quantrs2_device/topological/
error_correction.rs

1//! Error correction for topological quantum computing
2//!
3//! This module implements topological error correction schemes that leverage
4//! the inherent error protection of topological quantum states.
5
6use super::{
7    topological_codes::{
8        ColorCode, ErrorCorrection, SurfaceCode, SyndromeMeasurement, TopologicalCodeType,
9        TopologicalDecoder,
10    },
11    Anyon, TopologicalCharge, TopologicalDevice, TopologicalError, TopologicalQubit,
12    TopologicalResult,
13};
14use scirs2_core::random::prelude::*;
15use serde::{Deserialize, Serialize};
16use std::collections::{HashMap, VecDeque};
17use std::time::{Duration, SystemTime, UNIX_EPOCH};
18
19/// Topological error correction manager
20pub struct TopologicalErrorCorrector {
21    /// Type of topological code being used
22    code_type: TopologicalCodeType,
23    /// Code distance
24    code_distance: usize,
25    /// Surface code instance (if applicable)
26    surface_code: Option<SurfaceCode>,
27    /// Color code instance (if applicable)
28    color_code: Option<ColorCode>,
29    /// Decoder for syndrome interpretation
30    decoder: Box<dyn TopologicalDecoder + Send + Sync>,
31    /// Syndrome measurement history
32    syndrome_history: VecDeque<SyndromeRound>,
33    /// Error correction configuration
34    config: ErrorCorrectionConfig,
35}
36
37/// Configuration for topological error correction
38#[derive(Debug, Clone, Serialize, Deserialize)]
39pub struct ErrorCorrectionConfig {
40    /// Syndrome measurement frequency (Hz)
41    pub syndrome_frequency: f64,
42    /// Number of syndrome rounds to keep in history
43    pub syndrome_history_size: usize,
44    /// Threshold for syndrome correlation
45    pub correlation_threshold: f64,
46    /// Enable real-time error correction
47    pub real_time_correction: bool,
48    /// Maximum correction attempts per syndrome
49    pub max_correction_attempts: usize,
50    /// Minimum confidence for applying corrections
51    pub min_correction_confidence: f64,
52    /// Enable syndrome pattern analysis
53    pub enable_pattern_analysis: bool,
54}
55
56impl Default for ErrorCorrectionConfig {
57    fn default() -> Self {
58        Self {
59            syndrome_frequency: 1000.0, // 1 kHz
60            syndrome_history_size: 100,
61            correlation_threshold: 0.8,
62            real_time_correction: true,
63            max_correction_attempts: 3,
64            min_correction_confidence: 0.9,
65            enable_pattern_analysis: true,
66        }
67    }
68}
69
70/// A round of syndrome measurements
71#[derive(Debug, Clone, Serialize, Deserialize)]
72pub struct SyndromeRound {
73    /// Round ID
74    pub round_id: usize,
75    /// Timestamp of the round
76    pub timestamp: f64,
77    /// All syndrome measurements in this round
78    pub measurements: Vec<SyndromeMeasurement>,
79    /// Applied corrections (if any)
80    pub corrections: Vec<ErrorCorrection>,
81    /// Success of the correction
82    pub correction_success: Option<bool>,
83}
84
85/// Anyon error tracking
86#[derive(Debug, Clone, Serialize, Deserialize)]
87pub struct AnyonError {
88    /// Anyon ID
89    pub anyon_id: usize,
90    /// Type of error
91    pub error_type: AnyonErrorType,
92    /// Error probability
93    pub probability: f64,
94    /// Detection timestamp
95    pub detection_time: f64,
96    /// Associated syndrome measurements
97    pub syndrome_ids: Vec<usize>,
98}
99
100/// Types of errors that can affect anyons
101#[derive(Debug, Clone, PartialEq, Eq, Serialize, Deserialize)]
102pub enum AnyonErrorType {
103    /// Anyon creation/annihilation error
104    CreationAnnihilation,
105    /// Braiding error
106    BraidingError,
107    /// Fusion error
108    FusionError,
109    /// Measurement error
110    MeasurementError,
111    /// Thermal fluctuation
112    ThermalFluctuation,
113    /// Decoherence
114    Decoherence,
115}
116
117/// Error correction statistics
118#[derive(Debug, Clone, Serialize, Deserialize)]
119pub struct ErrorCorrectionStats {
120    /// Total syndrome rounds processed
121    pub total_rounds: usize,
122    /// Total errors detected
123    pub errors_detected: usize,
124    /// Total corrections applied
125    pub corrections_applied: usize,
126    /// Successful corrections
127    pub successful_corrections: usize,
128    /// Average correction confidence
