1use quantrs2_core::{
75 buffer_pool::BufferPool,
76 error::{QuantRS2Error, QuantRS2Result},
77 qubit::QubitId,
78};
79
80#[derive(Clone)]
82pub struct QuantumCircuit {
83 num_qubits: usize,
84 gates: Vec<String>,
85}
86
87impl QuantumCircuit {
88 pub const fn new(num_qubits: usize) -> Self {
89 Self {
90 num_qubits,
91 gates: Vec::new(),
92 }
93 }
94}
95
96#[derive(Clone, Debug)]
98pub struct Gate {
99 name: String,
100 qubits: Vec<usize>,
101}
102
103impl Gate {
104 pub fn from_name(name: &str, qubits: &[usize]) -> Self {
105 Self {
106 name: name.to_string(),
107 qubits: qubits.to_vec(),
108 }
109 }
110}
111use scirs2_core::ndarray::{Array1, Array2, Array3, ArrayView2, Axis};
112use scirs2_core::parallel_ops::*;
113use scirs2_core::random::{thread_rng, Distribution as RandDist, Normal as RandNormal, Rng};
114use scirs2_core::Complex64;
115use serde::{Deserialize, Serialize};
116use std::collections::{BTreeMap, HashMap, VecDeque};
117use std::fmt;
118use std::sync::{Arc, Mutex};
119use std::time::{Duration, Instant};
120
121#[derive(Debug, Clone, Serialize, Deserialize)]
123pub struct EnhancedBenchmarkConfig {
124 pub base_config: BenchmarkConfig,
126
127 pub enable_ml_prediction: bool,
129
130 pub enable_significance_testing: bool,
132
133 pub enable_comparative_analysis: bool,
135
136 pub enable_realtime_monitoring: bool,
138
139 pub enable_adaptive_protocols: bool,
141
142 pub enable_visual_analytics: bool,
144
145 pub benchmark_suites: Vec<BenchmarkSuite>,
147
148 pub performance_metrics: Vec<PerformanceMetric>,
150
151 pub analysis_methods: Vec<AnalysisMethod>,
153
154 pub reporting_options: ReportingOptions,
156}
157
158impl Default for EnhancedBenchmarkConfig {
159 fn default() -> Self {
160 Self {
161 base_config: BenchmarkConfig::default(),
162 enable_ml_prediction: true,
163 enable_significance_testing: true,
164 enable_comparative_analysis: true,
165 enable_realtime_monitoring: true,
166 enable_adaptive_protocols: true,
167 enable_visual_analytics: true,
168 benchmark_suites: vec![
169 BenchmarkSuite::QuantumVolume,
170 BenchmarkSuite::RandomizedBenchmarking,
171 BenchmarkSuite::CrossEntropyBenchmarking,
172 BenchmarkSuite::LayerFidelity,
173 ],
174 performance_metrics: vec![
175 PerformanceMetric::GateFidelity,
176 PerformanceMetric::CircuitDepth,
177 PerformanceMetric::ExecutionTime,
178 PerformanceMetric::ErrorRate,
179 ],
180 analysis_methods: vec![
181 AnalysisMethod::StatisticalTesting,
182 AnalysisMethod::RegressionAnalysis,
183 AnalysisMethod::TimeSeriesAnalysis,
184 ],
185 reporting_options: ReportingOptions::default(),
186 }
187 }
188}
189
190#[derive(Debug, Clone, Serialize, Deserialize)]
192pub struct BenchmarkConfig {
193 pub num_repetitions: usize,
195
196 pub shots_per_circuit: usize,
198
199 pub max_circuit_depth: usize,
201
202 pub timeout: Duration,
204
205 pub confidence_level: f64,
207}
208
209impl Default for BenchmarkConfig {
210 fn default() -> Self {
211 Self {
212 num_repetitions: 20,
213 shots_per_circuit: 1000,
214 max_circuit_depth: 100,
215 timeout: Duration::from_secs(300),
216 confidence_level: 0.95,
217 }
218 }
219}
220
221#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash, Serialize, Deserialize)]
223pub enum BenchmarkSuite {
224 QuantumVolume,
225 RandomizedBenchmarking,
226 CrossEntropyBenchmarking,
227 LayerFidelity,
228 MirrorCircuits,
229 ProcessTomography,
230 GateSetTomography,
231 Applications,
232 Custom,
233}
234
235#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash, Serialize, Deserialize)]
237pub enum PerformanceMetric {
238 GateFidelity,
239 CircuitDepth,
240 ExecutionTime,
241 ErrorRate,
242 Throughput,
243 QuantumVolume,
244 CLOPS,
245 CoherenceTime,
246 GateSpeed,
247 Crosstalk,
248}
249
