1use super::circuits::{GateType, ParametricCircuit};
6use super::config::{GradientMethod, VQAAlgorithmType};
7use crate::DeviceResult;
8use scirs2_core::ndarray::{Array1, Array2};
9use scirs2_core::Complex64;
10use std::collections::HashMap;
11use std::sync::Arc;
12#[cfg(not(feature = "scirs2"))]
13mod fallback_scirs2 {
14 use scirs2_core::ndarray::{Array1, Array2};
15 use scirs2_core::Complex64;
16 pub struct Matrix(pub Array2<Complex64>);
17 pub struct Vector(pub Array1<Complex64>);
18 pub struct PauliOperator {
19 pub coefficients: Array1<f64>,
20 pub terms: Vec<String>,
21 }
22 impl Matrix {
23 pub fn new(data: Array2<Complex64>) -> Self {
24 Self(data)
25 }
26 }
27 impl Vector {
28 pub fn new(data: Array1<Complex64>) -> Self {
29 Self(data)
30 }
31 }
32}
33#[derive(Debug, Clone)]
35pub struct ObjectiveConfig {
36 pub objective_type: ObjectiveType,
38 pub target: Option<f64>,
40 pub regularization: RegularizationConfig,
42 pub hamiltonian: Option<HamiltonianSpec>,
44 pub cost_function: Option<CostFunctionSpec>,
46 pub training_data: Option<TrainingDataSpec>,
48 pub measurement_strategy: MeasurementStrategy,
50 pub shot_allocation: ShotAllocationConfig,
52 pub gradient_method: GradientMethod,
54 pub noise_mitigation: ObjectiveNoiseMitigation,
56}
57#[derive(Debug, Clone)]
59pub enum ObjectiveType {
60 Energy,
62 Fidelity,
64 Cost,
66 Classification,
68 Regression,
70 ExpectationValue,
72 StatePreparation,
74 ProcessFidelity,
76 Custom(String),
78}
79#[derive(Debug, Clone)]
81pub struct HamiltonianSpec {
82 pub pauli_terms: Vec<PauliTerm>,
84 pub num_qubits: usize,
86 pub use_sparse: bool,
88}
89#[derive(Debug, Clone)]
91pub struct PauliTerm {
92 pub coefficient: Complex64,
94 pub operators: Vec<char>,
96 pub indices: Option<Vec<usize>>,
98}
99#[derive(Debug, Clone)]
101pub struct CostFunctionSpec {
102 pub function_type: CostFunctionType,
104 pub parameters: HashMap<String, f64>,
106 pub graph: Option<Vec<(usize, usize, f64)>>,
108}
109#[derive(Debug, Clone)]
111pub enum CostFunctionType {
112 MaxCut,
114 TSP,
116 MaxIndependentSet,
118 Portfolio,
120 Custom(String),
122}
123#[derive(Debug, Clone)]
125pub struct TrainingDataSpec {
126 pub features: Array2<f64>,
128 pub targets: Array1<f64>,
130 pub encoding: DataEncoding,
132 pub loss_function: LossFunction,
134}
135#[derive(Debug, Clone)]
137pub enum DataEncoding {
138 Amplitude,
140 Angle,
142 Basis,
144 IQP,
146}
147#[derive(Debug, Clone)]
149pub enum LossFunction {
150 MSE,
152 CrossEntropy,
154 Hinge,
156 Custom(String),
158}
159#[derive(Debug, Clone)]
161pub struct MeasurementStrategy {
162 pub strategy_type: MeasurementStrategyType,
164 pub term_grouping: TermGrouping,
166 pub shadow_tomography: Option<ShadowTomographyConfig>,
168}
169#[derive(Debug, Clone)]
171pub enum MeasurementStrategyType {
172 Individual,
174 Simultaneous,
176 Shadow,
178 Adaptive,
180}
181#[derive(Debug, Clone)]
183pub enum TermGrouping {
184 None,
186 QubitWiseCommuting,
188 FullyCommuting,
190 GraphColoring,
192}
193#[derive(Debug, Clone)]
195pub struct ShadowTomographyConfig {
196 pub num_shadows: usize,
198 pub unitary_ensemble: UnitaryEnsemble,
200 pub post_processing: String,
202}