129    pub average_confidence: f64,
130    /// Logical error rate
131    pub logical_error_rate: f64,
132    /// Physical error rate
133    pub physical_error_rate: f64,
134}
135
136impl TopologicalErrorCorrector {
137    /// Create a new topological error corrector
138    pub fn new(
139        code_type: TopologicalCodeType,
140        code_distance: usize,
141        config: ErrorCorrectionConfig,
142    ) -> TopologicalResult<Self> {
143        let (surface_code, color_code) = match code_type {
144            TopologicalCodeType::SurfaceCode | TopologicalCodeType::PlanarSurfaceCode => {
145                (Some(SurfaceCode::new(code_distance)?), None)
146            }
147            TopologicalCodeType::ColorCode => (None, Some(ColorCode::new(code_distance)?)),
148            _ => (None, None),
149        };
150
151        // Create appropriate decoder
152        let decoder: Box<dyn TopologicalDecoder + Send + Sync> = match code_type {
153            TopologicalCodeType::SurfaceCode | TopologicalCodeType::PlanarSurfaceCode => Box::new(
154                super::topological_codes::MWPMDecoder::new(code_distance, 0.01),
155            ),
156            _ => {
157                // Default decoder
158                Box::new(super::topological_codes::MWPMDecoder::new(
159                    code_distance,
160                    0.01,
161                ))
162            }
163        };
164
165        Ok(Self {
166            code_type,
167            code_distance,
168            surface_code,
169            color_code,
170            decoder,
171            syndrome_history: VecDeque::with_capacity(config.syndrome_history_size),
172            config,
173        })
174    }
175
176    /// Perform a syndrome measurement round
177    pub async fn perform_syndrome_measurement(
178        &mut self,
179        device: &TopologicalDevice,
180        round_id: usize,
181    ) -> TopologicalResult<SyndromeRound> {
182        let timestamp = SystemTime::now()
183            .duration_since(UNIX_EPOCH)
184            .expect("System time should be after UNIX epoch")
185            .as_secs_f64();
186
187        let mut measurements = Vec::new();
188
189        // Measure stabilizers based on code type
190        match &self.surface_code {
191            Some(code) => {
192                // Measure all stabilizers
193                let all_stabilizers = code.get_all_stabilizers();
194
195                for (idx, stabilizer) in all_stabilizers.iter().enumerate() {
196                    // Simulate syndrome measurement
197                    let outcome = if thread_rng().gen::<f64>() < 0.05 {
198                        -1 // Error detected
199                    } else {
200                        1 // No error
201                    };
202
203                    measurements.push(SyndromeMeasurement {
204                        stabilizer_id: stabilizer.stabilizer_id,
205                        outcome,
206                        timestamp,
207                        fidelity: 0.99,
208                    });
209                }
210            }
211            None => {
212                // For other code types, create mock measurements
213                for i in 0..10 {
214                    let outcome = if thread_rng().gen::<f64>() < 0.05 {
215                        -1
216                    } else {
217                        1
218                    };
219                    measurements.push(SyndromeMeasurement {
220                        stabilizer_id: i,
221                        outcome,
222                        timestamp,
223                        fidelity: 0.99,
224                    });
225                }
226            }
227        }
228
229        let syndrome_round = SyndromeRound {
230            round_id,
231            timestamp,
232            measurements,
233            corrections: Vec::new(),
234            correction_success: None,
235        };
236
237        // Add to history
238        self.syndrome_history.push_back(syndrome_round.clone());
239        if self.syndrome_history.len() > self.config.syndrome_history_size {
240            self.syndrome_history.pop_front();
241        }
242
243        Ok(syndrome_round)
244    }
245
246    /// Analyze syndrome and apply corrections
247    pub async fn analyze_and_correct(
248        &mut self,
249        device: &mut TopologicalDevice,