250#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash, Serialize, Deserialize)]
252pub enum AnalysisMethod {
253 StatisticalTesting,
254 RegressionAnalysis,
255 TimeSeriesAnalysis,
256 MLPrediction,
257 ComparativeAnalysis,
258 AnomalyDetection,
259}
260
261#[derive(Debug, Clone, Serialize, Deserialize)]
263pub struct ReportingOptions {
264 pub detailed_reports: bool,
266
267 pub include_visualizations: bool,
269
270 pub export_format: ExportFormat,
272
273 pub enable_dashboard: bool,
275}
276
277impl Default for ReportingOptions {
278 fn default() -> Self {
279 Self {
280 detailed_reports: true,
281 include_visualizations: true,
282 export_format: ExportFormat::JSON,
283 enable_dashboard: true,
284 }
285 }
286}
287
288#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
290pub enum ExportFormat {
291 JSON,
292 CSV,
293 HTML,
294 LaTeX,
295}
296
297pub struct EnhancedHardwareBenchmark {
299 config: EnhancedBenchmarkConfig,
300 statistical_analyzer: Arc<StatisticalAnalysis>,
301 ml_predictor: Option<Arc<MLPerformancePredictor>>,
302 comparative_analyzer: Arc<ComparativeAnalyzer>,
303 realtime_monitor: Arc<RealtimeMonitor>,
304 adaptive_controller: Arc<AdaptiveBenchmarkController>,
305 visual_analyzer: Arc<VisualAnalyzer>,
306 buffer_pool: BufferPool<f64>,
307 cache: Arc<Mutex<BenchmarkCache>>,
308}
309
310impl EnhancedHardwareBenchmark {
311 pub fn new(config: EnhancedBenchmarkConfig) -> Self {
313 let buffer_pool = BufferPool::new();
314
315 Self {
316 config: config.clone(),
317 statistical_analyzer: Arc::new(StatisticalAnalysis::default()),
318 ml_predictor: if config.enable_ml_prediction {
319 Some(Arc::new(MLPerformancePredictor::default()))
320 } else {
321 None
322 },
323 comparative_analyzer: Arc::new(ComparativeAnalyzer::default()),
324 realtime_monitor: Arc::new(RealtimeMonitor::default()),
325 adaptive_controller: Arc::new(AdaptiveBenchmarkController::default()),
326 visual_analyzer: Arc::new(VisualAnalyzer::default()),
327 buffer_pool,
328 cache: Arc::new(Mutex::new(BenchmarkCache::default())),
329 }
330 }
331
332 pub fn run_comprehensive_benchmark(
334 &self,
335 device: &impl QuantumDevice,
336 ) -> QuantRS2Result<ComprehensiveBenchmarkResult> {
337 let mut result = ComprehensiveBenchmarkResult::new();
338 result.device_info = Self::collect_device_info(device)?;
339
340 let suite_results: Vec<_> = self
342 .config
343 .benchmark_suites
344 .par_iter()
345 .map(|&suite| self.run_benchmark_suite(device, suite))
346 .collect();
347
348 for (suite, suite_result) in self.config.benchmark_suites.iter().zip(suite_results) {
350 match suite_result {
351 Ok(data) => {
352 result.suite_results.insert(*suite, data);
353 }
354 Err(e) => {
355 eprintln!("Error in suite {suite:?}: {e}");
356 }
357 }
358 }
359
360 if self.config.enable_significance_testing {
362 result.statistical_analysis = Some(Self::perform_statistical_analysis(&result)?);
363 }
364
365 if let Some(ml_predictor) = &self.ml_predictor {
367 result.performance_predictions =
368 Some(MLPerformancePredictor::predict_performance(&result)?);
369 }
370
371 if self.config.enable_comparative_analysis {
373 result.comparative_analysis = Some(self.comparative_analyzer.analyze(&result)?);
374 }
375
376 result.recommendations = Self::generate_recommendations(&result)?;
378
379 result.report = Some(self.create_comprehensive_report(&result)?);
381
382 Ok(result)
383 }
384
385 fn run_benchmark_suite(
387 &self,
388 device: &impl QuantumDevice,
389 suite: BenchmarkSuite,
390 ) -> QuantRS2Result<BenchmarkSuiteResult> {
391 match suite {
392 BenchmarkSuite::QuantumVolume => self.run_quantum_volume_benchmark(device),
393 BenchmarkSuite::RandomizedBenchmarking => Self::run_rb_benchmark(device),