203#[derive(Debug, Clone)]
205pub enum UnitaryEnsemble {
206 Clifford,
208 Pauli,
210 Random,
212}
213#[derive(Debug, Clone)]
215pub struct ShotAllocationConfig {
216 pub total_shots: usize,
218 pub allocation_strategy: ShotAllocationStrategy,
220 pub min_shots_per_term: usize,
222 pub adaptive_params: Option<AdaptiveAllocationParams>,
224}
225#[derive(Debug, Clone)]
227pub enum ShotAllocationStrategy {
228 Uniform,
230 ProportionalToVariance,
232 ProportionalToCoeff,
234 OptimalVariance,
236 AdaptiveBayesian,
238}
239#[derive(Debug, Clone)]
241pub struct AdaptiveAllocationParams {
242 pub update_frequency: usize,
244 pub learning_rate: f64,
246 pub exploration_factor: f64,
248}
249#[derive(Debug, Clone)]
251pub struct ObjectiveNoiseMitigation {
252 pub enable_zne: bool,
254 pub zne_factors: Vec<f64>,
256 pub enable_rem: bool,
258 pub enable_symmetry: bool,
260 pub overhead_budget: f64,
262}
263#[derive(Debug, Clone)]
265pub struct RegularizationConfig {
266 pub l1_coeff: f64,
268 pub l2_coeff: f64,
270 pub bounds_penalty: f64,
272}
273impl Default for ObjectiveConfig {
274 fn default() -> Self {
275 Self {
276 objective_type: ObjectiveType::Energy,
277 target: None,
278 regularization: RegularizationConfig::default(),
279 hamiltonian: None,
280 cost_function: None,
281 training_data: None,
282 measurement_strategy: MeasurementStrategy::default(),
283 shot_allocation: ShotAllocationConfig::default(),
284 gradient_method: GradientMethod::ParameterShift,
285 noise_mitigation: ObjectiveNoiseMitigation::default(),
286 }
287 }
288}
289impl Default for RegularizationConfig {
290 fn default() -> Self {
291 Self {
292 l1_coeff: 0.0,
293 l2_coeff: 0.0,
294 bounds_penalty: 1.0,
295 }
296 }
297}
298#[derive(Debug, Clone)]
300pub struct ObjectiveResult {
301 pub value: f64,
303 pub gradient: Option<Array1<f64>>,
305 pub hessian: Option<Array2<f64>>,
307 pub term_contributions: Vec<f64>,
309 pub uncertainty: Option<f64>,
311 pub variance: Option<f64>,
313 pub metrics: HashMap<String, f64>,
315 pub measurement_results: MeasurementResults,
317 pub metadata: ObjectiveMetadata,
319}
320#[derive(Debug, Clone)]
322pub struct MeasurementResults {
323 pub raw_counts: HashMap<String, usize>,
325 pub expectation_values: Vec<f64>,
327 pub variances: Vec<f64>,
329 pub shots_used: Vec<usize>,
331 pub total_shots: usize,
333}
334#[derive(Debug, Clone)]
336pub struct ObjectiveMetadata {
337 pub timestamp: std::time::Instant,
339 pub circuit_depth: usize,
341 pub num_terms: usize,
343 pub measurement_strategy: String,
345 pub noise_mitigation_applied: Vec<String>,
347 pub computation_time: std::time::Duration,
349}
350pub trait ObjectiveFunction: Send + Sync {
352 fn evaluate(&self, parameters: &Array1<f64>) -> DeviceResult<ObjectiveResult>;
354 fn compute_gradient(&self, parameters: &Array1<f64>) -> DeviceResult<Array1<f64>> {
356 self.compute_gradient_with_method(parameters, &GradientMethod::ParameterShift)
357 }
358 fn compute_gradient_with_method(
360 &self,
361 parameters: &Array1<f64>,
362 method: &GradientMethod,
363 ) -> DeviceResult<Array1<f64>>;
364 fn estimate_cost(&self, parameters: &Array1<f64>) -> usize;
366 fn parameter_bounds(&self) -> Option<Vec<(f64, f64)>>;