250        syndrome_round: &SyndromeRound,
251    ) -> TopologicalResult<Vec<ErrorCorrection>> {
252        // Detect errors from syndrome
253        let error_syndromes: Vec<_> = syndrome_round
254            .measurements
255            .iter()
256            .filter(|m| m.outcome == -1)
257            .cloned()
258            .collect();
259
260        if error_syndromes.is_empty() {
261            return Ok(Vec::new());
262        }
263
264        // Decode syndrome to find corrections
265        let corrections = self
266            .decoder
267            .decode_syndrome(&error_syndromes, self.code_distance)?;
268
269        // Filter corrections by confidence
270        let high_confidence_corrections: Vec<_> = corrections
271            .into_iter()
272            .filter(|c| c.confidence >= self.config.min_correction_confidence)
273            .collect();
274
275        // Apply corrections to the device
276        for correction in &high_confidence_corrections {
277            self.apply_correction_to_device(device, correction).await?;
278        }
279
280        Ok(high_confidence_corrections)
281    }
282
283    /// Apply a correction to the topological device
284    async fn apply_correction_to_device(
285        &self,
286        device: &mut TopologicalDevice,
287        correction: &ErrorCorrection,
288    ) -> TopologicalResult<()> {
289        // For now, just simulate the correction
290        // In practice, this would involve physical operations on anyons
291
292        for (qubit_id, operator) in correction.qubits.iter().zip(&correction.corrections) {
293            match operator {
294                super::topological_codes::PauliOperator::X
295                | super::topological_codes::PauliOperator::Z
296                | super::topological_codes::PauliOperator::Y
297                | super::topological_codes::PauliOperator::I => {
298                    // Placeholder: Apply correction via braiding
299                    // This is simplified - would require complex braiding sequences
300                    // X: X correction via braiding
301                    // Z: Z correction via braiding
302                    // Y: Y correction (combination of X and Z)
303                    // I: Identity - no correction needed
304                }
305            }
306        }
307
308        Ok(())
309    }
310
311    /// Analyze syndrome patterns for error prediction
312    pub fn analyze_syndrome_patterns(&self) -> Vec<SyndromePattern> {
313        if !self.config.enable_pattern_analysis || self.syndrome_history.len() < 3 {
314            return Vec::new();
315        }
316
317        let mut patterns = Vec::new();
318
319        // Look for repeating syndrome patterns
320        for window_size in 2..=5 {
321            if self.syndrome_history.len() < window_size * 2 {
322                continue;
323            }
324
325            for start in 0..=(self.syndrome_history.len() - window_size * 2) {
326                if start + window_size * 2 <= self.syndrome_history.len() {
327                    let pattern1: Vec<_> = self
328                        .syndrome_history
329                        .iter()
330                        .skip(start)
331                        .take(window_size)
332                        .cloned()
333                        .collect();
334                    let pattern2: Vec<_> = self
335                        .syndrome_history
336                        .iter()
337                        .skip(start + window_size)
338                        .take(window_size)
339                        .cloned()
340                        .collect();
341
342                    if self.patterns_match(&pattern1, &pattern2) {
343                        patterns.push(SyndromePattern {
344                            pattern_id: patterns.len(),
345                            rounds: pattern1.iter().map(|r| r.round_id).collect(),
346                            confidence: 0.8, // Would be calculated properly
347                            prediction: "Repeating error pattern detected".to_string(),
348                        });
349                    }
350                }
351            }
352        }
353
354        patterns
355    }
356
357    /// Check if two syndrome patterns match
358    fn patterns_match(&self, pattern1: &[SyndromeRound], pattern2: &[SyndromeRound]) -> bool {
359        if pattern1.len() != pattern2.len() {
