quantrs2_device/vqa_support/
objectives.rs

1//! Objective function definitions and evaluation for VQA
2//!
3//! This module provides objective functions commonly used in
4//! variational quantum algorithms with comprehensive evaluation strategies.
5use super::circuits::{GateType, ParametricCircuit};
6use super::config::{GradientMethod, VQAAlgorithmType};
7use crate::DeviceResult;
8use scirs2_core::ndarray::{Array1, Array2};
9use scirs2_core::Complex64;
10use std::collections::HashMap;
11use std::sync::Arc;
12#[cfg(not(feature = "scirs2"))]
13mod fallback_scirs2 {
14    use scirs2_core::ndarray::{Array1, Array2};
15    use scirs2_core::Complex64;
16    pub struct Matrix(pub Array2<Complex64>);
17    pub struct Vector(pub Array1<Complex64>);
18    pub struct PauliOperator {
19        pub coefficients: Array1<f64>,
20        pub terms: Vec<String>,
21    }
22    impl Matrix {
23        pub fn new(data: Array2<Complex64>) -> Self {
24            Self(data)
25        }
26    }
27    impl Vector {
28        pub fn new(data: Array1<Complex64>) -> Self {
29            Self(data)
30        }
31    }
32}
33/// Comprehensive objective function configuration
34#[derive(Debug, Clone)]
35pub struct ObjectiveConfig {
36    /// Objective type
37    pub objective_type: ObjectiveType,
38    /// Target value (if applicable)
39    pub target: Option<f64>,
40    /// Regularization parameters
41    pub regularization: RegularizationConfig,
42    /// Hamiltonian specification (for VQE)
43    pub hamiltonian: Option<HamiltonianSpec>,
44    /// Cost function specification (for QAOA)
45    pub cost_function: Option<CostFunctionSpec>,
46    /// Training data (for VQC/QNN)
47    pub training_data: Option<TrainingDataSpec>,
48    /// Measurement strategy
49    pub measurement_strategy: MeasurementStrategy,
50    /// Shot allocation
51    pub shot_allocation: ShotAllocationConfig,
52    /// Gradient computation method
53    pub gradient_method: GradientMethod,
54    /// Noise mitigation settings
55    pub noise_mitigation: ObjectiveNoiseMitigation,
56}
57/// Available objective function types
58#[derive(Debug, Clone)]
59pub enum ObjectiveType {
60    /// Energy minimization (VQE)
61    Energy,
62    /// Fidelity maximization
63    Fidelity,
64    /// Cost optimization (QAOA)
65    Cost,
66    /// Classification loss (VQC)
67    Classification,
68    /// Regression loss (QNN)
69    Regression,
70    /// Expectation value computation
71    ExpectationValue,
72    /// State preparation fidelity
73    StatePreparation,
74    /// Process fidelity
75    ProcessFidelity,
76    /// Custom objective with user-defined evaluation
77    Custom(String),
78}
79/// Hamiltonian specification for VQE
80#[derive(Debug, Clone)]
81pub struct HamiltonianSpec {
82    /// Pauli terms with coefficients
83    pub pauli_terms: Vec<PauliTerm>,
84    /// Number of qubits
85    pub num_qubits: usize,
86    /// Sparse representation flag
87    pub use_sparse: bool,
88}
89/// Individual Pauli term in Hamiltonian
90#[derive(Debug, Clone)]
91pub struct PauliTerm {
92    /// Coefficient
93    pub coefficient: Complex64,
94    /// Pauli operators on each qubit (I, X, Y, Z)
95    pub operators: Vec<char>,
96    /// Qubit indices (if sparse)
97    pub indices: Option<Vec<usize>>,
98}
99/// Cost function specification for QAOA
100#[derive(Debug, Clone)]
101pub struct CostFunctionSpec {
102    /// Cost function type
103    pub function_type: CostFunctionType,
104    /// Problem-specific parameters
105    pub parameters: HashMap<String, f64>,
106    /// Graph connectivity (for graph problems)
107    pub graph: Option<Vec<(usize, usize, f64)>>,
108}
109/// QAOA cost function types
110#[derive(Debug, Clone)]
111pub enum CostFunctionType {
112    /// Maximum Cut problem
113    MaxCut,
114    /// Traveling Salesman Problem
115    TSP,
116    /// Maximum Independent Set
117    MaxIndependentSet,
118    /// Portfolio optimization
119    Portfolio,
120    /// Custom cost function
121    Custom(String),
122}
123/// Training data specification for supervised learning
124#[derive(Debug, Clone)]
125pub struct TrainingDataSpec {
126    /// Input features
127    pub features: Array2<f64>,
128    /// Target labels/values
129    pub targets: Array1<f64>,
130    /// Data encoding strategy
131    pub encoding: DataEncoding,
132    /// Loss function type
133    pub loss_function: LossFunction,
134}
135/// Data encoding strategies
136#[derive(Debug, Clone)]
137pub enum DataEncoding {
138    /// Amplitude encoding
139    Amplitude,
140    /// Angle encoding
141    Angle,
142    /// Basis encoding
143    Basis,
144    /// IQP encoding
145    IQP,
146}