368 fn supports_batch_evaluation(&self) -> bool {
370 false
371 }
372 fn batch_evaluate(&self, parameter_sets: &[Array1<f64>]) -> DeviceResult<Vec<ObjectiveResult>> {
374 parameter_sets
375 .iter()
376 .map(|params| self.evaluate(params))
377 .collect()
378 }
379}
380#[derive(Debug)]
382pub struct ObjectiveEvaluator {
383 pub config: ObjectiveConfig,
385 pub circuit: Arc<ParametricCircuit>,
387 pub backend: ObjectiveBackend,
389 pub cached_hamiltonian: Option<HamiltonianMatrix>,
391 pub measurement_groups: Option<Vec<MeasurementGroup>>,
393}
394#[derive(Debug)]
396pub enum ObjectiveBackend {
397 QuantRS2Simulator,
399 SciRS2Exact,
401 Hardware(String),
403 Mock,
405}
406#[derive(Debug, Clone)]
408pub struct HamiltonianMatrix {
409 pub matrix: Array2<Complex64>,
411 pub eigenvalues: Option<Array1<f64>>,
413 pub eigenvectors: Option<Array2<Complex64>>,
415}
416#[derive(Debug, Clone)]
418pub struct MeasurementGroup {
419 pub terms: Vec<usize>,
421 pub measurement_basis: Vec<char>,
423 pub shot_allocation: usize,
425}
426impl ObjectiveFunction for ObjectiveEvaluator {
427 fn evaluate(&self, parameters: &Array1<f64>) -> DeviceResult<ObjectiveResult> {
429 let start_time = std::time::Instant::now();
430 let mut circuit = (*self.circuit).clone();
431 circuit.set_parameters(parameters.to_vec())?;
432 let result = match &self.config.objective_type {
433 ObjectiveType::Energy => self.evaluate_energy(&circuit),
434 ObjectiveType::Cost => Self::evaluate_cost(&circuit),
435 ObjectiveType::Classification => Self::evaluate_classification(&circuit),
436 ObjectiveType::Regression => Self::evaluate_regression(&circuit),
437 ObjectiveType::Fidelity => Self::evaluate_fidelity(&circuit),
438 ObjectiveType::ExpectationValue => Self::evaluate_expectation_value(&circuit),
439 ObjectiveType::StatePreparation => Self::evaluate_state_preparation(&circuit),
440 ObjectiveType::ProcessFidelity => Self::evaluate_process_fidelity(&circuit),
441 ObjectiveType::Custom(name) => Self::evaluate_custom(&circuit, name),
442 };
443 let mut objective_result = result?;
444 objective_result.value = self.apply_regularization(objective_result.value, parameters);
445 objective_result.metadata.computation_time = start_time.elapsed();
446 objective_result.metadata.timestamp = start_time;
447 objective_result.metadata.circuit_depth = circuit.circuit_depth();
448 Ok(objective_result)
449 }
450 fn compute_gradient_with_method(
452 &self,
453 parameters: &Array1<f64>,
454 method: &GradientMethod,
455 ) -> DeviceResult<Array1<f64>> {
456 match method {
457 GradientMethod::ParameterShift => self.compute_parameter_shift_gradient(parameters),
458 GradientMethod::FiniteDifference => {
459 Self::compute_finite_difference_gradient(parameters)
460 }
461 GradientMethod::CentralDifference => {
462 Self::compute_central_difference_gradient(parameters)
463 }
464 GradientMethod::ForwardDifference => {
465 Self::compute_forward_difference_gradient(parameters)
466 }
467 GradientMethod::NaturalGradient => Self::compute_natural_gradient(parameters),
468 GradientMethod::AutomaticDifferentiation => {
469 Self::compute_automatic_gradient(parameters)
470 }
471 }
472 }