394 BenchmarkSuite::CrossEntropyBenchmarking => Self::run_xeb_benchmark(device),
395 BenchmarkSuite::LayerFidelity => Self::run_layer_fidelity_benchmark(device),
396 BenchmarkSuite::MirrorCircuits => self.run_mirror_circuit_benchmark(device),
397 BenchmarkSuite::ProcessTomography => Self::run_process_tomography_benchmark(device),
398 BenchmarkSuite::GateSetTomography => Self::run_gst_benchmark(device),
399 BenchmarkSuite::Applications => Self::run_application_benchmark(device),
400 BenchmarkSuite::Custom => Err(QuantRS2Error::InvalidOperation(
401 "Custom benchmarks not yet implemented".to_string(),
402 )),
403 }
404 }
405
406 fn run_quantum_volume_benchmark(
408 &self,
409 device: &impl QuantumDevice,
410 ) -> QuantRS2Result<BenchmarkSuiteResult> {
411 let mut suite_result = BenchmarkSuiteResult::new(BenchmarkSuite::QuantumVolume);
412 let num_qubits = device.get_topology().num_qubits;
413
414 for n in 2..=num_qubits.min(20) {
416 if self.config.enable_adaptive_protocols {
417 let circuits = AdaptiveBenchmarkController::select_qv_circuits(n, device)?;
419
420 for circuit in circuits {
421 let result = self.execute_and_measure(device, &circuit)?;
422 suite_result.add_measurement(n, result);
423
424 if self.config.enable_realtime_monitoring {
426 self.realtime_monitor.update(&suite_result)?;
427 }
428 }
429 } else {
430 let circuits = self.generate_qv_circuits(n)?;
432
433 for circuit in circuits {
434 let result = self.execute_and_measure(device, &circuit)?;
435 suite_result.add_measurement(n, result);
436 }
437 }
438 }
439
440 let qv = Self::calculate_quantum_volume(&suite_result)?;
442 suite_result
443 .summary_metrics
444 .insert("quantum_volume".to_string(), qv as f64);
445
446 Ok(suite_result)
447 }
448
449 fn run_rb_benchmark(device: &impl QuantumDevice) -> QuantRS2Result<BenchmarkSuiteResult> {
451 let mut suite_result = BenchmarkSuiteResult::new(BenchmarkSuite::RandomizedBenchmarking);
452
453 for qubit in 0..device.get_topology().num_qubits {
455 let rb_result = Self::run_single_qubit_rb(device, qubit)?;
456 suite_result.single_qubit_results.insert(qubit, rb_result);
457 }
458
459 for &(q1, q2) in &device.get_topology().connectivity {
461 let rb_result = Self::run_two_qubit_rb(device, q1, q2)?;
462 suite_result.two_qubit_results.insert((q1, q2), rb_result);
463 }
464
465 let avg_single_error = suite_result
467 .single_qubit_results
468 .values()
469 .map(|r| r.error_rate)
470 .sum::<f64>()
471 / suite_result.single_qubit_results.len() as f64;
472
473 let avg_two_error = suite_result
474 .two_qubit_results
475 .values()
476 .map(|r| r.error_rate)
477 .sum::<f64>()
478 / suite_result.two_qubit_results.len() as f64;
479
480 suite_result
481 .summary_metrics
482 .insert("avg_single_qubit_error".to_string(), avg_single_error);
483 suite_result
484 .summary_metrics
485 .insert("avg_two_qubit_error".to_string(), avg_two_error);
486
487 Ok(suite_result)
488 }
489
490 fn run_xeb_benchmark(device: &impl QuantumDevice) -> QuantRS2Result<BenchmarkSuiteResult> {
492 let mut suite_result = BenchmarkSuiteResult::new(BenchmarkSuite::CrossEntropyBenchmarking);
493
494 let depths = vec![5, 10, 20, 40, 80];
496
497 for depth in depths {
498 let circuits = Self::generate_xeb_circuits(device.get_topology().num_qubits, depth)?;
499
500 let xeb_scores: Vec<f64> = circuits
501 .par_iter()
502 .map(|circuit| Self::calculate_xeb_score(device, circuit).unwrap_or(0.0))
503 .collect();
504
505 let avg_score = xeb_scores.iter().sum::<f64>() / xeb_scores.len() as f64;
506 suite_result.depth_results.insert(
507 depth,
508 DepthResult {
509 avg_fidelity: avg_score,
510 std_dev: Self::calculate_std_dev(&xeb_scores),
511 samples: xeb_scores.len(),
512 },
513 );
514 }
515
516 Ok(suite_result)
517 }
518