147/// Loss function types for supervised learning
148#[derive(Debug, Clone)]
149pub enum LossFunction {
150    /// Mean squared error
151    MSE,
152    /// Cross-entropy
153    CrossEntropy,
154    /// Hinge loss
155    Hinge,
156    /// Custom loss
157    Custom(String),
158}
159/// Measurement strategy configuration
160#[derive(Debug, Clone)]
161pub struct MeasurementStrategy {
162    /// Strategy type
163    pub strategy_type: MeasurementStrategyType,
164    /// Grouping of commuting terms
165    pub term_grouping: TermGrouping,
166    /// Shadow tomography settings
167    pub shadow_tomography: Option<ShadowTomographyConfig>,
168}
169/// Measurement strategy types
170#[derive(Debug, Clone)]
171pub enum MeasurementStrategyType {
172    /// Individual term measurement
173    Individual,
174    /// Simultaneous measurement of commuting terms
175    Simultaneous,
176    /// Classical shadow tomography
177    Shadow,
178    /// Adaptive measurement
179    Adaptive,
180}
181/// Term grouping strategies
182#[derive(Debug, Clone)]
183pub enum TermGrouping {
184    /// No grouping
185    None,
186    /// Qubit-wise commuting (QWC)
187    QubitWiseCommuting,
188    /// Fully commuting
189    FullyCommuting,
190    /// Graph coloring
191    GraphColoring,
192}
193/// Shadow tomography configuration
194#[derive(Debug, Clone)]
195pub struct ShadowTomographyConfig {
196    /// Number of shadow copies
197    pub num_shadows: usize,
198    /// Random unitary ensemble
199    pub unitary_ensemble: UnitaryEnsemble,
200    /// Post-processing method
201    pub post_processing: String,
202}
203/// Unitary ensemble for shadow tomography
204#[derive(Debug, Clone)]
205pub enum UnitaryEnsemble {
206    /// Clifford group
207    Clifford,
208    /// Pauli group
209    Pauli,
210    /// Random unitaries
211    Random,
212}
213/// Shot allocation configuration
214#[derive(Debug, Clone)]
215pub struct ShotAllocationConfig {
216    /// Total shot budget
217    pub total_shots: usize,
218    /// Allocation strategy
219    pub allocation_strategy: ShotAllocationStrategy,
220    /// Minimum shots per term
221    pub min_shots_per_term: usize,
222    /// Adaptive allocation parameters
223    pub adaptive_params: Option<AdaptiveAllocationParams>,
224}
225/// Shot allocation strategies
226#[derive(Debug, Clone)]
227pub enum ShotAllocationStrategy {
228    /// Uniform allocation
229    Uniform,
230    /// Proportional to variance
231    ProportionalToVariance,
232    /// Proportional to coefficient magnitude
233    ProportionalToCoeff,
234    /// Optimal allocation (minimize variance)
235    OptimalVariance,
236    /// Adaptive Bayesian allocation
237    AdaptiveBayesian,
238}
239/// Adaptive allocation parameters
240#[derive(Debug, Clone)]
241pub struct AdaptiveAllocationParams {
242    /// Update frequency
243    pub update_frequency: usize,
244    /// Learning rate for adaptation
245    pub learning_rate: f64,
246    /// Exploration factor
247    pub exploration_factor: f64,
248}
249/// Noise mitigation for objective evaluation
250#[derive(Debug, Clone)]
251pub struct ObjectiveNoiseMitigation {
252    /// Enable zero-noise extrapolation
253    pub enable_zne: bool,
254    /// ZNE noise factors
255    pub zne_factors: Vec<f64>,
256    /// Enable readout error mitigation
257    pub enable_rem: bool,
258    /// Enable symmetry verification
259    pub enable_symmetry: bool,
260    /// Mitigation overhead budget
261    pub overhead_budget: f64,
262}
263/// Regularization configuration
264#[derive(Debug, Clone)]
265pub struct RegularizationConfig {
266    /// L1 regularization coefficient
267    pub l1_coeff: f64,
268    /// L2 regularization coefficient
269    pub l2_coeff: f64,
270    /// Parameter bounds penalty
271    pub bounds_penalty: f64,
272}
273impl Default for ObjectiveConfig {
274    fn default() -> Self {
275        Self {
276            objective_type: ObjectiveType::Energy,
277            target: None,
278            regularization: RegularizationConfig::default(),
279            hamiltonian: None,
280            cost_function: None,
281            training_data: None,
282            measurement_strategy: MeasurementStrategy::default(),
283            shot_allocation: ShotAllocationConfig::default(),
284            gradient_method: GradientMethod::ParameterShift,
285            noise_mitigation: ObjectiveNoiseMitigation::default(),
286        }
287    }
288}
289impl Default for RegularizationConfig {
290    fn default() -> Self {
291        Self {
292            l1_coeff: 0.0,
293            l2_coeff: 0.0,
294            bounds_penalty: 1.0,
295        }
296    }
297}
298/// Comprehensive objective function evaluation result