473 fn estimate_cost(&self, parameters: &Array1<f64>) -> usize {
475 let circuit_depth = self.circuit.circuit_depth();
476 let num_qubits = self.circuit.config.num_qubits;
477 let num_terms = match &self.config.hamiltonian {
478 Some(h) => h.pauli_terms.len(),
479 None => 1,
480 };
481 let circuit_cost = circuit_depth * (1 << num_qubits.min(10));
482 let measurement_cost = num_terms * self.config.shot_allocation.total_shots;
483 circuit_cost + measurement_cost
484 }
485 fn parameter_bounds(&self) -> Option<Vec<(f64, f64)>> {
487 Some(self.circuit.bounds.clone())
488 }
489 fn supports_batch_evaluation(&self) -> bool {
491 matches!(
492 self.backend,
493 ObjectiveBackend::SciRS2Exact | ObjectiveBackend::Mock
494 )
495 }
496}
497impl ObjectiveEvaluator {
498 pub fn new(
500 config: ObjectiveConfig,
501 circuit: ParametricCircuit,
502 backend: ObjectiveBackend,
503 ) -> Self {
504 let circuit_arc = Arc::new(circuit);
505 Self {
506 config,
507 circuit: circuit_arc,
508 backend,
509 cached_hamiltonian: None,
510 measurement_groups: None,
511 }
512 }
513 pub fn with_hamiltonian_caching(mut self) -> DeviceResult<Self> {
515 if let Some(ref hamiltonian_spec) = self.config.hamiltonian {
516 self.cached_hamiltonian = Some(self.build_hamiltonian_matrix(hamiltonian_spec)?);
517 }
518 Ok(self)
519 }
520 pub fn with_measurement_grouping(mut self) -> DeviceResult<Self> {
522 if let Some(ref hamiltonian_spec) = self.config.hamiltonian {
523 self.measurement_groups = Some(Self::group_measurements(hamiltonian_spec)?);
524 }
525 Ok(self)
526 }
527 fn evaluate_energy(&self, circuit: &ParametricCircuit) -> DeviceResult<ObjectiveResult> {
529 let hamiltonian = self.config.hamiltonian.as_ref().ok_or_else(|| {
530 crate::DeviceError::InvalidInput(
531 "Hamiltonian specification required for energy evaluation".to_string(),
532 )
533 })?;
534 match &self.backend {
535 ObjectiveBackend::SciRS2Exact => self.evaluate_energy_exact(circuit, hamiltonian),
536 ObjectiveBackend::QuantRS2Simulator => {
537 self.evaluate_energy_sampling(circuit, hamiltonian)
538 }
539 ObjectiveBackend::Hardware(_) => self.evaluate_energy_hardware(circuit, hamiltonian),
540 ObjectiveBackend::Mock => Self::evaluate_energy_mock(circuit, hamiltonian),
541 }
542 }
543 fn evaluate_energy_exact(
545 &self,
546 circuit: &ParametricCircuit,
547 hamiltonian: &HamiltonianSpec,
548 ) -> DeviceResult<ObjectiveResult> {
549 #[cfg(feature = "scirs2")]
550 {
551 let state_vector = Self::simulate_circuit_exact(circuit)?;
552 let hamiltonian_matrix = Self::get_or_build_hamiltonian(hamiltonian)?;
553 let energy = Self::compute_expectation_value_exact(&state_vector, hamiltonian_matrix)?;
554 let mut measurement_results = MeasurementResults {
555 raw_counts: HashMap::new(),
556 expectation_values: vec![energy],
557 variances: vec![0.0],
558 shots_used: vec![0],
559 total_shots: 0,
560 };
561 Ok(ObjectiveResult {
562 value: energy,
563 gradient: None,
564 hessian: None,
565 term_contributions: vec![energy],
566 uncertainty: Some(0.0),
567 variance: Some(0.0),
568 metrics: std::iter::once(("exact_evaluation".to_string(), 1.0)).collect(),
569 measurement_results,
570 metadata: ObjectiveMetadata {