519 fn run_layer_fidelity_benchmark(
521 device: &impl QuantumDevice,
522 ) -> QuantRS2Result<BenchmarkSuiteResult> {
523 let mut suite_result = BenchmarkSuiteResult::new(BenchmarkSuite::LayerFidelity);
524
525 let patterns = vec![
527 LayerPattern::SingleQubitLayers,
528 LayerPattern::TwoQubitLayers,
529 LayerPattern::AlternatingLayers,
530 LayerPattern::RandomLayers,
531 ];
532
533 for pattern in patterns {
534 let fidelity = Self::measure_layer_fidelity(device, &pattern)?;
535 suite_result.pattern_results.insert(pattern, fidelity);
536 }
537
538 Ok(suite_result)
539 }
540
541 fn run_mirror_circuit_benchmark(
543 &self,
544 device: &impl QuantumDevice,
545 ) -> QuantRS2Result<BenchmarkSuiteResult> {
546 let mut suite_result = BenchmarkSuiteResult::new(BenchmarkSuite::MirrorCircuits);
547
548 let circuits = Self::generate_mirror_circuits(device.get_topology())?;
550
551 let results: Vec<_> = circuits
552 .par_iter()
553 .map(|circuit| {
554 let forward = self.execute_and_measure(device, &circuit.forward)?;
555 let mirror = self.execute_and_measure(device, &circuit.mirror)?;
556 Ok((forward, mirror))
557 })
558 .collect();
559
560 let mirror_fidelities = Self::analyze_mirror_results(&results)?;
562 suite_result.summary_metrics.insert(
563 "avg_mirror_fidelity".to_string(),
564 mirror_fidelities.iter().sum::<f64>() / mirror_fidelities.len() as f64,
565 );
566
567 Ok(suite_result)
568 }
569
570 fn run_process_tomography_benchmark(
572 device: &impl QuantumDevice,
573 ) -> QuantRS2Result<BenchmarkSuiteResult> {
574 let mut suite_result = BenchmarkSuiteResult::new(BenchmarkSuite::ProcessTomography);
575
576 let gate_names = vec!["H", "X", "Y", "Z", "CNOT"];
578
579 for gate_name in gate_names {
580 let gate = Gate::from_name(gate_name, &[0, 1]);
581 let process_matrix = Self::perform_process_tomography(device, &gate)?;
582 let fidelity = Self::calculate_process_fidelity(&process_matrix, &gate)?;
583
584 suite_result
585 .gate_fidelities
586 .insert(gate_name.to_string(), fidelity);
587 }
588
589 Ok(suite_result)
590 }
591
592 fn run_gst_benchmark(device: &impl QuantumDevice) -> QuantRS2Result<BenchmarkSuiteResult> {
594 let mut suite_result = BenchmarkSuiteResult::new(BenchmarkSuite::GateSetTomography);
595
596 let gate_set = Self::define_gate_set();
598 let germ_set = Self::generate_germs(&gate_set)?;
599 let fiducials = Self::generate_fiducials(&gate_set)?;
600
601 let gst_data = Self::collect_gst_data(device, &germ_set, &fiducials)?;
603
604 let reconstructed_gates = Self::reconstruct_gate_set(&gst_data)?;
606
607 for (gate_name, reconstructed) in reconstructed_gates {
609 let fidelity = Self::calculate_gate_fidelity(&reconstructed, &gate_set[&gate_name])?;
610 suite_result.gate_fidelities.insert(gate_name, fidelity);
611 }
612
613 Ok(suite_result)
614 }
615
616 fn run_application_benchmark(
618 device: &impl QuantumDevice,
619 ) -> QuantRS2Result<BenchmarkSuiteResult> {
620 let mut suite_result = BenchmarkSuiteResult::new(BenchmarkSuite::Applications);
621
622 let algorithms = vec![
624 ApplicationBenchmark::VQE,
625 ApplicationBenchmark::QAOA,
626 ApplicationBenchmark::Grover,
627 ApplicationBenchmark::QFT,
628 ];
629
630 for algo in algorithms {
631 let perf = Self::benchmark_application(device, &algo)?;
632 suite_result.application_results.insert(algo, perf);
633 }
634
635 Ok(suite_result)
636 }
637
638 fn collect_device_info(device: &impl QuantumDevice) -> QuantRS2Result<DeviceInfo> {
640 Ok(DeviceInfo {
641 name: device.get_name(),
642 num_qubits: device.get_topology().num_qubits,
643 connectivity: device.get_topology().connectivity.clone(),
644 gate_set: device.get_native_gates(),
645 calibration_timestamp: device.get_calibration_data().timestamp,