299#[derive(Debug, Clone)]
300pub struct ObjectiveResult {
301    /// Primary objective value
302    pub value: f64,
303    /// Gradient (if computed)
304    pub gradient: Option<Array1<f64>>,
305    /// Hessian (if computed)
306    pub hessian: Option<Array2<f64>>,
307    /// Individual term contributions
308    pub term_contributions: Vec<f64>,
309    /// Statistical uncertainty
310    pub uncertainty: Option<f64>,
311    /// Variance estimate
312    pub variance: Option<f64>,
313    /// Additional metrics
314    pub metrics: HashMap<String, f64>,
315    /// Measurement results
316    pub measurement_results: MeasurementResults,
317    /// Computation metadata
318    pub metadata: ObjectiveMetadata,
319}
320/// Measurement results from objective evaluation
321#[derive(Debug, Clone)]
322pub struct MeasurementResults {
323    /// Raw measurement counts
324    pub raw_counts: HashMap<String, usize>,
325    /// Expectation values per term
326    pub expectation_values: Vec<f64>,
327    /// Measurement variances
328    pub variances: Vec<f64>,
329    /// Shot allocation used
330    pub shots_used: Vec<usize>,
331    /// Total shots consumed
332    pub total_shots: usize,
333}
334/// Objective evaluation metadata
335#[derive(Debug, Clone)]
336pub struct ObjectiveMetadata {
337    /// Evaluation timestamp
338    pub timestamp: std::time::Instant,
339    /// Circuit depth used
340    pub circuit_depth: usize,
341    /// Number of terms evaluated
342    pub num_terms: usize,
343    /// Measurement strategy used
344    pub measurement_strategy: String,
345    /// Noise mitigation applied
346    pub noise_mitigation_applied: Vec<String>,
347    /// Computation time
348    pub computation_time: std::time::Duration,
349}
350/// Enhanced objective function trait
351pub trait ObjectiveFunction: Send + Sync {
352    /// Evaluate the objective function
353    fn evaluate(&self, parameters: &Array1<f64>) -> DeviceResult<ObjectiveResult>;
354    /// Compute gradient using specified method
355    fn compute_gradient(&self, parameters: &Array1<f64>) -> DeviceResult<Array1<f64>> {
356        self.compute_gradient_with_method(parameters, &GradientMethod::ParameterShift)
357    }
358    /// Compute gradient with specific method
359    fn compute_gradient_with_method(
360        &self,
361        parameters: &Array1<f64>,
362        method: &GradientMethod,
363    ) -> DeviceResult<Array1<f64>>;
364    /// Estimate computational cost for given parameters
365    fn estimate_cost(&self, parameters: &Array1<f64>) -> usize;
366    /// Get parameter bounds
367    fn parameter_bounds(&self) -> Option<Vec<(f64, f64)>>;
368    /// Check if objective supports batched evaluation
369    fn supports_batch_evaluation(&self) -> bool {
370        false
371    }
372    /// Batch evaluate multiple parameter sets (if supported)
373    fn batch_evaluate(&self, parameter_sets: &[Array1<f64>]) -> DeviceResult<Vec<ObjectiveResult>> {
374        parameter_sets
375            .iter()
376            .map(|params| self.evaluate(params))
377            .collect()
378    }
379}
380/// Comprehensive objective function evaluator with SciRS2 integration
381#[derive(Debug)]
382pub struct ObjectiveEvaluator {
383    /// Configuration
384    pub config: ObjectiveConfig,
385    /// Parametric circuit reference
386    pub circuit: Arc<ParametricCircuit>,
387    /// Quantum simulator backend
388    pub backend: ObjectiveBackend,
389    /// Cached Hamiltonian matrix (for efficiency)
390    pub cached_hamiltonian: Option<HamiltonianMatrix>,
391    /// Measurement groupings (for optimization)
392    pub measurement_groups: Option<Vec<MeasurementGroup>>,
393}
394/// Backend for objective evaluation
395#[derive(Debug)]
396pub enum ObjectiveBackend {
397    /// QuantRS2 simulator
398    QuantRS2Simulator,
399    /// SciRS2 exact simulation
400    SciRS2Exact,
401    /// Hardware device
402    Hardware(String),
403    /// Mock backend for testing
404    Mock,
405}
406/// Cached Hamiltonian representation
407#[derive(Debug, Clone)]
408pub struct HamiltonianMatrix {
409    /// Full Hamiltonian matrix
410    pub matrix: Array2<Complex64>,
411    /// Eigenvalues (if computed)
412    pub eigenvalues: Option<Array1<f64>>,
413    /// Eigenvectors (if computed)
414    pub eigenvectors: Option<Array2<Complex64>>,
415}
416/// Grouped measurements for efficiency
417#[derive(Debug, Clone)]
418pub struct MeasurementGroup {
419    /// Terms that can be measured simultaneously
420    pub terms: Vec<usize>,
421    /// Required measurement basis
422    pub measurement_basis: Vec<char>,
423    /// Expected shot allocation
424    pub shot_allocation: usize,