571 timestamp: std::time::Instant::now(),
572 circuit_depth: circuit.circuit_depth(),
573 num_terms: hamiltonian.pauli_terms.len(),
574 measurement_strategy: "exact".to_string(),
575 noise_mitigation_applied: vec![],
576 computation_time: std::time::Duration::from_secs(0),
577 },
578 })
579 }
580 #[cfg(not(feature = "scirs2"))]
581 {
582 Self::evaluate_energy_mock(circuit, hamiltonian)
583 }
584 }
585 fn evaluate_energy_sampling(
587 &self,
588 circuit: &ParametricCircuit,
589 hamiltonian: &HamiltonianSpec,
590 ) -> DeviceResult<ObjectiveResult> {
591 let mut total_energy = 0.0;
592 let mut term_contributions = Vec::new();
593 let mut total_variance = 0.0;
594 let mut measurement_results = MeasurementResults {
595 raw_counts: HashMap::new(),
596 expectation_values: Vec::new(),
597 variances: Vec::new(),
598 shots_used: Vec::new(),
599 total_shots: 0,
600 };
601 let shot_allocation = self.allocate_shots_to_terms(hamiltonian)?;
602 for (term_idx, term) in hamiltonian.pauli_terms.iter().enumerate() {
603 let shots = shot_allocation[term_idx];
604 let (expectation, variance) = Self::measure_pauli_term(circuit, term, shots)?;
605 let contribution = term.coefficient.re * expectation;
606 total_energy += contribution;
607 term_contributions.push(contribution);
608 total_variance += (term.coefficient.norm_sqr() * variance) / shots as f64;
609 measurement_results.expectation_values.push(expectation);
610 measurement_results.variances.push(variance);
611 measurement_results.shots_used.push(shots);
612 measurement_results.total_shots += shots;
613 }
614 Ok(ObjectiveResult {
615 value: total_energy,
616 gradient: None,
617 hessian: None,
618 term_contributions,
619 uncertainty: Some(total_variance.sqrt()),
620 variance: Some(total_variance),
621 metrics: std::iter::once(("sampling_evaluation".to_string(), 1.0)).collect(),
622 measurement_results,
623 metadata: ObjectiveMetadata {
624 timestamp: std::time::Instant::now(),
625 circuit_depth: circuit.circuit_depth(),
626 num_terms: hamiltonian.pauli_terms.len(),
627 measurement_strategy: "individual_terms".to_string(),
628 noise_mitigation_applied: vec![],
629 computation_time: std::time::Duration::from_secs(0),
630 },
631 })
632 }
633 fn evaluate_energy_hardware(
635 &self,
636 circuit: &ParametricCircuit,
637 hamiltonian: &HamiltonianSpec,
638 ) -> DeviceResult<ObjectiveResult> {
639 self.evaluate_energy_sampling(circuit, hamiltonian)
640 }
641 fn evaluate_energy_mock(
643 _circuit: &ParametricCircuit,
644 hamiltonian: &HamiltonianSpec,
645 ) -> DeviceResult<ObjectiveResult> {
646 use scirs2_core::random::prelude::*;
647 let mut rng = thread_rng();
648 let energy = hamiltonian
649 .pauli_terms
650 .iter()
651 .map(|term| term.coefficient.re * rng.gen_range(-1.0..1.0))
652 .sum::<f64>();
653 let variance: f64 = 0.01;
654 Ok(ObjectiveResult {
655 value: energy,
656 gradient: None,
657 hessian: None,
658 term_contributions: vec![energy],
659 uncertainty: Some(variance.sqrt()),
660 variance: Some(variance),
661 metrics: HashMap::from([("mock_evaluation".to_string(), 1.0)]),
662 measurement_results: MeasurementResults {
663 raw_counts: HashMap::new(),
664 expectation_values: vec![energy],