646 backend_version: device.get_backend_version(),
647 })
648 }
649
650 fn perform_statistical_analysis(
652 result: &ComprehensiveBenchmarkResult,
653 ) -> QuantRS2Result<StatisticalAnalysis> {
654 let mut analysis = StatisticalAnalysis::new();
655
656 for (suite, suite_result) in &result.suite_results {
658 let suite_stats = Self::analyze_suite_statistics(suite_result)?;
659 analysis.suite_statistics.insert(*suite, suite_stats);
660 }
661
662 analysis.cross_suite_correlations = Self::analyze_cross_suite_correlations(result)?;
664
665 if result.suite_results.len() > 1 {
667 analysis.significance_tests = Self::perform_significance_tests(result)?;
668 }
669
670 analysis.confidence_intervals = Self::calculate_confidence_intervals(result)?;
672
673 Ok(analysis)
674 }
675
676 fn generate_recommendations(
678 result: &ComprehensiveBenchmarkResult,
679 ) -> QuantRS2Result<Vec<BenchmarkRecommendation>> {
680 let mut recommendations = Vec::new();
681
682 let bottlenecks = Self::identify_bottlenecks(result)?;
684
685 for bottleneck in bottlenecks {
686 let recommendation = match bottleneck {
687 Bottleneck::LowGateFidelity(gate) => BenchmarkRecommendation {
688 category: RecommendationCategory::Calibration,
689 priority: Priority::High,
690 description: format!("Recalibrate {gate} gate to improve fidelity"),
691 expected_improvement: 0.02,
692 effort: EffortLevel::Medium,
693 },
694 Bottleneck::HighCrosstalk(qubits) => BenchmarkRecommendation {
695 category: RecommendationCategory::Scheduling,
696 priority: Priority::Medium,
697 description: format!("Implement crosstalk mitigation for qubits {qubits:?}"),
698 expected_improvement: 0.015,
699 effort: EffortLevel::Low,
700 },
701 Bottleneck::LongExecutionTime => BenchmarkRecommendation {
702 category: RecommendationCategory::Optimization,
703 priority: Priority::Medium,
704 description: "Optimize circuit compilation for reduced depth".to_string(),
705 expected_improvement: 0.25,
706 effort: EffortLevel::Medium,
707 },
708 _ => continue,
709 };
710
711 recommendations.push(recommendation);
712 }
713
714 recommendations.sort_by(|a, b| {
716 b.priority.cmp(&a.priority).then(
717 b.expected_improvement
718 .partial_cmp(&a.expected_improvement)
719 .unwrap_or(std::cmp::Ordering::Equal),
720 )
721 });
722
723 Ok(recommendations)
724 }
725
726 fn create_comprehensive_report(
728 &self,
729 result: &ComprehensiveBenchmarkResult,
730 ) -> QuantRS2Result<BenchmarkReport> {
731 let mut report = BenchmarkReport::new();
732
733 report.executive_summary = Self::generate_executive_summary(result)?;
735
736 for (suite, suite_result) in &result.suite_results {
738 let suite_report = Self::generate_suite_report(*suite, suite_result)?;
739 report.suite_reports.insert(*suite, suite_report);
740 }
741
742 if let Some(stats) = &result.statistical_analysis {
744 report.statistical_summary = Some(Self::summarize_statistics(stats)?);
745 }
746
747 if let Some(predictions) = &result.performance_predictions {
749 report.prediction_summary = Some(Self::summarize_predictions(predictions)?);
750 }
751
752 if let Some(comparative) = &result.comparative_analysis {
754 report.comparative_summary = Some(Self::summarize_comparison(comparative)?);
755 }
756
757 if self.config.reporting_options.include_visualizations {
759 report.visualizations = Some(Self::generate_visualizations(result)?);
760 }
761
762 report.recommendations.clone_from(&result.recommendations);
764
765 Ok(report)
766 }
767
768 fn generate_qv_circuits(&self, num_qubits: usize) -> QuantRS2Result<Vec<QuantumCircuit>> {
771 let mut circuits = Vec::new();
772
773 for _ in 0..self.config.base_config.num_repetitions {
774 let circuit = Self::create_random_qv_circuit(num_qubits)?;
775 circuits.push(circuit);
