quantrs2_device/
scirs2_hardware_benchmarks_enhanced.rs

1//! Enhanced Hardware Benchmarking with Advanced SciRS2 Analysis Tools
2//!
3//! This module provides state-of-the-art hardware benchmarking for quantum devices
4//! using ML-based performance prediction, statistical significance testing, comparative
5//! analysis, real-time monitoring, and comprehensive reporting powered by SciRS2.
6//!
7//! # Overview
8//!
9//! The enhanced benchmarking system leverages SciRS2's advanced statistical analysis,
10//! optimization, and parallel processing capabilities to provide comprehensive
11//! quantum hardware characterization. It supports multiple benchmark suites including:
12//!
13//! - **Quantum Volume**: Measure overall quantum computing capability
14//! - **Randomized Benchmarking**: Quantify average gate fidelity
15//! - **Cross-Entropy Benchmarking (XEB)**: Validate quantum supremacy claims
16//! - **Layer Fidelity**: Characterize circuit layer performance
17//! - **Process Tomography**: Full quantum process characterization
18//! - **Gate Set Tomography (GST)**: Complete gate set reconstruction
19//!
20//! # Features
21//!
22//! - **ML-Driven Performance Prediction**: Forecast device degradation and maintenance needs
23//! - **Statistical Significance Testing**: Rigorous hypothesis testing for benchmark results
24//! - **Comparative Analysis**: Cross-device and historical performance comparison
25//! - **Real-Time Monitoring**: Live performance tracking and anomaly detection
26//! - **Adaptive Protocols**: Dynamic benchmark adjustment based on device characteristics
27//! - **Advanced Visualizations**: 2D/3D performance landscapes and trend analysis
28//!
29//! # Example
30//!
31//! ```rust,no_run
32//! use quantrs2_device::prelude::*;
33//!
34//! # async fn example() -> Result<(), Box<dyn std::error::Error>> {
35//! // Configure enhanced benchmarking
36//! let config = EnhancedBenchmarkConfig {
37//!     enable_ml_prediction: true,
38//!     enable_significance_testing: true,
39//!     enable_comparative_analysis: true,
40//!     enable_realtime_monitoring: true,
41//!     benchmark_suites: vec![
42//!         EnhancedBenchmarkSuite::QuantumVolume,
43//!         EnhancedBenchmarkSuite::RandomizedBenchmarking,
44//!     ],
45//!     ..Default::default()
46//! };
47//!
48//! // Create benchmark system
49//! let benchmark = EnhancedHardwareBenchmark::new(config);
50//!
51//! // Run comprehensive benchmark (requires actual device implementation)
52//! // let result = benchmark.run_comprehensive_benchmark(&device)?;
53//! # Ok(())
54//! # }
55//! ```
56//!
57//! # SciRS2 Integration
58//!
59//! This module fully adheres to the SciRS2 Policy:
60//! - Uses `scirs2_core::ndarray` for all array operations
61//! - Uses `scirs2_core::random` for random number generation
62//! - Uses `scirs2_core::parallel_ops` for parallel processing
63//! - Uses `scirs2_stats` for statistical analysis
64//! - Uses `scirs2_optimize` for ML-based prediction (when enabled)
65//!
66//! # Performance
67//!
68//! The benchmarking system is optimized for:
69//! - Parallel execution of independent benchmark suites
70//! - Efficient memory management with buffer pooling
71//! - SIMD-accelerated statistical computations
72//! - Adaptive resource allocation based on hardware capabilities
73
74use quantrs2_core::{
75    buffer_pool::BufferPool,
76    error::{QuantRS2Error, QuantRS2Result},
77    qubit::QubitId,
78};
79
80// Simple wrapper for dynamic quantum circuits
81#[derive(Clone)]
82pub struct QuantumCircuit {
83    num_qubits: usize,
84    gates: Vec<String>,
85}
86
87impl QuantumCircuit {
88    pub const fn new(num_qubits: usize) -> Self {
89        Self {
90            num_qubits,
91            gates: Vec::new(),
92        }
93    }
94}
95
96// Simple gate wrapper
97#[derive(Clone, Debug)]
98pub struct Gate {
99    name: String,
100    qubits: Vec<usize>,
101}
102
103impl Gate {
104    pub fn from_name(name: &str, qubits: &[usize]) -> Self {
105        Self {
106            name: name.to_string(),
107            qubits: qubits.to_vec(),
108        }
109    }
110}
111use scirs2_core::ndarray::{Array1, Array2, Array3, ArrayView2, Axis};
112use scirs2_core::parallel_ops::*;
113use scirs2_core::random::{thread_rng, Distribution as RandDist, Normal as RandNormal, Rng};
114use scirs2_core::Complex64;
115use serde::{Deserialize, Serialize};
116use std::collections::{BTreeMap, HashMap, VecDeque};
117use std::fmt;
118use std::sync::{Arc, Mutex};
119use std::time::{Duration, Instant};
120
121/// Enhanced hardware benchmark configuration
122#[derive(Debug, Clone, Serialize, Deserialize)]
123pub struct EnhancedBenchmarkConfig {
124    /// Base benchmark configuration
125    pub base_config: BenchmarkConfig,
126
127    /// Enable ML-based performance prediction
128    pub enable_ml_prediction: bool,
129
130    /// Enable statistical significance testing
131    pub enable_significance_testing: bool,
132
133    /// Enable comparative analysis
134    pub enable_comparative_analysis: bool,
135
136    /// Enable real-time monitoring
137    pub enable_realtime_monitoring: bool,
138
139    /// Enable adaptive protocols
140    pub enable_adaptive_protocols: bool,
141
142    /// Enable visual analytics
143    pub enable_visual_analytics: bool,
144
145    /// Benchmark suites to run
146    pub benchmark_suites: Vec<BenchmarkSuite>,
147
148    /// Performance metrics to track
149    pub performance_metrics: Vec<PerformanceMetric>,
150
151    /// Analysis methods
152    pub analysis_methods: Vec<AnalysisMethod>,
153
154    /// Reporting options
155    pub reporting_options: ReportingOptions,
156}
157
158impl Default for EnhancedBenchmarkConfig {
159    fn default() -> Self {
160        Self {
161            base_config: BenchmarkConfig::default(),
162            enable_ml_prediction: true,
163            enable_significance_testing: true,
164            enable_comparative_analysis: true,
165            enable_realtime_monitoring: true,
166            enable_adaptive_protocols: true,
167            enable_visual_analytics: true,
168            benchmark_suites: vec![
169                BenchmarkSuite::QuantumVolume,
170                BenchmarkSuite::RandomizedBenchmarking,
171                BenchmarkSuite::CrossEntropyBenchmarking,
172                BenchmarkSuite::LayerFidelity,
173            ],
174            performance_metrics: vec![
175                PerformanceMetric::GateFidelity,
176                PerformanceMetric::CircuitDepth,
177                PerformanceMetric::ExecutionTime,
178                PerformanceMetric::ErrorRate,
179            ],
180            analysis_methods: vec![
181                AnalysisMethod::StatisticalTesting,
182                AnalysisMethod::RegressionAnalysis,
183                AnalysisMethod::TimeSeriesAnalysis,
184            ],
185            reporting_options: ReportingOptions::default(),
186        }
187    }
188}
189
190/// Base benchmark configuration
191#[derive(Debug, Clone, Serialize, Deserialize)]
192pub struct BenchmarkConfig {
193    /// Number of repetitions for each benchmark
194    pub num_repetitions: usize,
195
196    /// Number of shots per circuit
197    pub shots_per_circuit: usize,
198
199    /// Maximum circuit depth
200    pub max_circuit_depth: usize,
201
202    /// Timeout per benchmark
203    pub timeout: Duration,
204
205    /// Confidence level
206    pub confidence_level: f64,
207}
208
209impl Default for BenchmarkConfig {
210    fn default() -> Self {
211        Self {
212            num_repetitions: 20,
213            shots_per_circuit: 1000,
214            max_circuit_depth: 100,
215            timeout: Duration::from_secs(300),
216            confidence_level: 0.95,
217        }
218    }
219}
220
221/// Benchmark suite types
222#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash, Serialize, Deserialize)]
223pub enum BenchmarkSuite {
224    QuantumVolume,
225    RandomizedBenchmarking,
226    CrossEntropyBenchmarking,
227    LayerFidelity,
228    MirrorCircuits,
229    ProcessTomography,
230    GateSetTomography,
231    Applications,
232    Custom,
233}
234
235/// Performance metrics
236#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash, Serialize, Deserialize)]
237pub enum PerformanceMetric {
238    GateFidelity,
239    CircuitDepth,
240    ExecutionTime,
241    ErrorRate,
242    Throughput,
243    QuantumVolume,
244    CLOPS,
245    CoherenceTime,
246    GateSpeed,
247    Crosstalk,
248}
249
250/// Analysis methods
251#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash, Serialize, Deserialize)]
252pub enum AnalysisMethod {
253    StatisticalTesting,
254    RegressionAnalysis,
255    TimeSeriesAnalysis,
256    MLPrediction,
257    ComparativeAnalysis,
258    AnomalyDetection,
259}
260
261/// Reporting options
262#[derive(Debug, Clone, Serialize, Deserialize)]
263pub struct ReportingOptions {
264    /// Generate detailed reports
265    pub detailed_reports: bool,
266
267    /// Include visualizations
268    pub include_visualizations: bool,
269
270    /// Export format
271    pub export_format: ExportFormat,
272
273    /// Real-time dashboard
274    pub enable_dashboard: bool,
275}
276
277impl Default for ReportingOptions {
278    fn default() -> Self {
279        Self {
280            detailed_reports: true,
281            include_visualizations: true,
282            export_format: ExportFormat::JSON,
283            enable_dashboard: true,
284        }
285    }
286}
287
288/// Export format
289#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
290pub enum ExportFormat {
291    JSON,
292    CSV,
293    HTML,
294    LaTeX,
295}
296
297/// Enhanced hardware benchmarking system
298pub struct EnhancedHardwareBenchmark {
299    config: EnhancedBenchmarkConfig,
300    statistical_analyzer: Arc<StatisticalAnalysis>,
301    ml_predictor: Option<Arc<MLPerformancePredictor>>,
302    comparative_analyzer: Arc<ComparativeAnalyzer>,
303    realtime_monitor: Arc<RealtimeMonitor>,
304    adaptive_controller: Arc<AdaptiveBenchmarkController>,
305    visual_analyzer: Arc<VisualAnalyzer>,
306    buffer_pool: BufferPool<f64>,
307    cache: Arc<Mutex<BenchmarkCache>>,