425}
426impl ObjectiveFunction for ObjectiveEvaluator {
427    /// Comprehensive objective function evaluation
428    fn evaluate(&self, parameters: &Array1<f64>) -> DeviceResult<ObjectiveResult> {
429        let start_time = std::time::Instant::now();
430        let mut circuit = (*self.circuit).clone();
431        circuit.set_parameters(parameters.to_vec())?;
432        let result = match &self.config.objective_type {
433            ObjectiveType::Energy => self.evaluate_energy(&circuit),
434            ObjectiveType::Cost => Self::evaluate_cost(&circuit),
435            ObjectiveType::Classification => Self::evaluate_classification(&circuit),
436            ObjectiveType::Regression => Self::evaluate_regression(&circuit),
437            ObjectiveType::Fidelity => Self::evaluate_fidelity(&circuit),
438            ObjectiveType::ExpectationValue => Self::evaluate_expectation_value(&circuit),
439            ObjectiveType::StatePreparation => Self::evaluate_state_preparation(&circuit),
440            ObjectiveType::ProcessFidelity => Self::evaluate_process_fidelity(&circuit),
441            ObjectiveType::Custom(name) => Self::evaluate_custom(&circuit, name),
442        };
443        let mut objective_result = result?;
444        objective_result.value = self.apply_regularization(objective_result.value, parameters);
445        objective_result.metadata.computation_time = start_time.elapsed();
446        objective_result.metadata.timestamp = start_time;
447        objective_result.metadata.circuit_depth = circuit.circuit_depth();
448        Ok(objective_result)
449    }
450    /// Compute gradient with specified method
451    fn compute_gradient_with_method(
452        &self,
453        parameters: &Array1<f64>,
454        method: &GradientMethod,
455    ) -> DeviceResult<Array1<f64>> {
456        match method {
457            GradientMethod::ParameterShift => self.compute_parameter_shift_gradient(parameters),
458            GradientMethod::FiniteDifference => {
459                Self::compute_finite_difference_gradient(parameters)
460            }
461            GradientMethod::CentralDifference => {
462                Self::compute_central_difference_gradient(parameters)
463            }
464            GradientMethod::ForwardDifference => {
465                Self::compute_forward_difference_gradient(parameters)
466            }
467            GradientMethod::NaturalGradient => Self::compute_natural_gradient(parameters),
468            GradientMethod::AutomaticDifferentiation => {
469                Self::compute_automatic_gradient(parameters)
470            }
471        }
472    }
473    /// Estimate computational cost
474    fn estimate_cost(&self, parameters: &Array1<f64>) -> usize {
475        let circuit_depth = self.circuit.circuit_depth();
476        let num_qubits = self.circuit.config.num_qubits;
477        let num_terms = match &self.config.hamiltonian {
478            Some(h) => h.pauli_terms.len(),
479            None => 1,
480        };
481        let circuit_cost = circuit_depth * (1 << num_qubits.min(10));
482        let measurement_cost = num_terms * self.config.shot_allocation.total_shots;
483        circuit_cost + measurement_cost
484    }
485    /// Get parameter bounds
486    fn parameter_bounds(&self) -> Option<Vec<(f64, f64)>> {
487        Some(self.circuit.bounds.clone())
488    }
489    /// Check batch evaluation support
490    fn supports_batch_evaluation(&self) -> bool {
491        matches!(
492            self.backend,
493            ObjectiveBackend::SciRS2Exact | ObjectiveBackend::Mock
494        )
495    }
496}
497impl ObjectiveEvaluator {
498    /// Create new objective evaluator
499    pub fn new(
500        config: ObjectiveConfig,
501        circuit: ParametricCircuit,
502        backend: ObjectiveBackend,
503    ) -> Self {
504        let circuit_arc = Arc::new(circuit);
505        Self {
506            config,
507            circuit: circuit_arc,
508            backend,
509            cached_hamiltonian: None,
510            measurement_groups: None,
511        }
512    }
513    /// Initialize with Hamiltonian caching
514    pub fn with_hamiltonian_caching(mut self) -> DeviceResult<Self> {
515        if let Some(ref hamiltonian_spec) = self.config.hamiltonian {
516            self.cached_hamiltonian = Some(self.build_hamiltonian_matrix(hamiltonian_spec)?);
517        }
518        Ok(self)
519    }
520    /// Initialize measurement grouping optimization
521    pub fn with_measurement_grouping(mut self) -> DeviceResult<Self> {
522        if let Some(ref hamiltonian_spec) = self.config.hamiltonian {
523            self.measurement_groups = Some(Self::group_measurements(hamiltonian_spec)?);