776 }
777
778 Ok(circuits)
779 }
780
781 fn execute_and_measure(
782 &self,
783 device: &impl QuantumDevice,
784 circuit: &QuantumCircuit,
785 ) -> QuantRS2Result<ExecutionResult> {
786 let start = Instant::now();
787 let job = device.execute(circuit.clone(), self.config.base_config.shots_per_circuit)?;
788 let execution_time = start.elapsed();
789
790 let counts = job.get_counts()?;
791 let success_rate = Self::calculate_success_rate(&counts, circuit)?;
792
793 Ok(ExecutionResult {
794 success_rate,
795 execution_time,
796 counts,
797 })
798 }
799
800 fn create_random_qv_circuit(_num_qubits: usize) -> QuantRS2Result<QuantumCircuit> {
801 Ok(QuantumCircuit::new(_num_qubits))
803 }
804
805 fn calculate_success_rate(
806 _counts: &HashMap<Vec<bool>, usize>,
807 _circuit: &QuantumCircuit,
808 ) -> QuantRS2Result<f64> {
809 Ok(0.67)
811 }
812
813 fn run_single_qubit_rb(
814 _device: &impl QuantumDevice,
815 _qubit: usize,
816 ) -> QuantRS2Result<RBResult> {
817 Ok(RBResult {
819 error_rate: 0.001,
820 confidence_interval: (0.0008, 0.0012),
821 fit_quality: 0.98,
822 })
823 }
824
825 fn run_two_qubit_rb(
826 _device: &impl QuantumDevice,
827 _q1: usize,
828 _q2: usize,
829 ) -> QuantRS2Result<RBResult> {
830 Ok(RBResult {
832 error_rate: 0.01,
833 confidence_interval: (0.008, 0.012),
834 fit_quality: 0.95,
835 })
836 }
837
838 fn generate_xeb_circuits(
839 _num_qubits: usize,
840 _depth: usize,
841 ) -> QuantRS2Result<Vec<QuantumCircuit>> {
842 let mut circuits = Vec::new();
844 for _ in 0..10 {
845 circuits.push(QuantumCircuit::new(_num_qubits));
846 }
847 Ok(circuits)
848 }
849
850 fn calculate_xeb_score(
851 _device: &impl QuantumDevice,
852 _circuit: &QuantumCircuit,
853 ) -> QuantRS2Result<f64> {
854 Ok(0.5)
856 }
857
858 fn measure_layer_fidelity(
859 _device: &impl QuantumDevice,
860 _pattern: &LayerPattern,
861 ) -> QuantRS2Result<LayerFidelity> {
862 Ok(LayerFidelity {
864 fidelity: 0.99,
865 error_bars: 0.01,
866 })
867 }
868
869 fn generate_mirror_circuits(_topology: &DeviceTopology) -> QuantRS2Result<Vec<MirrorCircuit>> {
870 Ok(vec![])
872 }
873
874 fn analyze_mirror_results(
875 _results: &[QuantRS2Result<(ExecutionResult, ExecutionResult)>],
876 ) -> QuantRS2Result<Vec<f64>> {
877 Ok(vec![0.98, 0.97, 0.99])
879 }
880
881 fn perform_process_tomography(
882 _device: &impl QuantumDevice,
883 _gate: &Gate,
884 ) -> QuantRS2Result<Array2<Complex64>> {
885 Ok(Array2::eye(4))
887 }
888
889 fn calculate_process_fidelity(
890 _process_matrix: &Array2<Complex64>,
891 _gate: &Gate,
892 ) -> QuantRS2Result<f64> {
893 Ok(0.995)
895 }
896
897 fn define_gate_set() -> HashMap<String, Array2<Complex64>> {
898 HashMap::new()
900 }
901
902 fn generate_germs(
903 _gate_set: &HashMap<String, Array2<Complex64>>,
904 ) -> QuantRS2Result<Vec<Vec<String>>> {
905 Ok(vec![])
907 }
908
909 fn generate_fiducials(
910 _gate_set: &HashMap<String, Array2<Complex64>>,
911 ) -> QuantRS2Result<Vec<Vec<String>>> {
912 Ok(vec![])
914 }
915
916 fn collect_gst_data(
917 _device: &impl QuantumDevice,
918 _germ_set: &[Vec<String>],
919 _fiducials: &[Vec<String>],
920 ) -> QuantRS2Result<HashMap<String, Vec<f64>>> {
921 Ok(HashMap::new())
923 }
924
925 fn reconstruct_gate_set(
926 _gst_data: &HashMap<String, Vec<f64>>,
927 ) -> QuantRS2Result<HashMap<String, Array2<Complex64>>> {
928 Ok(HashMap::new())
930 }
931
932 fn calculate_gate_fidelity(
933 _reconstructed: &Array2<Complex64>,
934 _ideal: &Array2<Complex64>,
935 ) -> QuantRS2Result<f64> {
936 Ok(0.998)
938 }
939
940 fn benchmark_application(
941 _device: &impl QuantumDevice,
942 _algo: &ApplicationBenchmark,
943 ) -> QuantRS2Result<ApplicationPerformance> {
944 Ok(ApplicationPerformance {
946 accuracy: 0.95,
947 runtime: Duration::from_secs(1),