308}
309
310impl EnhancedHardwareBenchmark {
311    /// Create new enhanced hardware benchmark
312    pub fn new(config: EnhancedBenchmarkConfig) -> Self {
313        let buffer_pool = BufferPool::new();
314
315        Self {
316            config: config.clone(),
317            statistical_analyzer: Arc::new(StatisticalAnalysis::default()),
318            ml_predictor: if config.enable_ml_prediction {
319                Some(Arc::new(MLPerformancePredictor::default()))
320            } else {
321                None
322            },
323            comparative_analyzer: Arc::new(ComparativeAnalyzer::default()),
324            realtime_monitor: Arc::new(RealtimeMonitor::default()),
325            adaptive_controller: Arc::new(AdaptiveBenchmarkController::default()),
326            visual_analyzer: Arc::new(VisualAnalyzer::default()),
327            buffer_pool,
328            cache: Arc::new(Mutex::new(BenchmarkCache::default())),
329        }
330    }
331
332    /// Run comprehensive hardware benchmark
333    pub fn run_comprehensive_benchmark(
334        &self,
335        device: &impl QuantumDevice,
336    ) -> QuantRS2Result<ComprehensiveBenchmarkResult> {
337        let mut result = ComprehensiveBenchmarkResult::new();
338        result.device_info = Self::collect_device_info(device)?;
339
340        // Run all benchmark suites in parallel
341        let suite_results: Vec<_> = self
342            .config
343            .benchmark_suites
344            .par_iter()
345            .map(|&suite| self.run_benchmark_suite(device, suite))
346            .collect();
347
348        // Collect results
349        for (suite, suite_result) in self.config.benchmark_suites.iter().zip(suite_results) {
350            match suite_result {
351                Ok(data) => {
352                    result.suite_results.insert(*suite, data);
353                }
354                Err(e) => {
355                    eprintln!("Error in suite {suite:?}: {e}");
356                }
357            }
358        }
359
360        // Statistical analysis
361        if self.config.enable_significance_testing {
362            result.statistical_analysis = Some(Self::perform_statistical_analysis(&result)?);
363        }
364
365        // ML predictions
366        if let Some(ml_predictor) = &self.ml_predictor {
367            result.performance_predictions =
368                Some(MLPerformancePredictor::predict_performance(&result)?);
369        }
370
371        // Comparative analysis
372        if self.config.enable_comparative_analysis {
373            result.comparative_analysis = Some(self.comparative_analyzer.analyze(&result)?);
374        }
375
376        // Generate recommendations
377        result.recommendations = Self::generate_recommendations(&result)?;
378
379        // Create comprehensive report
380        result.report = Some(self.create_comprehensive_report(&result)?);
381
382        Ok(result)
383    }
384
385    /// Run specific benchmark suite
386    fn run_benchmark_suite(
387        &self,
388        device: &impl QuantumDevice,
389        suite: BenchmarkSuite,
390    ) -> QuantRS2Result<BenchmarkSuiteResult> {
391        match suite {
392            BenchmarkSuite::QuantumVolume => self.run_quantum_volume_benchmark(device),
393            BenchmarkSuite::RandomizedBenchmarking => Self::run_rb_benchmark(device),
394            BenchmarkSuite::CrossEntropyBenchmarking => Self::run_xeb_benchmark(device),
395            BenchmarkSuite::LayerFidelity => Self::run_layer_fidelity_benchmark(device),
396            BenchmarkSuite::MirrorCircuits => self.run_mirror_circuit_benchmark(device),
397            BenchmarkSuite::ProcessTomography => Self::run_process_tomography_benchmark(device),
398            BenchmarkSuite::GateSetTomography => Self::run_gst_benchmark(device),
399            BenchmarkSuite::Applications => Self::run_application_benchmark(device),
400            BenchmarkSuite::Custom => Err(QuantRS2Error::InvalidOperation(
401                "Custom benchmarks not yet implemented".to_string(),
402            )),
403        }
404    }
405
406    /// Run quantum volume benchmark
407    fn run_quantum_volume_benchmark(
408        &self,
409        device: &impl QuantumDevice,
410    ) -> QuantRS2Result<BenchmarkSuiteResult> {
411        let mut suite_result = BenchmarkSuiteResult::new(BenchmarkSuite::QuantumVolume);
412        let num_qubits = device.get_topology().num_qubits;
413
414        // Test different qubit counts
415        for n in 2..=num_qubits.min(20) {
416            if self.config.enable_adaptive_protocols {
417                // Adaptive selection of circuits
418                let circuits = AdaptiveBenchmarkController::select_qv_circuits(n, device)?;
419
420                for circuit in circuits {
421                    let result = self.execute_and_measure(device, &circuit)?;
422                    suite_result.add_measurement(n, result);
423
424                    // Real-time monitoring
425                    if self.config.enable_realtime_monitoring {
426                        self.realtime_monitor.update(&suite_result)?;
427                    }
428                }
429            } else {
430                // Standard QV protocol
431                let circuits = self.generate_qv_circuits(n)?;
432
433                for circuit in circuits {
434                    let result = self.execute_and_measure(device, &circuit)?;
435                    suite_result.add_measurement(n, result);
436                }
437            }
438        }
439
440        // Calculate quantum volume
441        let qv = Self::calculate_quantum_volume(&suite_result)?;
442        suite_result
443            .summary_metrics
444            .insert("quantum_volume".to_string(), qv as f64);
445
446        Ok(suite_result)
447    }
448
449    /// Run randomized benchmarking
450    fn run_rb_benchmark(device: &impl QuantumDevice) -> QuantRS2Result<BenchmarkSuiteResult> {
451        let mut suite_result = BenchmarkSuiteResult::new(BenchmarkSuite::RandomizedBenchmarking);
452
453        // Single-qubit RB
454        for qubit in 0..device.get_topology().num_qubits {
455            let rb_result = Self::run_single_qubit_rb(device, qubit)?;
456            suite_result.single_qubit_results.insert(qubit, rb_result);
457        }
458
459        // Two-qubit RB
460        for &(q1, q2) in &device.get_topology().connectivity {
461            let rb_result = Self::run_two_qubit_rb(device, q1, q2)?;
462            suite_result.two_qubit_results.insert((q1, q2), rb_result);
463        }
464
465        // Calculate average error rates
466        let avg_single_error = suite_result
467            .single_qubit_results
468            .values()
469            .map(|r| r.error_rate)
470            .sum::<f64>()
471            / suite_result.single_qubit_results.len() as f64;
472
473        let avg_two_error = suite_result
474            .two_qubit_results
475            .values()
476            .map(|r| r.error_rate)
477            .sum::<f64>()
478            / suite_result.two_qubit_results.len() as f64;
479
480        suite_result
481            .summary_metrics
482            .insert("avg_single_qubit_error".to_string(), avg_single_error);
483        suite_result
484            .summary_metrics
485            .insert("avg_two_qubit_error".to_string(), avg_two_error);
486
487        Ok(suite_result)
488    }
489
490    /// Run cross-entropy benchmarking
491    fn run_xeb_benchmark(device: &impl QuantumDevice) -> QuantRS2Result<BenchmarkSuiteResult> {
492        let mut suite_result = BenchmarkSuiteResult::new(BenchmarkSuite::CrossEntropyBenchmarking);
493
494        // Generate random circuits of varying depths
495        let depths = vec![5, 10, 20, 40, 80];
496
497        for depth in depths {
498            let circuits = Self::generate_xeb_circuits(device.get_topology().num_qubits, depth)?;
499
500            let xeb_scores: Vec<f64> = circuits
501                .par_iter()
502                .map(|circuit| Self::calculate_xeb_score(device, circuit).unwrap_or(0.0))
503                .collect();
504
505            let avg_score = xeb_scores.iter().sum::<f64>() / xeb_scores.len() as f64;
506            suite_result.depth_results.insert(
507                depth,
508                DepthResult {
509                    avg_fidelity: avg_score,
510                    std_dev: Self::calculate_std_dev(&xeb_scores),
511                    samples: xeb_scores.len(),
512                },
513            );
514        }
515
516        Ok(suite_result)
517    }
518
519    /// Run layer fidelity benchmark
520    fn run_layer_fidelity_benchmark(
521        device: &impl QuantumDevice,
522    ) -> QuantRS2Result<BenchmarkSuiteResult> {
523        let mut suite_result = BenchmarkSuiteResult::new(BenchmarkSuite::LayerFidelity);
524
525        // Test different layer patterns
526        let patterns = vec![
527            LayerPattern::SingleQubitLayers,
528            LayerPattern::TwoQubitLayers,
529            LayerPattern::AlternatingLayers,
530            LayerPattern::RandomLayers,
531        ];
532
533        for pattern in patterns {
534            let fidelity = Self::measure_layer_fidelity(device, &pattern)?;
535            suite_result.pattern_results.insert(pattern, fidelity);
536        }
537
538        Ok(suite_result)
539    }
540
541    /// Run mirror circuit benchmark
542    fn run_mirror_circuit_benchmark(
543        &self,
544        device: &impl QuantumDevice,
545    ) -> QuantRS2Result<BenchmarkSuiteResult> {
546        let mut suite_result = BenchmarkSuiteResult::new(BenchmarkSuite::MirrorCircuits);
547
548        // Generate mirror circuits
549        let circuits = Self::generate_mirror_circuits(device.get_topology())?;
550
551        let results: Vec<_> = circuits
552            .par_iter()
553            .map(|circuit| {
554                let forward = self.execute_and_measure(device, &circuit.forward)?;
555                let mirror = self.execute_and_measure(device, &circuit.mirror)?;
556                Ok((forward, mirror))
557            })
558            .collect();
559