524        }
525        Ok(self)
526    }
527    /// Evaluate energy objective (VQE)
528    fn evaluate_energy(&self, circuit: &ParametricCircuit) -> DeviceResult<ObjectiveResult> {
529        let hamiltonian = self.config.hamiltonian.as_ref().ok_or_else(|| {
530            crate::DeviceError::InvalidInput(
531                "Hamiltonian specification required for energy evaluation".to_string(),
532            )
533        })?;
534        match &self.backend {
535            ObjectiveBackend::SciRS2Exact => self.evaluate_energy_exact(circuit, hamiltonian),
536            ObjectiveBackend::QuantRS2Simulator => {
537                self.evaluate_energy_sampling(circuit, hamiltonian)
538            }
539            ObjectiveBackend::Hardware(_) => self.evaluate_energy_hardware(circuit, hamiltonian),
540            ObjectiveBackend::Mock => Self::evaluate_energy_mock(circuit, hamiltonian),
541        }
542    }
543    /// Exact energy evaluation with SciRS2
544    fn evaluate_energy_exact(
545        &self,
546        circuit: &ParametricCircuit,
547        hamiltonian: &HamiltonianSpec,
548    ) -> DeviceResult<ObjectiveResult> {
549        #[cfg(feature = "scirs2")]
550        {
551            let state_vector = Self::simulate_circuit_exact(circuit)?;
552            let hamiltonian_matrix = Self::get_or_build_hamiltonian(hamiltonian)?;
553            let energy = Self::compute_expectation_value_exact(&state_vector, hamiltonian_matrix)?;
554            let mut measurement_results = MeasurementResults {
555                raw_counts: HashMap::new(),
556                expectation_values: vec![energy],
557                variances: vec![0.0],
558                shots_used: vec![0],
559                total_shots: 0,
560            };
561            Ok(ObjectiveResult {
562                value: energy,
563                gradient: None,
564                hessian: None,
565                term_contributions: vec![energy],
566                uncertainty: Some(0.0),
567                variance: Some(0.0),
568                metrics: std::iter::once(("exact_evaluation".to_string(), 1.0)).collect(),
569                measurement_results,
570                metadata: ObjectiveMetadata {
571                    timestamp: std::time::Instant::now(),
572                    circuit_depth: circuit.circuit_depth(),
573                    num_terms: hamiltonian.pauli_terms.len(),
574                    measurement_strategy: "exact".to_string(),
575                    noise_mitigation_applied: vec![],
576                    computation_time: std::time::Duration::from_secs(0),
577                },
578            })
579        }
580        #[cfg(not(feature = "scirs2"))]
581        {
582            Self::evaluate_energy_mock(circuit, hamiltonian)
583        }
584    }
585    /// Sampling-based energy evaluation
586    fn evaluate_energy_sampling(
587        &self,
588        circuit: &ParametricCircuit,
589        hamiltonian: &HamiltonianSpec,
590    ) -> DeviceResult<ObjectiveResult> {
591        let mut total_energy = 0.0;
592        let mut term_contributions = Vec::new();
593        let mut total_variance = 0.0;
594        let mut measurement_results = MeasurementResults {
595            raw_counts: HashMap::new(),
596            expectation_values: Vec::new(),
597            variances: Vec::new(),
598            shots_used: Vec::new(),
599            total_shots: 0,
600        };
601        let shot_allocation = self.allocate_shots_to_terms(hamiltonian)?;
602        for (term_idx, term) in hamiltonian.pauli_terms.iter().enumerate() {
603            let shots = shot_allocation[term_idx];
604            let (expectation, variance) = Self::measure_pauli_term(circuit, term, shots)?;
605            let contribution = term.coefficient.re * expectation;
606            total_energy += contribution;
607            term_contributions.push(contribution);
608            total_variance += (term.coefficient.norm_sqr() * variance) / shots as f64;
609            measurement_results.expectation_values.push(expectation);
610            measurement_results.variances.push(variance);
611            measurement_results.shots_used.push(shots);
612            measurement_results.total_shots += shots;
613        }
614        Ok(ObjectiveResult {
615            value: total_energy,
616            gradient: None,
617            hessian: None,
618            term_contributions,
619            uncertainty: Some(total_variance.sqrt()),
620            variance: Some(total_variance),
621            metrics: std::iter::once(("sampling_evaluation".to_string(), 1.0)).collect(),