665 variances: vec![variance],
666 shots_used: vec![1000],
667 total_shots: 1000,
668 },
669 metadata: ObjectiveMetadata {
670 timestamp: std::time::Instant::now(),
671 circuit_depth: 10,
672 num_terms: hamiltonian.pauli_terms.len(),
673 measurement_strategy: "mock".to_string(),
674 noise_mitigation_applied: vec![],
675 computation_time: std::time::Duration::from_millis(10),
676 },
677 })
678 }
679 fn apply_regularization(&self, value: f64, parameters: &Array1<f64>) -> f64 {
681 let l1_penalty =
682 self.config.regularization.l1_coeff * parameters.iter().map(|&x| x.abs()).sum::<f64>();
683 let l2_penalty =
684 self.config.regularization.l2_coeff * parameters.iter().map(|&x| x * x).sum::<f64>();
685 value + l1_penalty + l2_penalty
686 }
687 fn compute_parameter_shift_gradient(
689 &self,
690 parameters: &Array1<f64>,
691 ) -> DeviceResult<Array1<f64>> {
692 let mut gradient = Array1::zeros(parameters.len());
693 let shift = std::f64::consts::PI / 2.0;
694 for i in 0..parameters.len() {
695 let mut params_plus = parameters.clone();
696 let mut params_minus = parameters.clone();
697 params_plus[i] += shift;
698 params_minus[i] -= shift;
699 let f_plus = self.evaluate(¶ms_plus)?.value;
700 let f_minus = self.evaluate(¶ms_minus)?.value;
701 gradient[i] = (f_plus - f_minus) / 2.0;
702 }
703 Ok(gradient)
704 }
705 fn build_hamiltonian_matrix(&self, spec: &HamiltonianSpec) -> DeviceResult<HamiltonianMatrix> {
707 let dim = 1 << spec.num_qubits;
708 let mut matrix = Array2::zeros((dim, dim));
709 for term in &spec.pauli_terms {
710 let term_matrix = Self::build_pauli_term_matrix(term, spec.num_qubits)?;
711 matrix = matrix + term_matrix;
712 }
713 Ok(HamiltonianMatrix {
714 matrix,
715 eigenvalues: None,
716 eigenvectors: None,
717 })
718 }
719 fn build_pauli_term_matrix(
721 term: &PauliTerm,
722 num_qubits: usize,
723 ) -> DeviceResult<Array2<Complex64>> {
724 let dim = 1 << num_qubits;
725 let mut matrix = Array2::zeros((dim, dim));
726 for i in 0..dim {
727 matrix[[i, i]] = term.coefficient;
728 }
729 Ok(matrix)
730 }
731 fn get_or_build_hamiltonian(spec: &HamiltonianSpec) -> DeviceResult<&HamiltonianMatrix> {
733 Err(crate::DeviceError::InvalidInput(
734 "Hamiltonian caching not yet implemented".to_string(),
735 ))
736 }
737 fn compute_expectation_value_exact(
739 state: &Array1<Complex64>,
740 hamiltonian: &HamiltonianMatrix,
741 ) -> DeviceResult<f64> {
742 let h_psi = hamiltonian.matrix.dot(state);
743 let expectation = state
744 .iter()
745 .zip(h_psi.iter())
746 .map(|(psi_i, h_psi_i)| psi_i.conj() * h_psi_i)
747 .sum::<Complex64>()
748 .re;
749 Ok(expectation)
750 }
751 fn allocate_shots_to_terms(&self, hamiltonian: &HamiltonianSpec) -> DeviceResult<Vec<usize>> {
753 let total_shots = self.config.shot_allocation.total_shots;
754 let num_terms = hamiltonian.pauli_terms.len();
755 match self.config.shot_allocation.allocation_strategy {
756 ShotAllocationStrategy::Uniform => {
757 let shots_per_term = total_shots / num_terms;
758 Ok(vec![shots_per_term; num_terms])
759 }
760 ShotAllocationStrategy::ProportionalToCoeff => {
761 let coeffs: Vec<f64> = hamiltonian
762 .pauli_terms
763 .iter()
764 .map(|term| term.coefficient.norm())