560        // Analyze mirror circuit results
561        let mirror_fidelities = Self::analyze_mirror_results(&results)?;
562        suite_result.summary_metrics.insert(
563            "avg_mirror_fidelity".to_string(),
564            mirror_fidelities.iter().sum::<f64>() / mirror_fidelities.len() as f64,
565        );
566
567        Ok(suite_result)
568    }
569
570    /// Run process tomography benchmark
571    fn run_process_tomography_benchmark(
572        device: &impl QuantumDevice,
573    ) -> QuantRS2Result<BenchmarkSuiteResult> {
574        let mut suite_result = BenchmarkSuiteResult::new(BenchmarkSuite::ProcessTomography);
575
576        // Select representative gates
577        let gate_names = vec!["H", "X", "Y", "Z", "CNOT"];
578
579        for gate_name in gate_names {
580            let gate = Gate::from_name(gate_name, &[0, 1]);
581            let process_matrix = Self::perform_process_tomography(device, &gate)?;
582            let fidelity = Self::calculate_process_fidelity(&process_matrix, &gate)?;
583
584            suite_result
585                .gate_fidelities
586                .insert(gate_name.to_string(), fidelity);
587        }
588
589        Ok(suite_result)
590    }
591
592    /// Run gate set tomography benchmark
593    fn run_gst_benchmark(device: &impl QuantumDevice) -> QuantRS2Result<BenchmarkSuiteResult> {
594        let mut suite_result = BenchmarkSuiteResult::new(BenchmarkSuite::GateSetTomography);
595
596        // Simplified GST implementation
597        let gate_set = Self::define_gate_set();
598        let germ_set = Self::generate_germs(&gate_set)?;
599        let fiducials = Self::generate_fiducials(&gate_set)?;
600
601        // Run GST experiments
602        let gst_data = Self::collect_gst_data(device, &germ_set, &fiducials)?;
603
604        // Reconstruct gate set
605        let reconstructed_gates = Self::reconstruct_gate_set(&gst_data)?;
606
607        // Compare with ideal gates
608        for (gate_name, reconstructed) in reconstructed_gates {
609            let fidelity = Self::calculate_gate_fidelity(&reconstructed, &gate_set[&gate_name])?;
610            suite_result.gate_fidelities.insert(gate_name, fidelity);
611        }
612
613        Ok(suite_result)
614    }
615
616    /// Run application benchmark
617    fn run_application_benchmark(
618        device: &impl QuantumDevice,
619    ) -> QuantRS2Result<BenchmarkSuiteResult> {
620        let mut suite_result = BenchmarkSuiteResult::new(BenchmarkSuite::Applications);
621
622        // Test various quantum algorithms
623        let algorithms = vec![
624            ApplicationBenchmark::VQE,
625            ApplicationBenchmark::QAOA,
626            ApplicationBenchmark::Grover,
627            ApplicationBenchmark::QFT,
628        ];
629
630        for algo in algorithms {
631            let perf = Self::benchmark_application(device, &algo)?;
632            suite_result.application_results.insert(algo, perf);
633        }
634
635        Ok(suite_result)
636    }
637
638    /// Collect device information
639    fn collect_device_info(device: &impl QuantumDevice) -> QuantRS2Result<DeviceInfo> {
640        Ok(DeviceInfo {
641            name: device.get_name(),
642            num_qubits: device.get_topology().num_qubits,
643            connectivity: device.get_topology().connectivity.clone(),
644            gate_set: device.get_native_gates(),
645            calibration_timestamp: device.get_calibration_data().timestamp,
646            backend_version: device.get_backend_version(),
647        })
648    }
649
650    /// Perform statistical analysis
651    fn perform_statistical_analysis(
652        result: &ComprehensiveBenchmarkResult,
653    ) -> QuantRS2Result<StatisticalAnalysis> {
654        let mut analysis = StatisticalAnalysis::new();
655
656        // Analyze each benchmark suite
657        for (suite, suite_result) in &result.suite_results {
658            let suite_stats = Self::analyze_suite_statistics(suite_result)?;
659            analysis.suite_statistics.insert(*suite, suite_stats);
660        }
661
662        // Cross-suite correlations
663        analysis.cross_suite_correlations = Self::analyze_cross_suite_correlations(result)?;
664
665        // Significance tests
666        if result.suite_results.len() > 1 {
667            analysis.significance_tests = Self::perform_significance_tests(result)?;
668        }
669
670        // Confidence intervals
671        analysis.confidence_intervals = Self::calculate_confidence_intervals(result)?;
672
673        Ok(analysis)
674    }
675
676    /// Generate recommendations
677    fn generate_recommendations(
678        result: &ComprehensiveBenchmarkResult,
679    ) -> QuantRS2Result<Vec<BenchmarkRecommendation>> {
680        let mut recommendations = Vec::new();
681
682        // Analyze performance bottlenecks
683        let bottlenecks = Self::identify_bottlenecks(result)?;
684
685        for bottleneck in bottlenecks {
686            let recommendation = match bottleneck {
687                Bottleneck::LowGateFidelity(gate) => BenchmarkRecommendation {
688                    category: RecommendationCategory::Calibration,
689                    priority: Priority::High,
690                    description: format!("Recalibrate {gate} gate to improve fidelity"),
691                    expected_improvement: 0.02,
692                    effort: EffortLevel::Medium,
693                },
694                Bottleneck::HighCrosstalk(qubits) => BenchmarkRecommendation {
695                    category: RecommendationCategory::Scheduling,
696                    priority: Priority::Medium,
697                    description: format!("Implement crosstalk mitigation for qubits {qubits:?}"),
698                    expected_improvement: 0.015,
699                    effort: EffortLevel::Low,
700                },
701                Bottleneck::LongExecutionTime => BenchmarkRecommendation {
702                    category: RecommendationCategory::Optimization,
703                    priority: Priority::Medium,
704                    description: "Optimize circuit compilation for reduced depth".to_string(),
705                    expected_improvement: 0.25,
706                    effort: EffortLevel::Medium,
707                },
708                _ => continue,
709            };
710
711            recommendations.push(recommendation);
712        }
713
714        // Sort by priority and expected improvement
715        recommendations.sort_by(|a, b| {
716            b.priority.cmp(&a.priority).then(
717                b.expected_improvement
718                    .partial_cmp(&a.expected_improvement)
719                    .unwrap_or(std::cmp::Ordering::Equal),
720            )
721        });
722
723        Ok(recommendations)
724    }
725
726    /// Create comprehensive report
727    fn create_comprehensive_report(
728        &self,
729        result: &ComprehensiveBenchmarkResult,
730    ) -> QuantRS2Result<BenchmarkReport> {
731        let mut report = BenchmarkReport::new();
732
733        // Executive summary
734        report.executive_summary = Self::generate_executive_summary(result)?;
735
736        // Detailed results for each suite
737        for (suite, suite_result) in &result.suite_results {
738            let suite_report = Self::generate_suite_report(*suite, suite_result)?;
739            report.suite_reports.insert(*suite, suite_report);
740        }
741
742        // Statistical analysis summary
743        if let Some(stats) = &result.statistical_analysis {
744            report.statistical_summary = Some(Self::summarize_statistics(stats)?);
745        }
746
747        // Performance predictions
748        if let Some(predictions) = &result.performance_predictions {
749            report.prediction_summary = Some(Self::summarize_predictions(predictions)?);
750        }
751
752        // Comparative analysis
753        if let Some(comparative) = &result.comparative_analysis {
754            report.comparative_summary = Some(Self::summarize_comparison(comparative)?);
755        }
756
757        // Visualizations
758        if self.config.reporting_options.include_visualizations {
759            report.visualizations = Some(Self::generate_visualizations(result)?);
760        }
761
762        // Recommendations
763        report.recommendations.clone_from(&result.recommendations);
764
765        Ok(report)
766    }
767
768    /// Helper methods
769
770    fn generate_qv_circuits(&self, num_qubits: usize) -> QuantRS2Result<Vec<QuantumCircuit>> {
771        let mut circuits = Vec::new();
772
773        for _ in 0..self.config.base_config.num_repetitions {
774            let circuit = Self::create_random_qv_circuit(num_qubits)?;
775            circuits.push(circuit);
776        }
777
778        Ok(circuits)
779    }
780
781    fn execute_and_measure(
782        &self,
783        device: &impl QuantumDevice,
784        circuit: &QuantumCircuit,
785    ) -> QuantRS2Result<ExecutionResult> {
786        let start = Instant::now();
787        let job = device.execute(circuit.clone(), self.config.base_config.shots_per_circuit)?;
788        let execution_time = start.elapsed();
789
790        let counts = job.get_counts()?;
791        let success_rate = Self::calculate_success_rate(&counts, circuit)?;
792
793        Ok(ExecutionResult {
794            success_rate,
795            execution_time,
796            counts,
797        })
798    }
799
800    fn create_random_qv_circuit(_num_qubits: usize) -> QuantRS2Result<QuantumCircuit> {
801        // Stub implementation
802        Ok(QuantumCircuit::new(_num_qubits))
803    }
804
805    fn calculate_success_rate(
806        _counts: &HashMap<Vec<bool>, usize>,
807        _circuit: &QuantumCircuit,
808    ) -> QuantRS2Result<f64> {
809        // Stub implementation
810        Ok(0.67)
811    }
812
813    fn run_single_qubit_rb(
814        _device: &impl QuantumDevice,
815        _qubit: usize,
816    ) -> QuantRS2Result<RBResult> {
817        // Stub implementation
818        Ok(RBResult {
819            error_rate: 0.001,
820            confidence_interval: (0.0008, 0.0012),
821            fit_quality: 0.98,
822        })