622            measurement_results,
623            metadata: ObjectiveMetadata {
624                timestamp: std::time::Instant::now(),
625                circuit_depth: circuit.circuit_depth(),
626                num_terms: hamiltonian.pauli_terms.len(),
627                measurement_strategy: "individual_terms".to_string(),
628                noise_mitigation_applied: vec![],
629                computation_time: std::time::Duration::from_secs(0),
630            },
631        })
632    }
633    /// Hardware-based energy evaluation
634    fn evaluate_energy_hardware(
635        &self,
636        circuit: &ParametricCircuit,
637        hamiltonian: &HamiltonianSpec,
638    ) -> DeviceResult<ObjectiveResult> {
639        self.evaluate_energy_sampling(circuit, hamiltonian)
640    }
641    /// Mock energy evaluation for testing
642    fn evaluate_energy_mock(
643        _circuit: &ParametricCircuit,
644        hamiltonian: &HamiltonianSpec,
645    ) -> DeviceResult<ObjectiveResult> {
646        use scirs2_core::random::prelude::*;
647        let mut rng = thread_rng();
648        let energy = hamiltonian
649            .pauli_terms
650            .iter()
651            .map(|term| term.coefficient.re * rng.gen_range(-1.0..1.0))
652            .sum::<f64>();
653        let variance: f64 = 0.01;
654        Ok(ObjectiveResult {
655            value: energy,
656            gradient: None,
657            hessian: None,
658            term_contributions: vec![energy],
659            uncertainty: Some(variance.sqrt()),
660            variance: Some(variance),
661            metrics: HashMap::from([("mock_evaluation".to_string(), 1.0)]),
662            measurement_results: MeasurementResults {
663                raw_counts: HashMap::new(),
664                expectation_values: vec![energy],
665                variances: vec![variance],
666                shots_used: vec![1000],
667                total_shots: 1000,
668            },
669            metadata: ObjectiveMetadata {
670                timestamp: std::time::Instant::now(),
671                circuit_depth: 10,
672                num_terms: hamiltonian.pauli_terms.len(),
673                measurement_strategy: "mock".to_string(),
674                noise_mitigation_applied: vec![],
675                computation_time: std::time::Duration::from_millis(10),
676            },
677        })
678    }
679    /// Apply regularization to objective value
680    fn apply_regularization(&self, value: f64, parameters: &Array1<f64>) -> f64 {
681        let l1_penalty =
682            self.config.regularization.l1_coeff * parameters.iter().map(|&x| x.abs()).sum::<f64>();
683        let l2_penalty =
684            self.config.regularization.l2_coeff * parameters.iter().map(|&x| x * x).sum::<f64>();
685        value + l1_penalty + l2_penalty
686    }
687    /// Compute parameter shift gradient
688    fn compute_parameter_shift_gradient(
689        &self,
690        parameters: &Array1<f64>,
691    ) -> DeviceResult<Array1<f64>> {
692        let mut gradient = Array1::zeros(parameters.len());
693        let shift = std::f64::consts::PI / 2.0;
694        for i in 0..parameters.len() {
695            let mut params_plus = parameters.clone();
696            let mut params_minus = parameters.clone();
697            params_plus[i] += shift;
698            params_minus[i] -= shift;
699            let f_plus = self.evaluate(&params_plus)?.value;
700            let f_minus = self.evaluate(&params_minus)?.value;
701            gradient[i] = (f_plus - f_minus) / 2.0;
702        }
703        Ok(gradient)
704    }
705    /// Build Hamiltonian matrix from specification
706    fn build_hamiltonian_matrix(&self, spec: &HamiltonianSpec) -> DeviceResult<HamiltonianMatrix> {
707        let dim = 1 << spec.num_qubits;
708        let mut matrix = Array2::zeros((dim, dim));
709        for term in &spec.pauli_terms {
710            let term_matrix = Self::build_pauli_term_matrix(term, spec.num_qubits)?;
711            matrix = matrix + term_matrix;
712        }
713        Ok(HamiltonianMatrix {
714            matrix,
715            eigenvalues: None,
716            eigenvectors: None,
717        })
718    }
719    /// Build matrix for single Pauli term
720    fn build_pauli_term_matrix(
721        term: &PauliTerm,
722        num_qubits: usize,
723    ) -> DeviceResult<Array2<Complex64>> {
724        let dim = 1 << num_qubits;
725        let mut matrix = Array2::zeros((dim, dim));
726        for i in 0..dim {
727            matrix[[i, i]] = term.coefficient;
728        }
729        Ok(matrix)
730    }
731    /// Get cached Hamiltonian or build it