360            return false;
361        }
362
363        let threshold = self.config.correlation_threshold;
364        let mut matches = 0;
365        let total = pattern1.len();
366
367        for (round1, round2) in pattern1.iter().zip(pattern2.iter()) {
368            if self.rounds_similar(round1, round2, threshold) {
369                matches += 1;
370            }
371        }
372
373        (matches as f64 / total as f64) >= threshold
374    }
375
376    /// Check if two syndrome rounds are similar
377    fn rounds_similar(
378        &self,
379        round1: &SyndromeRound,
380        round2: &SyndromeRound,
381        threshold: f64,
382    ) -> bool {
383        if round1.measurements.len() != round2.measurements.len() {
384            return false;
385        }
386
387        let mut similar_measurements = 0;
388        let total = round1.measurements.len();
389
390        for (m1, m2) in round1.measurements.iter().zip(&round2.measurements) {
391            if m1.stabilizer_id == m2.stabilizer_id && m1.outcome == m2.outcome {
392                similar_measurements += 1;
393            }
394        }
395
396        (similar_measurements as f64 / total as f64) >= threshold
397    }
398
399    /// Calculate error correction statistics
400    pub fn calculate_statistics(&self) -> ErrorCorrectionStats {
401        let total_rounds = self.syndrome_history.len();
402        let mut errors_detected = 0;
403        let mut corrections_applied = 0;
404        let mut successful_corrections = 0;
405        let mut total_confidence = 0.0;
406
407        for round in &self.syndrome_history {
408            // Count errors (syndrome violations)
409            errors_detected += round
410                .measurements
411                .iter()
412                .filter(|m| m.outcome == -1)
413                .count();
414
415            // Count corrections
416            corrections_applied += round.corrections.len();
417
418            // Count successful corrections
419            if round.correction_success == Some(true) {
420                successful_corrections += 1;
421            }
422
423            // Sum confidence values
424            total_confidence += round.corrections.iter().map(|c| c.confidence).sum::<f64>();
425        }
426
427        let average_confidence = if corrections_applied > 0 {
428            total_confidence / corrections_applied as f64
429        } else {
430            0.0
431        };
432
433        // Simplified error rate calculations
434        let physical_error_rate = if total_rounds > 0 {
435            errors_detected as f64 / (total_rounds * 10) as f64 // Assuming 10 stabilizers per round
436        } else {
437            0.0
438        };
439
440        let logical_error_rate = if corrections_applied > 0 {
441            (corrections_applied - successful_corrections) as f64 / corrections_applied as f64
442        } else {
443            0.0
444        };
445
446        ErrorCorrectionStats {
447            total_rounds,
448            errors_detected,
449            corrections_applied,
450            successful_corrections,
451            average_confidence,
452            logical_error_rate,
453            physical_error_rate,
454        }
455    }
456
457    /// Get recent syndrome history
458    pub fn get_recent_syndromes(&self, count: usize) -> Vec<&SyndromeRound> {
459        self.syndrome_history.iter().rev().take(count).collect()
460    }
461
462    /// Clear syndrome history
463    pub fn clear_history(&mut self) {
464        self.syndrome_history.clear();
465    }
466}
467
468/// Detected syndrome pattern
469#[derive(Debug, Clone, Serialize, Deserialize)]
470pub struct SyndromePattern {
471    pub pattern_id: usize,
472    pub rounds: Vec<usize>,
473    pub confidence: f64,
474    pub prediction: String,
475}
476
477/// Real-time error correction monitor
478pub struct RealTimeErrorMonitor {
479    corrector: TopologicalErrorCorrector,
480    monitoring_active: bool,
481    measurement_interval: Duration,
482}
483
484impl RealTimeErrorMonitor {
485    /// Create a new real-time error monitor
486    pub const fn new(corrector: TopologicalErrorCorrector, measurement_interval: Duration) -> Self {
487        Self {
488            corrector,
489            monitoring_active: false,
490            measurement_interval,
491        }
492    }
493