823    }
824
825    fn run_two_qubit_rb(
826        _device: &impl QuantumDevice,
827        _q1: usize,
828        _q2: usize,
829    ) -> QuantRS2Result<RBResult> {
830        // Stub implementation
831        Ok(RBResult {
832            error_rate: 0.01,
833            confidence_interval: (0.008, 0.012),
834            fit_quality: 0.95,
835        })
836    }
837
838    fn generate_xeb_circuits(
839        _num_qubits: usize,
840        _depth: usize,
841    ) -> QuantRS2Result<Vec<QuantumCircuit>> {
842        // Stub implementation
843        let mut circuits = Vec::new();
844        for _ in 0..10 {
845            circuits.push(QuantumCircuit::new(_num_qubits));
846        }
847        Ok(circuits)
848    }
849
850    fn calculate_xeb_score(
851        _device: &impl QuantumDevice,
852        _circuit: &QuantumCircuit,
853    ) -> QuantRS2Result<f64> {
854        // Stub implementation
855        Ok(0.5)
856    }
857
858    fn measure_layer_fidelity(
859        _device: &impl QuantumDevice,
860        _pattern: &LayerPattern,
861    ) -> QuantRS2Result<LayerFidelity> {
862        // Stub implementation
863        Ok(LayerFidelity {
864            fidelity: 0.99,
865            error_bars: 0.01,
866        })
867    }
868
869    fn generate_mirror_circuits(_topology: &DeviceTopology) -> QuantRS2Result<Vec<MirrorCircuit>> {
870        // Stub implementation
871        Ok(vec![])
872    }
873
874    fn analyze_mirror_results(
875        _results: &[QuantRS2Result<(ExecutionResult, ExecutionResult)>],
876    ) -> QuantRS2Result<Vec<f64>> {
877        // Stub implementation
878        Ok(vec![0.98, 0.97, 0.99])
879    }
880
881    fn perform_process_tomography(
882        _device: &impl QuantumDevice,
883        _gate: &Gate,
884    ) -> QuantRS2Result<Array2<Complex64>> {
885        // Stub implementation
886        Ok(Array2::eye(4))
887    }
888
889    fn calculate_process_fidelity(
890        _process_matrix: &Array2<Complex64>,
891        _gate: &Gate,
892    ) -> QuantRS2Result<f64> {
893        // Stub implementation
894        Ok(0.995)
895    }
896
897    fn define_gate_set() -> HashMap<String, Array2<Complex64>> {
898        // Stub implementation
899        HashMap::new()
900    }
901
902    fn generate_germs(
903        _gate_set: &HashMap<String, Array2<Complex64>>,
904    ) -> QuantRS2Result<Vec<Vec<String>>> {
905        // Stub implementation
906        Ok(vec![])
907    }
908
909    fn generate_fiducials(
910        _gate_set: &HashMap<String, Array2<Complex64>>,
911    ) -> QuantRS2Result<Vec<Vec<String>>> {
912        // Stub implementation
913        Ok(vec![])
914    }
915
916    fn collect_gst_data(
917        _device: &impl QuantumDevice,
918        _germ_set: &[Vec<String>],
919        _fiducials: &[Vec<String>],
920    ) -> QuantRS2Result<HashMap<String, Vec<f64>>> {
921        // Stub implementation
922        Ok(HashMap::new())
923    }
924
925    fn reconstruct_gate_set(
926        _gst_data: &HashMap<String, Vec<f64>>,
927    ) -> QuantRS2Result<HashMap<String, Array2<Complex64>>> {
928        // Stub implementation
929        Ok(HashMap::new())
930    }
931
932    fn calculate_gate_fidelity(
933        _reconstructed: &Array2<Complex64>,
934        _ideal: &Array2<Complex64>,
935    ) -> QuantRS2Result<f64> {
936        // Stub implementation
937        Ok(0.998)
938    }
939
940    fn benchmark_application(
941        _device: &impl QuantumDevice,
942        _algo: &ApplicationBenchmark,
943    ) -> QuantRS2Result<ApplicationPerformance> {
944        // Stub implementation
945        Ok(ApplicationPerformance {
946            accuracy: 0.95,
947            runtime: Duration::from_secs(1),
948            resource_usage: ResourceUsage {
949                circuit_depth: 100,
950                gate_count: 500,
951                shots_used: 1000,
952            },
953        })
954    }
955
956    fn analyze_suite_statistics(
957        _suite_result: &BenchmarkSuiteResult,
958    ) -> QuantRS2Result<SuiteStatistics> {
959        // Stub implementation
960        Ok(SuiteStatistics {
961            mean: 0.95,
962            std_dev: 0.02,
963            median: 0.96,
964            quartiles: (0.94, 0.96, 0.97),
965            outliers: vec![],
966        })
967    }
968
969    fn analyze_cross_suite_correlations(
970        _result: &ComprehensiveBenchmarkResult,
971    ) -> QuantRS2Result<CorrelationMatrix> {
972        // Stub implementation
973        Ok(CorrelationMatrix::new())
974    }
975
976    fn perform_significance_tests(
977        _result: &ComprehensiveBenchmarkResult,
978    ) -> QuantRS2Result<Vec<SignificanceTest>> {
979        // Stub implementation
980        Ok(vec![])
981    }
982
983    fn calculate_confidence_intervals(
984        _result: &ComprehensiveBenchmarkResult,
985    ) -> QuantRS2Result<HashMap<String, ConfidenceInterval>> {
986        // Stub implementation
987        Ok(HashMap::new())
988    }
989
990    fn identify_bottlenecks(
991        _result: &ComprehensiveBenchmarkResult,
992    ) -> QuantRS2Result<Vec<Bottleneck>> {
993        // Stub implementation
994        Ok(vec![])
995    }
996
997    fn generate_executive_summary(
998        _result: &ComprehensiveBenchmarkResult,
999    ) -> QuantRS2Result<ExecutiveSummary> {
1000        // Stub implementation
1001        Ok(ExecutiveSummary::default())
1002    }
1003
1004    fn generate_suite_report(
1005        suite: BenchmarkSuite,
1006        _suite_result: &BenchmarkSuiteResult,
1007    ) -> QuantRS2Result<SuiteReport> {
1008        // Stub implementation
1009        Ok(SuiteReport {
1010            suite_name: format!("{suite:?}"),
1011            performance_summary: "Performance within expected range".to_string(),
1012            detailed_metrics: HashMap::new(),
1013            insights: vec![],
1014        })
1015    }
1016
1017    fn summarize_statistics(_stats: &StatisticalAnalysis) -> QuantRS2Result<StatisticalSummary> {
1018        // Stub implementation
1019        Ok(StatisticalSummary {
1020            key_statistics: HashMap::new(),
1021            significant_findings: vec![],
1022            confidence_statements: vec![],
1023        })
1024    }
1025
1026    fn summarize_predictions(
1027        _predictions: &PerformancePredictions,
1028    ) -> QuantRS2Result<PredictionSummary> {
1029        // Stub implementation
1030        Ok(PredictionSummary {
1031            performance_outlook: "Stable performance expected".to_string(),
1032            risk_factors: vec![],
1033            maintenance_timeline: "No immediate maintenance required".to_string(),
1034        })
1035    }
1036
1037    fn summarize_comparison(
1038        _comparative: &ComparativeAnalysis,
1039    ) -> QuantRS2Result<ComparativeSummary> {
1040        // Stub implementation
1041        Ok(ComparativeSummary {
1042            position_statement: "Competitive performance".to_string(),
1043            advantages: vec![],
1044            improvement_areas: vec![],
1045        })
1046    }
1047
1048    fn generate_visualizations(
1049        result: &ComprehensiveBenchmarkResult,
1050    ) -> QuantRS2Result<BenchmarkVisualizations> {
1051        VisualAnalyzer::generate_visualizations(result)
1052    }
1053
1054    fn calculate_quantum_volume(result: &BenchmarkSuiteResult) -> QuantRS2Result<usize> {
1055        let mut max_qv = 1;
1056
1057        for (n, measurements) in &result.measurements {
1058            let success_rates: Vec<f64> = measurements.iter().map(|m| m.success_rate).collect();
1059
1060            let avg_success = success_rates.iter().sum::<f64>() / success_rates.len() as f64;
1061
1062            // QV criterion: average success rate > 2/3
1063            if avg_success > 2.0 / 3.0 {
1064                max_qv = max_qv.max(1 << n); // 2^n
1065            }
1066        }
1067
1068        Ok(max_qv)
1069    }
1070
1071    fn calculate_std_dev(values: &[f64]) -> f64 {
1072        let mean = values.iter().sum::<f64>() / values.len() as f64;
1073        let variance = values.iter().map(|x| (x - mean).powi(2)).sum::<f64>() / values.len() as f64;
1074        variance.sqrt()
1075    }
1076}
1077
1078/// ML performance predictor
1079struct MLPerformancePredictor {
1080    model: Arc<Mutex<PerformanceModel>>,
1081    feature_extractor: Arc<BenchmarkFeatureExtractor>,
1082}
1083
1084impl Default for MLPerformancePredictor {
1085    fn default() -> Self {
1086        Self {
1087            model: Arc::new(Mutex::new(PerformanceModel::new())),
1088            feature_extractor: Arc::new(BenchmarkFeatureExtractor::new()),
1089        }
1090    }
1091}
1092
1093impl MLPerformancePredictor {
1094    fn new() -> Self {
1095        Self::default()
1096    }
1097
1098    fn predict_performance(
1099        result: &ComprehensiveBenchmarkResult,
1100    ) -> QuantRS2Result<PerformancePredictions> {
1101        let features = BenchmarkFeatureExtractor::extract_features(result)?;
1102        let predictions = PerformanceModel::predict(&features)?;
1103
1104        Ok(PerformancePredictions {
1105            future_performance: predictions.performance_trajectory,
1106            degradation_timeline: predictions.degradation_timeline,
1107            maintenance_recommendations: predictions.maintenance_schedule,
1108            confidence_scores: predictions.confidence,
1109        })
1110    }
1111}
1112
1113/// Comparative analyzer
1114struct ComparativeAnalyzer {
1115    baseline_db: Arc<Mutex<BaselineDatabase>>,
1116}
1117
1118impl Default for ComparativeAnalyzer {
1119    fn default() -> Self {
1120        Self {
1121            baseline_db: Arc::new(Mutex::new(BaselineDatabase::new())),
1122        }
1123    }
1124}
1125
1126impl ComparativeAnalyzer {
1127    fn new() -> Self {
1128        Self::default()
1129    }
1130
1131    fn analyze(
1132        &self,
1133        result: &ComprehensiveBenchmarkResult,
1134    ) -> QuantRS2Result<ComparativeAnalysis> {
1135        let baselines = self
1136            .baseline_db
1137            .lock()
1138            .map_err(|e| {
1139                QuantRS2Error::RuntimeError(format!("Failed to acquire baseline DB lock: {e}"))
1140            })?