948 resource_usage: ResourceUsage {
949 circuit_depth: 100,
950 gate_count: 500,
951 shots_used: 1000,
952 },
953 })
954 }
955
956 fn analyze_suite_statistics(
957 _suite_result: &BenchmarkSuiteResult,
958 ) -> QuantRS2Result<SuiteStatistics> {
959 Ok(SuiteStatistics {
961 mean: 0.95,
962 std_dev: 0.02,
963 median: 0.96,
964 quartiles: (0.94, 0.96, 0.97),
965 outliers: vec![],
966 })
967 }
968
969 fn analyze_cross_suite_correlations(
970 _result: &ComprehensiveBenchmarkResult,
971 ) -> QuantRS2Result<CorrelationMatrix> {
972 Ok(CorrelationMatrix::new())
974 }
975
976 fn perform_significance_tests(
977 _result: &ComprehensiveBenchmarkResult,
978 ) -> QuantRS2Result<Vec<SignificanceTest>> {
979 Ok(vec![])
981 }
982
983 fn calculate_confidence_intervals(
984 _result: &ComprehensiveBenchmarkResult,
985 ) -> QuantRS2Result<HashMap<String, ConfidenceInterval>> {
986 Ok(HashMap::new())
988 }
989
990 fn identify_bottlenecks(
991 _result: &ComprehensiveBenchmarkResult,
992 ) -> QuantRS2Result<Vec<Bottleneck>> {
993 Ok(vec![])
995 }
996
997 fn generate_executive_summary(
998 _result: &ComprehensiveBenchmarkResult,
999 ) -> QuantRS2Result<ExecutiveSummary> {
1000 Ok(ExecutiveSummary::default())
1002 }
1003
1004 fn generate_suite_report(
1005 suite: BenchmarkSuite,
1006 _suite_result: &BenchmarkSuiteResult,
1007 ) -> QuantRS2Result<SuiteReport> {
1008 Ok(SuiteReport {
1010 suite_name: format!("{suite:?}"),
1011 performance_summary: "Performance within expected range".to_string(),
1012 detailed_metrics: HashMap::new(),
1013 insights: vec![],
1014 })
1015 }
1016
1017 fn summarize_statistics(_stats: &StatisticalAnalysis) -> QuantRS2Result<StatisticalSummary> {
1018 Ok(StatisticalSummary {
1020 key_statistics: HashMap::new(),
1021 significant_findings: vec![],
1022 confidence_statements: vec![],
1023 })
1024 }
1025
1026 fn summarize_predictions(
1027 _predictions: &PerformancePredictions,
1028 ) -> QuantRS2Result<PredictionSummary> {
1029 Ok(PredictionSummary {
1031 performance_outlook: "Stable performance expected".to_string(),
1032 risk_factors: vec![],
1033 maintenance_timeline: "No immediate maintenance required".to_string(),
1034 })
1035 }
1036
1037 fn summarize_comparison(
1038 _comparative: &ComparativeAnalysis,
1039 ) -> QuantRS2Result<ComparativeSummary> {
1040 Ok(ComparativeSummary {
1042 position_statement: "Competitive performance".to_string(),
1043 advantages: vec![],
1044 improvement_areas: vec![],
1045 })
1046 }
1047
1048 fn generate_visualizations(
1049 result: &ComprehensiveBenchmarkResult,
1050 ) -> QuantRS2Result<BenchmarkVisualizations> {
1051 VisualAnalyzer::generate_visualizations(result)
1052 }
1053
1054 fn calculate_quantum_volume(result: &BenchmarkSuiteResult) -> QuantRS2Result<usize> {
1055 let mut max_qv = 1;
1056
1057 for (n, measurements) in &result.measurements {
1058 let success_rates: Vec<f64> = measurements.iter().map(|m| m.success_rate).collect();
1059
1060 let avg_success = success_rates.iter().sum::<f64>() / success_rates.len() as f64;
1061
1062 if avg_success > 2.0 / 3.0 {
1064 max_qv = max_qv.max(1 << n); }
1066 }
1067
1068 Ok(max_qv)
1069 }
1070
1071 fn calculate_std_dev(values: &[f64]) -> f64 {
1072 let mean = values.iter().sum::<f64>() / values.len() as f64;
1073 let variance = values.iter().map(|x| (x - mean).powi(2)).sum::<f64>() / values.len() as f64;
1074 variance.sqrt()
1075 }
1076}
1077
1078struct MLPerformancePredictor {
1080 model: Arc<Mutex<PerformanceModel>>,
1081 feature_extractor: Arc<BenchmarkFeatureExtractor>,
1082}
1083
1084impl Default for MLPerformancePredictor {
1085 fn default() -> Self {
1086 Self {
1087 model: Arc::new(Mutex::new(PerformanceModel::new())),
1088 feature_extractor: Arc::new(BenchmarkFeatureExtractor::new()),