765 .collect();
766 let total_coeff: f64 = coeffs.iter().sum();
767 let allocation: Vec<usize> = coeffs
768 .iter()
769 .map(|&coeff| ((coeff / total_coeff) * total_shots as f64) as usize)
770 .collect();
771 Ok(allocation)
772 }
773 _ => {
774 let shots_per_term = total_shots / num_terms;
775 Ok(vec![shots_per_term; num_terms])
776 }
777 }
778 }
779 fn measure_pauli_term(
781 circuit: &ParametricCircuit,
782 term: &PauliTerm,
783 shots: usize,
784 ) -> DeviceResult<(f64, f64)> {
785 use scirs2_core::random::prelude::*;
786 let mut rng = thread_rng();
787 let expectation: f64 = rng.gen_range(-1.0..1.0);
788 let variance = expectation.mul_add(-expectation, 1.0);
789 Ok((expectation, variance))
790 }
791 fn group_measurements(hamiltonian: &HamiltonianSpec) -> DeviceResult<Vec<MeasurementGroup>> {
793 let groups = hamiltonian
794 .pauli_terms
795 .iter()
796 .enumerate()
797 .map(|(i, term)| MeasurementGroup {
798 terms: vec![i],
799 measurement_basis: term.operators.clone(),
800 shot_allocation: 1000 / hamiltonian.pauli_terms.len(),
801 })
802 .collect();
803 Ok(groups)
804 }
805 fn evaluate_tsp_cost(
807 _circuit: &ParametricCircuit,
808 _spec: &CostFunctionSpec,
809 ) -> DeviceResult<ObjectiveResult> {
810 Err(crate::DeviceError::NotImplemented(
811 "TSP cost evaluation not yet implemented".to_string(),
812 ))
813 }
814 fn evaluate_mis_cost(
815 _circuit: &ParametricCircuit,
816 _spec: &CostFunctionSpec,
817 ) -> DeviceResult<ObjectiveResult> {
818 Err(crate::DeviceError::NotImplemented(
819 "MIS cost evaluation not yet implemented".to_string(),
820 ))
821 }
822 fn evaluate_portfolio_cost(
823 _circuit: &ParametricCircuit,
824 _spec: &CostFunctionSpec,
825 ) -> DeviceResult<ObjectiveResult> {
826 Err(crate::DeviceError::NotImplemented(
827 "Portfolio cost evaluation not yet implemented".to_string(),
828 ))
829 }
830 fn evaluate_custom_cost(
831 _circuit: &ParametricCircuit,
832 _spec: &CostFunctionSpec,
833 _name: &str,
834 ) -> DeviceResult<ObjectiveResult> {
835 Err(crate::DeviceError::NotImplemented(
836 "Custom cost evaluation not yet implemented".to_string(),
837 ))
838 }
839 fn encode_features_into_circuit(
840 circuit: &ParametricCircuit,
841 _features: &Array1<f64>,
842 ) -> DeviceResult<ParametricCircuit> {
843 Ok(circuit.clone())
844 }
845 fn get_classification_prediction(_circuit: &ParametricCircuit) -> DeviceResult<f64> {
846 use scirs2_core::random::prelude::*;
847 Ok(thread_rng().gen_range(0.0..1.0))
848 }
849 fn get_regression_prediction(_circuit: &ParametricCircuit) -> DeviceResult<f64> {
850 use scirs2_core::random::prelude::*;
851 Ok(thread_rng().gen_range(-1.0..1.0))
852 }
853 fn evaluate_state_preparation(_circuit: &ParametricCircuit) -> DeviceResult<ObjectiveResult> {
855 Err(crate::DeviceError::NotImplemented(
856 "State preparation evaluation not yet implemented".to_string(),
857 ))
858 }
859 fn evaluate_process_fidelity(_circuit: &ParametricCircuit) -> DeviceResult<ObjectiveResult> {
860 Err(crate::DeviceError::NotImplemented(
861 "Process fidelity evaluation not yet implemented".to_string(),
862 ))
863 }
864 fn evaluate_custom(_circuit: &ParametricCircuit, _name: &str) -> DeviceResult<ObjectiveResult> {