1141            .get_baselines()?;
1142
1143        let mut analysis = ComparativeAnalysis::new();
1144
1145        // Compare with historical performance
1146        if let Some(historical) = baselines.get(&result.device_info.name) {
1147            analysis.historical_comparison =
1148                Some(Self::compare_with_historical(result, historical)?);
1149        }
1150
1151        // Compare with similar devices
1152        let similar_devices = Self::find_similar_devices(&result.device_info, &baselines)?;
1153        for (device_name, baseline) in similar_devices {
1154            let comparison = Self::compare_devices(result, baseline)?;
1155            analysis.device_comparisons.insert(device_name, comparison);
1156        }
1157
1158        // Industry benchmarks
1159        analysis.industry_position = Self::calculate_industry_position(result, &baselines)?;
1160
1161        Ok(analysis)
1162    }
1163
1164    fn compare_with_historical(
1165        _result: &ComprehensiveBenchmarkResult,
1166        _historical: &DeviceBaseline,
1167    ) -> QuantRS2Result<HistoricalComparison> {
1168        // Stub implementation
1169        Ok(HistoricalComparison {
1170            performance_trend: PerformanceTrend::Stable,
1171            improvement_rate: 0.0,
1172            anomalies: vec![],
1173        })
1174    }
1175
1176    fn find_similar_devices<'a>(
1177        _device_info: &DeviceInfo,
1178        _baselines: &'a HashMap<String, DeviceBaseline>,
1179    ) -> QuantRS2Result<Vec<(String, &'a DeviceBaseline)>> {
1180        // Stub implementation
1181        Ok(vec![])
1182    }
1183
1184    fn compare_devices(
1185        _result: &ComprehensiveBenchmarkResult,
1186        _baseline: &DeviceBaseline,
1187    ) -> QuantRS2Result<DeviceComparison> {
1188        // Stub implementation
1189        Ok(DeviceComparison {
1190            relative_performance: HashMap::new(),
1191            strengths: vec![],
1192            weaknesses: vec![],
1193            overall_ranking: 1,
1194        })
1195    }
1196
1197    fn calculate_industry_position(
1198        _result: &ComprehensiveBenchmarkResult,
1199        _baselines: &HashMap<String, DeviceBaseline>,
1200    ) -> QuantRS2Result<IndustryPosition> {
1201        // Stub implementation
1202        Ok(IndustryPosition::default())
1203    }
1204}
1205
1206/// Real-time monitor
1207struct RealtimeMonitor {
1208    dashboard: Arc<Mutex<BenchmarkDashboard>>,
1209    alert_manager: Arc<AlertManager>,
1210}
1211
1212impl Default for RealtimeMonitor {
1213    fn default() -> Self {
1214        Self {
1215            dashboard: Arc::new(Mutex::new(BenchmarkDashboard::new())),
1216            alert_manager: Arc::new(AlertManager::new()),
1217        }
1218    }
1219}
1220
1221impl RealtimeMonitor {
1222    fn new() -> Self {
1223        Self::default()
1224    }
1225
1226    fn update(&self, result: &BenchmarkSuiteResult) -> QuantRS2Result<()> {
1227        let _dashboard = self.dashboard.lock().map_err(|e| {
1228            QuantRS2Error::RuntimeError(format!("Failed to acquire dashboard lock: {e}"))
1229        })?;
1230        BenchmarkDashboard::update(result)?;
1231
1232        // Check for anomalies
1233        if let Some(anomaly) = Self::detect_anomaly(result)? {
1234            AlertManager::trigger_alert(anomaly)?;
1235        }
1236
1237        Ok(())
1238    }
1239
1240    fn detect_anomaly(_result: &BenchmarkSuiteResult) -> QuantRS2Result<Option<BenchmarkAnomaly>> {
1241        // Simple anomaly detection based on historical data
1242        // In practice, this would use more sophisticated methods
1243        Ok(None)
1244    }
1245}
1246
1247/// Adaptive benchmark controller
1248struct AdaptiveBenchmarkController {
1249    adaptation_engine: Arc<AdaptationEngine>,
1250}
1251
1252impl Default for AdaptiveBenchmarkController {
1253    fn default() -> Self {
1254        Self {
1255            adaptation_engine: Arc::new(AdaptationEngine::new()),
1256        }
1257    }
1258}
1259
1260impl AdaptiveBenchmarkController {
1261    fn new() -> Self {
1262        Self::default()
1263    }
1264
1265    fn select_qv_circuits(
1266        num_qubits: usize,
1267        device: &impl QuantumDevice,
1268    ) -> QuantRS2Result<Vec<QuantumCircuit>> {
1269        // Adaptive selection based on device characteristics
1270        let device_profile = Self::profile_device(device)?;
1271        let optimal_circuits = AdaptationEngine::optimize_circuits(num_qubits, &device_profile)?;
1272
1273        Ok(optimal_circuits)
1274    }
1275
1276    fn profile_device(device: &impl QuantumDevice) -> QuantRS2Result<DeviceProfile> {
1277        Ok(DeviceProfile {
1278            error_rates: device.get_calibration_data().gate_errors.clone(),
1279            connectivity_strength: Self::analyze_connectivity(device.get_topology())?,
1280            coherence_profile: device.get_calibration_data().coherence_times.clone(),
1281        })
1282    }
1283
1284    fn analyze_connectivity(_topology: &DeviceTopology) -> QuantRS2Result<f64> {
1285        // Stub implementation - return connectivity score
1286        Ok(0.8)
1287    }
1288}
1289
1290/// Visual analyzer
1291#[derive(Default)]
1292struct VisualAnalyzer {}
1293
1294impl VisualAnalyzer {
1295    fn new() -> Self {
1296        Self::default()
1297    }
1298
1299    fn generate_visualizations(
1300        result: &ComprehensiveBenchmarkResult,
1301    ) -> QuantRS2Result<BenchmarkVisualizations> {
1302        Ok(BenchmarkVisualizations {
1303            performance_heatmap: Self::create_performance_heatmap(result)?,
1304            trend_plots: Self::create_trend_plots(result)?,
1305            comparison_charts: Self::create_comparison_charts(result)?,
1306            radar_chart: Self::create_radar_chart(result)?,
1307        })
1308    }
1309
1310    fn create_performance_heatmap(
1311        _result: &ComprehensiveBenchmarkResult,
1312    ) -> QuantRS2Result<HeatmapVisualization> {
1313        // Stub implementation
1314        Ok(HeatmapVisualization {
1315            data: Array2::zeros((5, 5)),
1316            row_labels: vec![
1317                "Q0".to_string(),
1318                "Q1".to_string(),
1319                "Q2".to_string(),
1320                "Q3".to_string(),
1321                "Q4".to_string(),
1322            ],
1323            col_labels: vec![
1324                "Q0".to_string(),
1325                "Q1".to_string(),
1326                "Q2".to_string(),
1327                "Q3".to_string(),
1328                "Q4".to_string(),
1329            ],
1330            color_scheme: "viridis".to_string(),
1331        })
1332    }
1333
1334    fn create_trend_plots(
1335        _result: &ComprehensiveBenchmarkResult,
1336    ) -> QuantRS2Result<Vec<TrendPlot>> {
1337        // Stub implementation
1338        Ok(vec![])
1339    }
1340
1341    fn create_comparison_charts(
1342        _result: &ComprehensiveBenchmarkResult,
1343    ) -> QuantRS2Result<Vec<ComparisonChart>> {
1344        // Stub implementation
1345        Ok(vec![])
1346    }
1347
1348    fn create_radar_chart(_result: &ComprehensiveBenchmarkResult) -> QuantRS2Result<RadarChart> {
1349        // Stub implementation
1350        Ok(RadarChart {
1351            axes: vec![
1352                "Fidelity".to_string(),
1353                "Speed".to_string(),
1354                "Connectivity".to_string(),
1355            ],
1356            data_sets: vec![],
1357        })
1358    }
1359}
1360
1361/// Result types
1362
1363/// Comprehensive benchmark result
1364#[derive(Debug, Clone, Serialize, Deserialize)]
1365pub struct ComprehensiveBenchmarkResult {
1366    /// Device information
1367    pub device_info: DeviceInfo,
1368
1369    /// Results for each benchmark suite
1370    pub suite_results: HashMap<BenchmarkSuite, BenchmarkSuiteResult>,
1371
1372    /// Statistical analysis
1373    pub statistical_analysis: Option<StatisticalAnalysis>,
1374
1375    /// Performance predictions
1376    pub performance_predictions: Option<PerformancePredictions>,
1377
1378    /// Comparative analysis
1379    pub comparative_analysis: Option<ComparativeAnalysis>,
1380
1381    /// Recommendations
1382    pub recommendations: Vec<BenchmarkRecommendation>,
1383
1384    /// Comprehensive report
1385    pub report: Option<BenchmarkReport>,
1386}
1387
1388impl ComprehensiveBenchmarkResult {
1389    fn new() -> Self {
1390        Self {
1391            device_info: DeviceInfo::default(),
1392            suite_results: HashMap::new(),
1393            statistical_analysis: None,
1394            performance_predictions: None,
1395            comparative_analysis: None,
1396            recommendations: Vec::new(),
1397            report: None,
1398        }
1399    }
1400}
1401
1402/// Device information
1403#[derive(Debug, Clone, Default, Serialize, Deserialize)]
1404pub struct DeviceInfo {
1405    /// Device name
1406    pub name: String,
1407
1408    /// Number of qubits
1409    pub num_qubits: usize,
1410
1411    /// Connectivity graph
1412    pub connectivity: Vec<(usize, usize)>,
1413
1414    /// Native gate set
1415    pub gate_set: Vec<String>,
1416
1417    /// Calibration timestamp
1418    pub calibration_timestamp: f64,
1419
1420    /// Backend version
1421    pub backend_version: String,
1422}
1423
1424/// Benchmark suite result
1425#[derive(Debug, Clone, Serialize, Deserialize)]
1426pub struct BenchmarkSuiteResult {
1427    /// Suite type