494    /// Start real-time monitoring
495    pub async fn start_monitoring(
496        &mut self,
497        mut device: TopologicalDevice,
498    ) -> TopologicalResult<()> {
499        self.monitoring_active = true;
500        let mut round_id = 0;
501
502        while self.monitoring_active {
503            // Perform syndrome measurement
504            let syndrome_round = self
505                .corrector
506                .perform_syndrome_measurement(&device, round_id)
507                .await?;
508
509            // Analyze and apply corrections
510            let corrections = self
511                .corrector
512                .analyze_and_correct(&mut device, &syndrome_round)
513                .await?;
514
515            // Log corrections if any were applied
516            if !corrections.is_empty() {
517                println!(
518                    "Applied {} corrections in round {}",
519                    corrections.len(),
520                    round_id
521                );
522            }
523
524            round_id += 1;
525            tokio::time::sleep(self.measurement_interval).await;
526        }
527
528        Ok(())
529    }
530
531    /// Stop monitoring
532    pub const fn stop_monitoring(&mut self) {
533        self.monitoring_active = false;
534    }
535
536    /// Get error correction statistics
537    pub fn get_statistics(&self) -> ErrorCorrectionStats {
538        self.corrector.calculate_statistics()
539    }
540}
541
542#[cfg(test)]
543mod tests {
544    use super::*;
545    use crate::topological::{
546        FusionRuleSet, NonAbelianAnyonType, TopologicalCapabilities, TopologicalCharge,
547        TopologicalDevice, TopologicalSystemType,
548    };
549
550    #[test]
551    fn test_error_corrector_creation() {
552        let config = ErrorCorrectionConfig::default();
553        let corrector = TopologicalErrorCorrector::new(TopologicalCodeType::SurfaceCode, 3, config)
554            .expect("Error corrector creation should succeed");
555
556        assert_eq!(corrector.code_distance, 3);
557        assert!(corrector.surface_code.is_some());
558    }
559
560    #[tokio::test]
561    async fn test_syndrome_measurement() {
562        let config = ErrorCorrectionConfig::default();
563        let mut corrector =
564            TopologicalErrorCorrector::new(TopologicalCodeType::SurfaceCode, 3, config)
565                .expect("Error corrector creation should succeed");
566
567        // Create a mock device
568        let system_type = TopologicalSystemType::NonAbelian {
569            anyon_type: NonAbelianAnyonType::Fibonacci,
570            fusion_rules: FusionRuleSet::fibonacci(),
571        };
572        let capabilities = TopologicalCapabilities {
573            max_anyons: 50,
574            max_qubits: 5,
575            supported_anyons: vec![TopologicalCharge::fibonacci_tau()],
576            available_operations: vec![],
577            braiding_fidelity: 0.999,
578            fusion_fidelity: 0.999,
579            topological_gap: 1.0,
580            coherence_length: 100.0,
581        };
582        let device = TopologicalDevice::new(system_type, FusionRuleSet::fibonacci(), capabilities);
583
584        let syndrome_round = corrector
585            .perform_syndrome_measurement(&device, 0)
586            .await
587            .expect("Syndrome measurement should succeed");
588        assert_eq!(syndrome_round.round_id, 0);
589        assert!(!syndrome_round.measurements.is_empty());
590    }
591
592    #[test]
593    fn test_statistics_calculation() {
594        let config = ErrorCorrectionConfig::default();
595        let corrector = TopologicalErrorCorrector::new(TopologicalCodeType::SurfaceCode, 3, config)
596            .expect("Error corrector creation should succeed");
597
598        let stats = corrector.calculate_statistics();
599        assert_eq!(stats.total_rounds, 0);
600        assert_eq!(stats.errors_detected, 0);
601    }
602
603    #[test]
604    fn test_pattern_analysis() {
605        let config = ErrorCorrectionConfig::default();
606        let corrector = TopologicalErrorCorrector::new(TopologicalCodeType::SurfaceCode, 3, config)
607            .expect("Error corrector creation should succeed");
608
609        let patterns = corrector.analyze_syndrome_patterns();
610        // Should be empty since there's no history
611        assert!(patterns.is_empty());
612    }
613}