732    fn get_or_build_hamiltonian(spec: &HamiltonianSpec) -> DeviceResult<&HamiltonianMatrix> {
733        Err(crate::DeviceError::InvalidInput(
734            "Hamiltonian caching not yet implemented".to_string(),
735        ))
736    }
737    /// Compute exact expectation value
738    fn compute_expectation_value_exact(
739        state: &Array1<Complex64>,
740        hamiltonian: &HamiltonianMatrix,
741    ) -> DeviceResult<f64> {
742        let h_psi = hamiltonian.matrix.dot(state);
743        let expectation = state
744            .iter()
745            .zip(h_psi.iter())
746            .map(|(psi_i, h_psi_i)| psi_i.conj() * h_psi_i)
747            .sum::<Complex64>()
748            .re;
749        Ok(expectation)
750    }
751    /// Allocate shots to Hamiltonian terms
752    fn allocate_shots_to_terms(&self, hamiltonian: &HamiltonianSpec) -> DeviceResult<Vec<usize>> {
753        let total_shots = self.config.shot_allocation.total_shots;
754        let num_terms = hamiltonian.pauli_terms.len();
755        match self.config.shot_allocation.allocation_strategy {
756            ShotAllocationStrategy::Uniform => {
757                let shots_per_term = total_shots / num_terms;
758                Ok(vec![shots_per_term; num_terms])
759            }
760            ShotAllocationStrategy::ProportionalToCoeff => {
761                let coeffs: Vec<f64> = hamiltonian
762                    .pauli_terms
763                    .iter()
764                    .map(|term| term.coefficient.norm())
765                    .collect();
766                let total_coeff: f64 = coeffs.iter().sum();
767                let allocation: Vec<usize> = coeffs
768                    .iter()
769                    .map(|&coeff| ((coeff / total_coeff) * total_shots as f64) as usize)
770                    .collect();
771                Ok(allocation)
772            }
773            _ => {
774                let shots_per_term = total_shots / num_terms;
775                Ok(vec![shots_per_term; num_terms])
776            }
777        }
778    }
779    /// Measure expectation value of single Pauli term
780    fn measure_pauli_term(
781        circuit: &ParametricCircuit,
782        term: &PauliTerm,
783        shots: usize,
784    ) -> DeviceResult<(f64, f64)> {
785        use scirs2_core::random::prelude::*;
786        let mut rng = thread_rng();
787        let expectation: f64 = rng.gen_range(-1.0..1.0);
788        let variance = expectation.mul_add(-expectation, 1.0);
789        Ok((expectation, variance))
790    }
791    /// Group measurements for efficiency
792    fn group_measurements(hamiltonian: &HamiltonianSpec) -> DeviceResult<Vec<MeasurementGroup>> {
793        let groups = hamiltonian
794            .pauli_terms
795            .iter()
796            .enumerate()
797            .map(|(i, term)| MeasurementGroup {
798                terms: vec![i],
799                measurement_basis: term.operators.clone(),
800                shot_allocation: 1000 / hamiltonian.pauli_terms.len(),
801            })
802            .collect();
803        Ok(groups)
804    }
805    /// Additional placeholder methods for evaluation types
806    fn evaluate_tsp_cost(
807        _circuit: &ParametricCircuit,
808        _spec: &CostFunctionSpec,
809    ) -> DeviceResult<ObjectiveResult> {
810        Err(crate::DeviceError::NotImplemented(
811            "TSP cost evaluation not yet implemented".to_string(),
812        ))
813    }
814    fn evaluate_mis_cost(
815        _circuit: &ParametricCircuit,
816        _spec: &CostFunctionSpec,
817    ) -> DeviceResult<ObjectiveResult> {
818        Err(crate::DeviceError::NotImplemented(
819            "MIS cost evaluation not yet implemented".to_string(),
820        ))
821    }
822    fn evaluate_portfolio_cost(
823        _circuit: &ParametricCircuit,
824        _spec: &CostFunctionSpec,
825    ) -> DeviceResult<ObjectiveResult> {
826        Err(crate::DeviceError::NotImplemented(
827            "Portfolio cost evaluation not yet implemented".to_string(),
828        ))
829    }
830    fn evaluate_custom_cost(
831        _circuit: &ParametricCircuit,
832        _spec: &CostFunctionSpec,
833        _name: &str,
834    ) -> DeviceResult<ObjectiveResult> {
835        Err(crate::DeviceError::NotImplemented(
836            "Custom cost evaluation not yet implemented".to_string(),
837        ))
838    }
839    fn encode_features_into_circuit(
840        circuit: &ParametricCircuit,
841        _features: &Array1<f64>,
842    ) -> DeviceResult<ParametricCircuit> {
843        Ok(circuit.clone())
844    }
845    fn get_classification_prediction(_circuit: &ParametricCircuit) -> DeviceResult<f64> {