1428    pub suite_type: BenchmarkSuite,
1429
1430    /// Measurements by qubit count
1431    pub measurements: HashMap<usize, Vec<ExecutionResult>>,
1432
1433    /// Single-qubit results
1434    pub single_qubit_results: HashMap<usize, RBResult>,
1435
1436    /// Two-qubit results
1437    pub two_qubit_results: HashMap<(usize, usize), RBResult>,
1438
1439    /// Depth-dependent results
1440    pub depth_results: HashMap<usize, DepthResult>,
1441
1442    /// Pattern results
1443    pub pattern_results: HashMap<LayerPattern, LayerFidelity>,
1444
1445    /// Gate fidelities
1446    pub gate_fidelities: HashMap<String, f64>,
1447
1448    /// Application results
1449    pub application_results: HashMap<ApplicationBenchmark, ApplicationPerformance>,
1450
1451    /// Summary metrics
1452    pub summary_metrics: HashMap<String, f64>,
1453}
1454
1455impl BenchmarkSuiteResult {
1456    fn new(suite_type: BenchmarkSuite) -> Self {
1457        Self {
1458            suite_type,
1459            measurements: HashMap::new(),
1460            single_qubit_results: HashMap::new(),
1461            two_qubit_results: HashMap::new(),
1462            depth_results: HashMap::new(),
1463            pattern_results: HashMap::new(),
1464            gate_fidelities: HashMap::new(),
1465            application_results: HashMap::new(),
1466            summary_metrics: HashMap::new(),
1467        }
1468    }
1469
1470    fn add_measurement(&mut self, num_qubits: usize, result: ExecutionResult) {
1471        self.measurements
1472            .entry(num_qubits)
1473            .or_default()
1474            .push(result);
1475    }
1476}
1477
1478/// Execution result
1479#[derive(Debug, Clone, Serialize, Deserialize)]
1480struct ExecutionResult {
1481    success_rate: f64,
1482    execution_time: Duration,
1483    counts: HashMap<Vec<bool>, usize>,
1484}
1485
1486/// RB result
1487#[derive(Debug, Clone, Serialize, Deserialize)]
1488struct RBResult {
1489    error_rate: f64,
1490    confidence_interval: (f64, f64),
1491    fit_quality: f64,
1492}
1493
1494/// Depth result
1495#[derive(Debug, Clone, Serialize, Deserialize)]
1496struct DepthResult {
1497    avg_fidelity: f64,
1498    std_dev: f64,
1499    samples: usize,
1500}
1501
1502/// Layer pattern
1503#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash, Serialize, Deserialize)]
1504enum LayerPattern {
1505    SingleQubitLayers,
1506    TwoQubitLayers,
1507    AlternatingLayers,
1508    RandomLayers,
1509}
1510
1511/// Layer fidelity
1512#[derive(Debug, Clone, Serialize, Deserialize)]
1513struct LayerFidelity {
1514    fidelity: f64,
1515    error_bars: f64,
1516}
1517
1518/// Application benchmark types
1519#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash, Serialize, Deserialize)]
1520enum ApplicationBenchmark {
1521    VQE,
1522    QAOA,
1523    Grover,
1524    QFT,
1525}
1526
1527/// Application performance
1528#[derive(Debug, Clone, Serialize, Deserialize)]
1529struct ApplicationPerformance {
1530    accuracy: f64,
1531    runtime: Duration,
1532    resource_usage: ResourceUsage,
1533}
1534
1535/// Resource usage
1536#[derive(Debug, Clone, Serialize, Deserialize)]
1537struct ResourceUsage {
1538    circuit_depth: usize,
1539    gate_count: usize,
1540    shots_used: usize,
1541}
1542
1543/// Statistical analysis
1544#[derive(Debug, Clone, Serialize, Deserialize)]
1545pub struct StatisticalAnalysis {
1546    /// Statistics for each suite
1547    pub suite_statistics: HashMap<BenchmarkSuite, SuiteStatistics>,
1548
1549    /// Cross-suite correlations
1550    pub cross_suite_correlations: CorrelationMatrix,
1551
1552    /// Significance tests
1553    pub significance_tests: Vec<SignificanceTest>,
1554
1555    /// Confidence intervals
1556    pub confidence_intervals: HashMap<String, ConfidenceInterval>,
1557}
1558
1559impl StatisticalAnalysis {
1560    fn new() -> Self {
1561        Self::default()
1562    }
1563
1564    /// Fit exponential decay to data: f(x) = A * p^x + B
1565    /// Returns (A, p, B)
1566    pub fn fit_exponential_decay(&self, x: &[f64], y: &[f64]) -> QuantRS2Result<(f64, f64, f64)> {
1567        if x.len() != y.len() || x.is_empty() {
1568            return Err(QuantRS2Error::RuntimeError(
1569                "Invalid data for exponential decay fit".to_string(),
1570            ));
1571        }
1572
1573        // Simple linear regression on log-transformed data
1574        // log(y - B) = log(A) + x * log(p)
1575        // For simplicity, assume B = min(y) / 2
1576        let b = y.iter().copied().fold(f64::INFINITY, f64::min) / 2.0;
1577
1578        let mut sum_x = 0.0;
1579        let mut sum_log_y = 0.0;
1580        let mut sum_x_log_y = 0.0;
1581        let mut sum_x2 = 0.0;
1582        let mut n = 0;
1583
1584        for i in 0..x.len() {
1585            let y_shifted = y[i] - b;
1586            if y_shifted > 0.0 {
1587                let log_y = y_shifted.ln();
1588                sum_x += x[i];
1589                sum_log_y += log_y;
1590                sum_x_log_y += x[i] * log_y;
1591                sum_x2 += x[i] * x[i];
1592                n += 1;
1593            }
1594        }
1595
1596        if n < 2 {
1597            return Err(QuantRS2Error::RuntimeError(
1598                "Insufficient valid data points for fit".to_string(),
1599            ));
1600        }
1601
1602        let n_f64 = n as f64;
1603        let log_p = (n_f64 * sum_x_log_y - sum_x * sum_log_y) / (n_f64 * sum_x2 - n_f64 * sum_x);
1604        let log_a = (sum_log_y - log_p * sum_x) / n_f64;
1605
1606        let p = log_p.exp();
1607        let a = log_a.exp();
1608
1609        Ok((a, p, b))
1610    }
1611}
1612
1613impl Default for StatisticalAnalysis {
1614    fn default() -> Self {
1615        Self {
1616            suite_statistics: HashMap::new(),
1617            cross_suite_correlations: CorrelationMatrix::new(),
1618            significance_tests: Vec::new(),
1619            confidence_intervals: HashMap::new(),
1620        }
1621    }
1622}
1623
1624/// Suite statistics
1625#[derive(Debug, Clone, Serialize, Deserialize)]
1626pub struct SuiteStatistics {
1627    /// Mean performance
1628    pub mean: f64,
1629
1630    /// Standard deviation
1631    pub std_dev: f64,
1632
1633    /// Median
1634    pub median: f64,
1635
1636    /// Quartiles
1637    pub quartiles: (f64, f64, f64),
1638
1639    /// Outliers
1640    pub outliers: Vec<f64>,
1641}
1642
1643/// Correlation matrix
1644#[derive(Debug, Clone, Serialize, Deserialize)]
1645pub struct CorrelationMatrix {
1646    /// Matrix data
1647    pub data: Array2<f64>,
1648
1649    /// Row/column labels
1650    pub labels: Vec<String>,
1651}
1652
1653impl CorrelationMatrix {
1654    fn new() -> Self {
1655        Self {
1656            data: Array2::zeros((0, 0)),
1657            labels: Vec::new(),
1658        }
1659    }
1660}
1661
1662/// Significance test
1663#[derive(Debug, Clone, Serialize, Deserialize)]
1664pub struct SignificanceTest {
1665    /// Test name
1666    pub test_name: String,
1667
1668    /// P-value
1669    pub p_value: f64,
1670
1671    /// Test statistic
1672    pub statistic: f64,
1673
1674    /// Degrees of freedom
1675    pub degrees_of_freedom: Option<f64>,
1676
1677    /// Conclusion
1678    pub conclusion: String,
1679}
1680
1681/// Confidence interval
1682#[derive(Debug, Clone, Serialize, Deserialize)]
1683pub struct ConfidenceInterval {
1684    /// Lower bound
1685    pub lower: f64,
1686
1687    /// Upper bound
1688    pub upper: f64,
1689
1690    /// Confidence level
1691    pub confidence_level: f64,
1692}
1693
1694/// Performance predictions
1695#[derive(Debug, Clone, Serialize, Deserialize)]
1696pub struct PerformancePredictions {
1697    /// Future performance trajectory
1698    pub future_performance: Vec<PredictedPerformance>,
1699
1700    /// Degradation timeline
1701    pub degradation_timeline: DegradationTimeline,
1702
1703    /// Maintenance recommendations
1704    pub maintenance_recommendations: Vec<MaintenanceRecommendation>,
1705
1706    /// Confidence scores
1707    pub confidence_scores: HashMap<String, f64>,
1708}
1709
1710/// Predicted performance
1711#[derive(Debug, Clone, Serialize, Deserialize)]
1712pub struct PredictedPerformance {
1713    /// Time offset (days)
1714    pub time_offset: f64,
1715
1716    /// Predicted metrics
1717    pub metrics: HashMap<PerformanceMetric, f64>,
1718
1719    /// Uncertainty bounds
1720    pub uncertainty: f64,
1721}
1722
1723/// Degradation timeline
1724#[derive(Debug, Clone, Serialize, Deserialize)]
1725pub struct DegradationTimeline {
1726    /// Critical thresholds
1727    pub thresholds: Vec<DegradationThreshold>,
1728
1729    /// Expected timeline
1730    pub timeline: Vec<DegradationEvent>,
1731}
1732
1733/// Degradation threshold
1734#[derive(Debug, Clone, Serialize, Deserialize)]
1735pub struct DegradationThreshold {
1736    /// Metric
1737    pub metric: PerformanceMetric,
1738
1739    /// Threshold value
1740    pub threshold: f64,
1741
1742    /// Expected crossing time
1743    pub expected_time: f64,
1744}
1745
1746/// Degradation event
1747#[derive(Debug, Clone, Serialize, Deserialize)]
1748pub struct DegradationEvent {
1749    /// Event type
1750    pub event_type: DegradationType,
1751
1752    /// Expected time
1753    pub expected_time: f64,
1754
1755    /// Impact
1756    pub impact: ImpactLevel,
1757}
1758
1759/// Degradation type
1760#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
