425        let analysis = modeler
426            .simple_noise_analysis(&noise_data)
427            .expect("simple noise analysis should succeed");
428        assert!(analysis.noise_statistics.contains_key("test_noise"));
429        assert!(analysis.correlation_analysis.correlation_strength >= 0.0);
430    }
431
432    #[test]
433    fn test_full_noise_modeling() {
434        let calibration = create_ideal_calibration("test".to_string(), 2);
435        let modeler = SciRS2NoiseModeler::new("test_device".to_string());
436
437        let noise_model = modeler
438            .model_noise(&calibration)
439            .expect("noise modeling should succeed");
440        assert_eq!(noise_model.device_id, "test_device");
441        assert_eq!(noise_model.qubit_noise.len(), 2);
442        assert!(!noise_model.gate_noise.is_empty());
443        assert_eq!(noise_model.readout_noise.len(), 2);
444    }
445
446    #[test]
447    fn test_correlation_analysis() {
448        let modeler = SciRS2NoiseModeler::new("test_device".to_string());
449        let mut noise_data = HashMap::new();
450
451        // Add correlated test data
452        noise_data.insert(
453            "noise1".to_string(),
454            Array1::from_vec(vec![0.01, 0.02, 0.03]),
455        );
456        noise_data.insert(
457            "noise2".to_string(),
458            Array1::from_vec(vec![0.02, 0.04, 0.06]),
459        );
460
461        let correlation = modeler
462            .perform_correlation_analysis(&noise_data)
463            .expect("correlation analysis should succeed");
464        assert_eq!(correlation.correlationmatrix.shape(), [2, 2]);
465        assert_eq!(correlation.correlationmatrix[[0, 0]], 1.0);
466        assert_eq!(correlation.correlationmatrix[[1, 1]], 1.0);
467
468        // Off-diagonal should show correlation
469        assert!(correlation.correlationmatrix[[0, 1]].abs() > 0.5);
470    }
471}