846        use scirs2_core::random::prelude::*;
847        Ok(thread_rng().gen_range(0.0..1.0))
848    }
849    fn get_regression_prediction(_circuit: &ParametricCircuit) -> DeviceResult<f64> {
850        use scirs2_core::random::prelude::*;
851        Ok(thread_rng().gen_range(-1.0..1.0))
852    }
853    /// Missing method implementations
854    fn evaluate_state_preparation(_circuit: &ParametricCircuit) -> DeviceResult<ObjectiveResult> {
855        Err(crate::DeviceError::NotImplemented(
856            "State preparation evaluation not yet implemented".to_string(),
857        ))
858    }
859    fn evaluate_process_fidelity(_circuit: &ParametricCircuit) -> DeviceResult<ObjectiveResult> {
860        Err(crate::DeviceError::NotImplemented(
861            "Process fidelity evaluation not yet implemented".to_string(),
862        ))
863    }
864    fn evaluate_custom(_circuit: &ParametricCircuit, _name: &str) -> DeviceResult<ObjectiveResult> {
865        Err(crate::DeviceError::NotImplemented(
866            "Custom evaluation not yet implemented".to_string(),
867        ))
868    }
869    fn compute_finite_difference_gradient(_parameters: &Array1<f64>) -> DeviceResult<Array1<f64>> {
870        Err(crate::DeviceError::NotImplemented(
871            "Finite difference gradient not yet implemented".to_string(),
872        ))
873    }
874    fn compute_central_difference_gradient(_parameters: &Array1<f64>) -> DeviceResult<Array1<f64>> {
875        Err(crate::DeviceError::NotImplemented(
876            "Central difference gradient not yet implemented".to_string(),
877        ))
878    }
879    fn compute_forward_difference_gradient(_parameters: &Array1<f64>) -> DeviceResult<Array1<f64>> {
880        Err(crate::DeviceError::NotImplemented(
881            "Forward difference gradient not yet implemented".to_string(),
882        ))
883    }
884    fn compute_natural_gradient(_parameters: &Array1<f64>) -> DeviceResult<Array1<f64>> {
885        Err(crate::DeviceError::NotImplemented(
886            "Natural gradient not yet implemented".to_string(),
887        ))
888    }
889    fn compute_automatic_gradient(_parameters: &Array1<f64>) -> DeviceResult<Array1<f64>> {
890        Err(crate::DeviceError::NotImplemented(
891            "Automatic gradient not yet implemented".to_string(),
892        ))
893    }
894    fn simulate_circuit_exact(_circuit: &ParametricCircuit) -> DeviceResult<Array1<Complex64>> {
895        Err(crate::DeviceError::NotImplemented(
896            "Exact circuit simulation not yet implemented".to_string(),
897        ))
898    }
899    fn evaluate_cost(_circuit: &ParametricCircuit) -> DeviceResult<ObjectiveResult> {
900        Err(crate::DeviceError::NotImplemented(
901            "Cost evaluation not yet implemented".to_string(),
902        ))
903    }
904    fn evaluate_classification(_circuit: &ParametricCircuit) -> DeviceResult<ObjectiveResult> {
905        Err(crate::DeviceError::NotImplemented(
906            "Classification evaluation not yet implemented".to_string(),
907        ))
908    }
909    fn evaluate_regression(_circuit: &ParametricCircuit) -> DeviceResult<ObjectiveResult> {
910        Err(crate::DeviceError::NotImplemented(
911            "Regression evaluation not yet implemented".to_string(),
912        ))
913    }
914    fn evaluate_fidelity(_circuit: &ParametricCircuit) -> DeviceResult<ObjectiveResult> {
915        Err(crate::DeviceError::NotImplemented(
916            "Fidelity evaluation not yet implemented".to_string(),
917        ))
918    }
919    fn evaluate_expectation_value(_circuit: &ParametricCircuit) -> DeviceResult<ObjectiveResult> {
920        Err(crate::DeviceError::NotImplemented(
921            "Expectation value evaluation not yet implemented".to_string(),
922        ))
923    }
924}
925impl Default for MeasurementStrategy {
926    fn default() -> Self {
927        Self {
928            strategy_type: MeasurementStrategyType::Individual,
929            term_grouping: TermGrouping::None,
930            shadow_tomography: None,
931        }
932    }
933}
934impl Default for ShotAllocationConfig {
935    fn default() -> Self {
936        Self {
937            total_shots: 1000,
938            allocation_strategy: ShotAllocationStrategy::Uniform,
939            min_shots_per_term: 10,
940            adaptive_params: None,
941        }
942    }
943}
944impl Default for ObjectiveNoiseMitigation {
945    fn default() -> Self {
946        Self {
947            enable_zne: false,
948            zne_factors: vec![1.0, 1.5, 2.0],
949            enable_rem: false,
950            enable_symmetry: false,
951            overhead_budget: 1.0,
952        }
953    }
954}