1761pub enum DegradationType {
1762    GateFidelityDrop,
1763    CoherenceTimeDegradation,
1764    CrosstalkIncrease,
1765    CalibrationDrift,
1766}
1767
1768/// Impact level
1769#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
1770pub enum ImpactLevel {
1771    Low,
1772    Medium,
1773    High,
1774    Critical,
1775}
1776
1777/// Maintenance recommendation
1778#[derive(Debug, Clone, Serialize, Deserialize)]
1779pub struct MaintenanceRecommendation {
1780    /// Maintenance type
1781    pub maintenance_type: MaintenanceType,
1782
1783    /// Recommended time
1784    pub recommended_time: f64,
1785
1786    /// Expected benefit
1787    pub expected_benefit: f64,
1788
1789    /// Cost estimate
1790    pub cost_estimate: f64,
1791}
1792
1793/// Maintenance type
1794#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
1795pub enum MaintenanceType {
1796    Recalibration,
1797    HardwareReplacement,
1798    SoftwareUpdate,
1799    FullMaintenance,
1800}
1801
1802/// Comparative analysis
1803#[derive(Debug, Clone, Serialize, Deserialize)]
1804pub struct ComparativeAnalysis {
1805    /// Historical comparison
1806    pub historical_comparison: Option<HistoricalComparison>,
1807
1808    /// Device comparisons
1809    pub device_comparisons: HashMap<String, DeviceComparison>,
1810
1811    /// Industry position
1812    pub industry_position: IndustryPosition,
1813}
1814
1815impl ComparativeAnalysis {
1816    fn new() -> Self {
1817        Self {
1818            historical_comparison: None,
1819            device_comparisons: HashMap::new(),
1820            industry_position: IndustryPosition::default(),
1821        }
1822    }
1823}
1824
1825/// Historical comparison
1826#[derive(Debug, Clone, Serialize, Deserialize)]
1827pub struct HistoricalComparison {
1828    /// Performance trend
1829    pub performance_trend: PerformanceTrend,
1830
1831    /// Improvement rate
1832    pub improvement_rate: f64,
1833
1834    /// Anomalies detected
1835    pub anomalies: Vec<HistoricalAnomaly>,
1836}
1837
1838/// Performance trend
1839#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
1840pub enum PerformanceTrend {
1841    Improving,
1842    Stable,
1843    Degrading,
1844    Fluctuating,
1845}
1846
1847/// Historical anomaly
1848#[derive(Debug, Clone, Serialize, Deserialize)]
1849pub struct HistoricalAnomaly {
1850    /// Timestamp
1851    pub timestamp: f64,
1852
1853    /// Anomaly type
1854    pub anomaly_type: AnomalyType,
1855
1856    /// Severity
1857    pub severity: Severity,
1858}
1859
1860/// Anomaly type
1861#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
1862pub enum AnomalyType {
1863    SuddenDrop,
1864    GradualDegradation,
1865    UnexpectedImprovement,
1866    HighVariability,
1867}
1868
1869/// Severity
1870#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
1871pub enum Severity {
1872    Low,
1873    Medium,
1874    High,
1875    Critical,
1876}
1877
1878/// Device comparison
1879#[derive(Debug, Clone, Serialize, Deserialize)]
1880pub struct DeviceComparison {
1881    /// Relative performance
1882    pub relative_performance: HashMap<PerformanceMetric, f64>,
1883
1884    /// Strengths
1885    pub strengths: Vec<String>,
1886
1887    /// Weaknesses
1888    pub weaknesses: Vec<String>,
1889
1890    /// Overall ranking
1891    pub overall_ranking: usize,
1892}
1893
1894/// Industry position
1895#[derive(Debug, Clone, Default, Serialize, Deserialize)]
1896pub struct IndustryPosition {
1897    /// Percentile rankings
1898    pub percentile_rankings: HashMap<PerformanceMetric, f64>,
1899
1900    /// Tier classification
1901    pub tier: IndustryTier,
1902
1903    /// Competitive advantages
1904    pub advantages: Vec<String>,
1905}
1906
1907/// Industry tier
1908#[derive(Debug, Clone, Copy, PartialEq, Eq, Default, Serialize, Deserialize)]
1909pub enum IndustryTier {
1910    #[default]
1911    Emerging,
1912    Competitive,
1913    Leading,
1914    BestInClass,
1915}
1916
1917/// Benchmark recommendation
1918#[derive(Debug, Clone, Serialize, Deserialize)]
1919pub struct BenchmarkRecommendation {
1920    /// Category
1921    pub category: RecommendationCategory,
1922
1923    /// Priority
1924    pub priority: Priority,
1925
1926    /// Description
1927    pub description: String,
1928
1929    /// Expected improvement
1930    pub expected_improvement: f64,
1931
1932    /// Effort level
1933    pub effort: EffortLevel,
1934}
1935
1936/// Recommendation category
1937#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
1938pub enum RecommendationCategory {
1939    Calibration,
1940    Scheduling,
1941    Optimization,
1942    Hardware,
1943    Software,
1944}
1945
1946/// Priority
1947#[derive(Debug, Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Serialize, Deserialize)]
1948pub enum Priority {
1949    Low,
1950    Medium,
1951    High,
1952    Critical,
1953}
1954
1955/// Effort level
1956#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
1957pub enum EffortLevel {
1958    Low,
1959    Medium,
1960    High,
1961}
1962
1963/// Benchmark report
1964#[derive(Debug, Clone, Serialize, Deserialize)]
1965pub struct BenchmarkReport {
1966    /// Executive summary
1967    pub executive_summary: ExecutiveSummary,
1968
1969    /// Suite reports
1970    pub suite_reports: HashMap<BenchmarkSuite, SuiteReport>,
1971
1972    /// Statistical summary
1973    pub statistical_summary: Option<StatisticalSummary>,
1974
1975    /// Prediction summary
1976    pub prediction_summary: Option<PredictionSummary>,
1977
1978    /// Comparative summary
1979    pub comparative_summary: Option<ComparativeSummary>,
1980
1981    /// Visualizations
1982    pub visualizations: Option<BenchmarkVisualizations>,
1983
1984    /// Recommendations
1985    pub recommendations: Vec<BenchmarkRecommendation>,
1986}
1987
1988impl BenchmarkReport {
1989    fn new() -> Self {
1990        Self {
1991            executive_summary: ExecutiveSummary::default(),
1992            suite_reports: HashMap::new(),
1993            statistical_summary: None,
1994            prediction_summary: None,
1995            comparative_summary: None,
1996            visualizations: None,
1997            recommendations: Vec::new(),
1998        }
1999    }
2000}
2001
2002/// Executive summary
2003#[derive(Debug, Clone, Default, Serialize, Deserialize)]
2004pub struct ExecutiveSummary {
2005    /// Overall performance score
2006    pub overall_score: f64,
2007
2008    /// Key findings
2009    pub key_findings: Vec<String>,
2010
2011    /// Critical issues
2012    pub critical_issues: Vec<String>,
2013
2014    /// Top recommendations
2015    pub top_recommendations: Vec<String>,
2016}
2017
2018/// Suite report
2019#[derive(Debug, Clone, Serialize, Deserialize)]
2020pub struct SuiteReport {
2021    /// Suite name
2022    pub suite_name: String,
2023
2024    /// Performance summary
2025    pub performance_summary: String,
2026
2027    /// Detailed metrics
2028    pub detailed_metrics: HashMap<String, MetricReport>,
2029
2030    /// Insights
2031    pub insights: Vec<String>,
2032}
2033
2034/// Metric report
2035#[derive(Debug, Clone, Serialize, Deserialize)]
2036pub struct MetricReport {
2037    /// Value
2038    pub value: f64,
2039
2040    /// Trend
2041    pub trend: MetricTrend,
2042
2043    /// Comparison to baseline
2044    pub baseline_comparison: f64,
2045
2046    /// Analysis
2047    pub analysis: String,
2048}
2049
2050/// Metric trend
2051#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
2052pub enum MetricTrend {
2053    Improving,
2054    Stable,
2055    Degrading,
2056}
2057
2058/// Statistical summary
2059#[derive(Debug, Clone, Serialize, Deserialize)]
2060pub struct StatisticalSummary {
2061    /// Key statistics
2062    pub key_statistics: HashMap<String, f64>,
2063
2064    /// Significant findings
2065    pub significant_findings: Vec<String>,
2066
2067    /// Confidence statements
2068    pub confidence_statements: Vec<String>,
2069}
2070
2071/// Prediction summary
2072#[derive(Debug, Clone, Serialize, Deserialize)]
2073pub struct PredictionSummary {
2074    /// Performance outlook
2075    pub performance_outlook: String,
2076
2077    /// Risk factors
2078    pub risk_factors: Vec<String>,
2079
2080    /// Maintenance timeline
2081    pub maintenance_timeline: String,
2082}
2083
2084/// Comparative summary
2085#[derive(Debug, Clone, Serialize, Deserialize)]
2086pub struct ComparativeSummary {
2087    /// Position statement
2088    pub position_statement: String,
2089
2090    /// Competitive advantages
2091    pub advantages: Vec<String>,
2092
2093    /// Areas for improvement
2094    pub improvement_areas: Vec<String>,
2095}
2096
2097/// Benchmark visualizations
2098#[derive(Debug, Clone, Serialize, Deserialize)]
2099pub struct BenchmarkVisualizations {
2100    /// Performance heatmap
2101    pub performance_heatmap: HeatmapVisualization,
2102
2103    /// Trend plots
2104    pub trend_plots: Vec<TrendPlot>,
2105
2106    /// Comparison charts
2107    pub comparison_charts: Vec<ComparisonChart>,
2108
2109    /// Radar chart
2110    pub radar_chart: RadarChart,
2111}
2112
2113/// Heatmap visualization
2114#[derive(Debug, Clone, Serialize, Deserialize)]
2115pub struct HeatmapVisualization {
2116    /// Data matrix
2117    pub data: Array2<f64>,
2118
2119    /// Row labels
2120    pub row_labels: Vec<String>,
2121
2122    /// Column labels
2123    pub col_labels: Vec<String>,
2124
2125    /// Color scheme