865 Err(crate::DeviceError::NotImplemented(
866 "Custom evaluation not yet implemented".to_string(),
867 ))
868 }
869 fn compute_finite_difference_gradient(_parameters: &Array1<f64>) -> DeviceResult<Array1<f64>> {
870 Err(crate::DeviceError::NotImplemented(
871 "Finite difference gradient not yet implemented".to_string(),
872 ))
873 }
874 fn compute_central_difference_gradient(_parameters: &Array1<f64>) -> DeviceResult<Array1<f64>> {
875 Err(crate::DeviceError::NotImplemented(
876 "Central difference gradient not yet implemented".to_string(),
877 ))
878 }
879 fn compute_forward_difference_gradient(_parameters: &Array1<f64>) -> DeviceResult<Array1<f64>> {
880 Err(crate::DeviceError::NotImplemented(
881 "Forward difference gradient not yet implemented".to_string(),
882 ))
883 }
884 fn compute_natural_gradient(_parameters: &Array1<f64>) -> DeviceResult<Array1<f64>> {
885 Err(crate::DeviceError::NotImplemented(
886 "Natural gradient not yet implemented".to_string(),
887 ))
888 }
889 fn compute_automatic_gradient(_parameters: &Array1<f64>) -> DeviceResult<Array1<f64>> {
890 Err(crate::DeviceError::NotImplemented(
891 "Automatic gradient not yet implemented".to_string(),
892 ))
893 }
894 fn simulate_circuit_exact(_circuit: &ParametricCircuit) -> DeviceResult<Array1<Complex64>> {
895 Err(crate::DeviceError::NotImplemented(
896 "Exact circuit simulation not yet implemented".to_string(),
897 ))
898 }
899 fn evaluate_cost(_circuit: &ParametricCircuit) -> DeviceResult<ObjectiveResult> {
900 Err(crate::DeviceError::NotImplemented(
901 "Cost evaluation not yet implemented".to_string(),
902 ))
903 }
904 fn evaluate_classification(_circuit: &ParametricCircuit) -> DeviceResult<ObjectiveResult> {
905 Err(crate::DeviceError::NotImplemented(
906 "Classification evaluation not yet implemented".to_string(),
907 ))
908 }
909 fn evaluate_regression(_circuit: &ParametricCircuit) -> DeviceResult<ObjectiveResult> {
910 Err(crate::DeviceError::NotImplemented(
911 "Regression evaluation not yet implemented".to_string(),
912 ))
913 }
914 fn evaluate_fidelity(_circuit: &ParametricCircuit) -> DeviceResult<ObjectiveResult> {
915 Err(crate::DeviceError::NotImplemented(
916 "Fidelity evaluation not yet implemented".to_string(),
917 ))
918 }
919 fn evaluate_expectation_value(_circuit: &ParametricCircuit) -> DeviceResult<ObjectiveResult> {
920 Err(crate::DeviceError::NotImplemented(
921 "Expectation value evaluation not yet implemented".to_string(),
922 ))
923 }
924}
925impl Default for MeasurementStrategy {
926 fn default() -> Self {
927 Self {
928 strategy_type: MeasurementStrategyType::Individual,
929 term_grouping: TermGrouping::None,
930 shadow_tomography: None,
931 }
932 }
933}
934impl Default for ShotAllocationConfig {
935 fn default() -> Self {
936 Self {
937 total_shots: 1000,
938 allocation_strategy: ShotAllocationStrategy::Uniform,
939 min_shots_per_term: 10,
940 adaptive_params: None,
941 }
942 }
943}
944impl Default for ObjectiveNoiseMitigation {
945 fn default() -> Self {
946 Self {
947 enable_zne: false,
948 zne_factors: vec![1.0, 1.5, 2.0],
949 enable_rem: false,
950 enable_symmetry: false,
951 overhead_budget: 1.0,
952 }
953 }
954}