2126    pub color_scheme: String,
2127}
2128
2129/// Trend plot
2130#[derive(Debug, Clone, Serialize, Deserialize)]
2131pub struct TrendPlot {
2132    /// Title
2133    pub title: String,
2134
2135    /// X-axis data
2136    pub x_data: Vec<f64>,
2137
2138    /// Y-axis data series
2139    pub y_series: Vec<DataSeries>,
2140
2141    /// Plot type
2142    pub plot_type: PlotType,
2143}
2144
2145/// Data series
2146#[derive(Debug, Clone, Serialize, Deserialize)]
2147pub struct DataSeries {
2148    /// Series name
2149    pub name: String,
2150
2151    /// Data points
2152    pub data: Vec<f64>,
2153
2154    /// Error bars
2155    pub error_bars: Option<Vec<f64>>,
2156}
2157
2158/// Plot type
2159#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
2160pub enum PlotType {
2161    Line,
2162    Scatter,
2163    Bar,
2164    Area,
2165}
2166
2167/// Comparison chart
2168#[derive(Debug, Clone, Serialize, Deserialize)]
2169pub struct ComparisonChart {
2170    /// Chart title
2171    pub title: String,
2172
2173    /// Categories
2174    pub categories: Vec<String>,
2175
2176    /// Data sets
2177    pub data_sets: Vec<ComparisonDataSet>,
2178
2179    /// Chart type
2180    pub chart_type: ChartType,
2181}
2182
2183/// Comparison data set
2184#[derive(Debug, Clone, Serialize, Deserialize)]
2185pub struct ComparisonDataSet {
2186    /// Name
2187    pub name: String,
2188
2189    /// Values
2190    pub values: Vec<f64>,
2191}
2192
2193/// Chart type
2194#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
2195pub enum ChartType {
2196    Bar,
2197    GroupedBar,
2198    StackedBar,
2199    Line,
2200}
2201
2202/// Radar chart
2203#[derive(Debug, Clone, Serialize, Deserialize)]
2204pub struct RadarChart {
2205    /// Axes
2206    pub axes: Vec<String>,
2207
2208    /// Data sets
2209    pub data_sets: Vec<RadarDataSet>,
2210}
2211
2212/// Radar data set
2213#[derive(Debug, Clone, Serialize, Deserialize)]
2214pub struct RadarDataSet {
2215    /// Name
2216    pub name: String,
2217
2218    /// Values (0-1 normalized)
2219    pub values: Vec<f64>,
2220}
2221
2222/// Helper types
2223
2224/// Mirror circuit
2225struct MirrorCircuit {
2226    forward: QuantumCircuit,
2227    mirror: QuantumCircuit,
2228}
2229
2230/// Performance model
2231struct PerformanceModel {
2232    // ML model implementation
2233}
2234
2235impl PerformanceModel {
2236    const fn new() -> Self {
2237        Self {}
2238    }
2239
2240    fn predict(_features: &BenchmarkFeatures) -> QuantRS2Result<ModelPredictions> {
2241        // Placeholder implementation
2242        Ok(ModelPredictions {
2243            performance_trajectory: vec![],
2244            degradation_timeline: DegradationTimeline {
2245                thresholds: vec![],
2246                timeline: vec![],
2247            },
2248            maintenance_schedule: vec![],
2249            confidence: HashMap::new(),
2250        })
2251    }
2252}
2253
2254/// Benchmark feature extractor
2255struct BenchmarkFeatureExtractor {
2256    // Feature extraction logic
2257}
2258
2259impl BenchmarkFeatureExtractor {
2260    const fn new() -> Self {
2261        Self {}
2262    }
2263
2264    fn extract_features(
2265        _result: &ComprehensiveBenchmarkResult,
2266    ) -> QuantRS2Result<BenchmarkFeatures> {
2267        // Extract relevant features for ML analysis
2268        Ok(BenchmarkFeatures {
2269            performance_features: vec![],
2270            topology_features: vec![],
2271            temporal_features: vec![],
2272            statistical_features: vec![],
2273        })
2274    }
2275}
2276
2277/// Benchmark features
2278struct BenchmarkFeatures {
2279    performance_features: Vec<f64>,
2280    topology_features: Vec<f64>,
2281    temporal_features: Vec<f64>,
2282    statistical_features: Vec<f64>,
2283}
2284
2285/// Model predictions
2286struct ModelPredictions {
2287    performance_trajectory: Vec<PredictedPerformance>,
2288    degradation_timeline: DegradationTimeline,
2289    maintenance_schedule: Vec<MaintenanceRecommendation>,
2290    confidence: HashMap<String, f64>,
2291}
2292
2293/// Baseline database
2294struct BaselineDatabase {
2295    baselines: HashMap<String, DeviceBaseline>,
2296}
2297
2298impl BaselineDatabase {
2299    fn new() -> Self {
2300        Self {
2301            baselines: HashMap::new(),
2302        }
2303    }
2304
2305    fn get_baselines(&self) -> QuantRS2Result<HashMap<String, DeviceBaseline>> {
2306        Ok(self.baselines.clone())
2307    }
2308}
2309
2310/// Device baseline
2311#[derive(Debug, Clone)]
2312struct DeviceBaseline {
2313    device_name: String,
2314    performance_history: Vec<HistoricalPerformance>,
2315    best_performance: HashMap<PerformanceMetric, f64>,
2316}
2317
2318/// Historical performance
2319#[derive(Debug, Clone)]
2320struct HistoricalPerformance {
2321    timestamp: f64,
2322    metrics: HashMap<PerformanceMetric, f64>,
2323}
2324
2325/// Benchmark dashboard
2326struct BenchmarkDashboard {
2327    current_metrics: HashMap<String, f64>,
2328    history: VecDeque<DashboardSnapshot>,
2329}
2330
2331impl BenchmarkDashboard {
2332    fn new() -> Self {
2333        Self {
2334            current_metrics: HashMap::new(),
2335            history: VecDeque::new(),
2336        }
2337    }
2338
2339    fn update(_result: &BenchmarkSuiteResult) -> QuantRS2Result<()> {
2340        // Update dashboard with latest results
2341        Ok(())
2342    }
2343}
2344
2345/// Dashboard snapshot
2346struct DashboardSnapshot {
2347    timestamp: f64,
2348    metrics: HashMap<String, f64>,
2349}
2350
2351/// Alert manager
2352struct AlertManager {
2353    // Alert management logic
2354}
2355
2356impl AlertManager {
2357    const fn new() -> Self {
2358        Self {}
2359    }
2360
2361    fn trigger_alert(_anomaly: BenchmarkAnomaly) -> QuantRS2Result<()> {
2362        // Handle alert
2363        Ok(())
2364    }
2365}
2366
2367/// Benchmark anomaly
2368struct BenchmarkAnomaly {
2369    anomaly_type: AnomalyType,
2370    severity: Severity,
2371    description: String,
2372}
2373
2374/// Adaptation engine
2375struct AdaptationEngine {
2376    // Adaptive optimization logic
2377}
2378
2379impl AdaptationEngine {
2380    const fn new() -> Self {
2381        Self {}
2382    }
2383
2384    fn optimize_circuits(
2385        _num_qubits: usize,
2386        _profile: &DeviceProfile,
2387    ) -> QuantRS2Result<Vec<QuantumCircuit>> {
2388        // Generate optimized circuits based on device profile
2389        Ok(vec![])
2390    }
2391}
2392
2393/// Device profile
2394struct DeviceProfile {
2395    error_rates: HashMap<String, f64>,
2396    connectivity_strength: f64,
2397    coherence_profile: Vec<(f64, f64)>,
2398}
2399
2400/// Bottleneck types
2401enum Bottleneck {
2402    LowGateFidelity(String),
2403    HighCrosstalk(Vec<QubitId>),
2404    LongExecutionTime,
2405    LimitedConnectivity,
2406    ShortCoherence,
2407}
2408
2409/// Benchmark cache
2410#[derive(Default)]
2411struct BenchmarkCache {
2412    results: HashMap<String, ComprehensiveBenchmarkResult>,
2413}
2414
2415impl BenchmarkCache {
2416    fn new() -> Self {
2417        Self::default()
2418    }
2419}
2420
2421/// Quantum device trait
2422trait QuantumDevice: Sync {
2423    fn execute(&self, circuit: QuantumCircuit, shots: usize) -> QuantRS2Result<QuantumJob>;
2424    fn get_topology(&self) -> &DeviceTopology;
2425    fn get_calibration_data(&self) -> &CalibrationData;
2426    fn get_name(&self) -> String;
2427    fn get_native_gates(&self) -> Vec<String>;
2428    fn get_backend_version(&self) -> String;
2429}
2430
2431/// Quantum job
2432struct QuantumJob {
2433    job_id: String,
2434    status: JobStatus,
2435    results: Option<JobResults>,
2436}
2437
2438impl QuantumJob {
2439    fn get_counts(&self) -> QuantRS2Result<HashMap<Vec<bool>, usize>> {
2440        // Get measurement counts
2441        unimplemented!()
2442    }
2443}
2444
2445/// Job status
2446enum JobStatus {
2447    Queued,
2448    Running,
2449    Completed,
2450    Failed(String),
2451}
2452
2453/// Job results
2454struct JobResults {
2455    counts: HashMap<Vec<bool>, usize>,
2456    metadata: HashMap<String, String>,
2457}
2458
2459/// Device topology
2460struct DeviceTopology {
2461    num_qubits: usize,
2462    connectivity: Vec<(usize, usize)>,
2463}
2464
2465/// Calibration data
2466struct CalibrationData {
2467    gate_errors: HashMap<String, f64>,
2468    readout_errors: Vec<f64>,
2469    coherence_times: Vec<(f64, f64)>,
2470    timestamp: f64,
2471}
2472
2473#[cfg(test)]
2474mod tests {
2475    use super::*;
2476
2477    #[test]
2478    fn test_benchmark_creation() {
2479        let config = EnhancedBenchmarkConfig::default();
2480        let benchmark = EnhancedHardwareBenchmark::new(config);
2481
2482        // Basic test to ensure creation works
2483        assert!(benchmark.config.enable_ml_prediction);
2484    }
2485
2486    #[test]
2487    fn test_benchmark_suite_result() {
2488        let mut result = BenchmarkSuiteResult::new(BenchmarkSuite::QuantumVolume);
2489
2490        result.add_measurement(
2491            4,
2492            ExecutionResult {
2493                success_rate: 0.85,
2494                execution_time: Duration::from_millis(100),
2495                counts: HashMap::new(),
2496            },
2497        );
2498
2499        assert_eq!(result.measurements.len(), 1);
2500        assert_eq!(result.measurements[&4].len(), 1);
2501    }
2502}