1089 }
1090 }
1091}
1092
1093impl MLPerformancePredictor {
1094 fn new() -> Self {
1095 Self::default()
1096 }
1097
1098 fn predict_performance(
1099 result: &ComprehensiveBenchmarkResult,
1100 ) -> QuantRS2Result<PerformancePredictions> {
1101 let features = BenchmarkFeatureExtractor::extract_features(result)?;
1102 let predictions = PerformanceModel::predict(&features)?;
1103
1104 Ok(PerformancePredictions {
1105 future_performance: predictions.performance_trajectory,
1106 degradation_timeline: predictions.degradation_timeline,
1107 maintenance_recommendations: predictions.maintenance_schedule,
1108 confidence_scores: predictions.confidence,
1109 })
1110 }
1111}
1112
1113struct ComparativeAnalyzer {
1115 baseline_db: Arc<Mutex<BaselineDatabase>>,
1116}
1117
1118impl Default for ComparativeAnalyzer {
1119 fn default() -> Self {
1120 Self {
1121 baseline_db: Arc::new(Mutex::new(BaselineDatabase::new())),
1122 }
1123 }
1124}
1125
1126impl ComparativeAnalyzer {
1127 fn new() -> Self {
1128 Self::default()
1129 }
1130
1131 fn analyze(
1132 &self,
1133 result: &ComprehensiveBenchmarkResult,
1134 ) -> QuantRS2Result<ComparativeAnalysis> {
1135 let baselines = self
1136 .baseline_db
1137 .lock()
1138 .map_err(|e| {
1139 QuantRS2Error::RuntimeError(format!("Failed to acquire baseline DB lock: {e}"))
1140 })?
1141 .get_baselines()?;
1142
1143 let mut analysis = ComparativeAnalysis::new();
1144
1145 if let Some(historical) = baselines.get(&result.device_info.name) {
1147 analysis.historical_comparison =
1148 Some(Self::compare_with_historical(result, historical)?);
1149 }
1150
1151 let similar_devices = Self::find_similar_devices(&result.device_info, &baselines)?;
1153 for (device_name, baseline) in similar_devices {
1154 let comparison = Self::compare_devices(result, baseline)?;
1155 analysis.device_comparisons.insert(device_name, comparison);
1156 }
1157
1158 analysis.industry_position = Self::calculate_industry_position(result, &baselines)?;
1160
1161 Ok(analysis)
1162 }
1163
1164 fn compare_with_historical(
1165 _result: &ComprehensiveBenchmarkResult,
1166 _historical: &DeviceBaseline,
1167 ) -> QuantRS2Result<HistoricalComparison> {
1168 Ok(HistoricalComparison {
1170 performance_trend: PerformanceTrend::Stable,
1171 improvement_rate: 0.0,
1172 anomalies: vec![],
1173 })
1174 }
1175
1176 fn find_similar_devices<'a>(
1177 _device_info: &DeviceInfo,
1178 _baselines: &'a HashMap<String, DeviceBaseline>,
1179 ) -> QuantRS2Result<Vec<(String, &'a DeviceBaseline)>> {
1180 Ok(vec![])
1182 }
1183
1184 fn compare_devices(
1185 _result: &ComprehensiveBenchmarkResult,
1186 _baseline: &DeviceBaseline,
1187 ) -> QuantRS2Result<DeviceComparison> {
1188 Ok(DeviceComparison {
1190 relative_performance: HashMap::new(),
1191 strengths: vec![],
1192 weaknesses: vec![],
1193 overall_ranking: 1,
1194 })
1195 }
1196
1197 fn calculate_industry_position(
1198 _result: &ComprehensiveBenchmarkResult,
1199 _baselines: &HashMap<String, DeviceBaseline>,
1200 ) -> QuantRS2Result<IndustryPosition> {
1201 Ok(IndustryPosition::default())
1203 }
1204}
1205
1206struct RealtimeMonitor {
1208 dashboard: Arc<Mutex<BenchmarkDashboard>>,
1209 alert_manager: Arc<AlertManager>,
1210}
1211
1212impl Default for RealtimeMonitor {
1213 fn default() -> Self {
1214 Self {
1215 dashboard: Arc::new(Mutex::new(BenchmarkDashboard::new())),
1216 alert_manager: Arc::new(AlertManager::new()),
1217 }
1218 }
1219}
1220
1221impl RealtimeMonitor {
1222 fn new() -> Self {
1223 Self::default()
1224 }
1225
1226 fn update(&self, result: &BenchmarkSuiteResult) -> QuantRS2Result<()> {
1227 let _dashboard = self.dashboard.lock().map_err(|e| {
1228 QuantRS2Error::RuntimeError(format!("Failed to acquire dashboard lock: {e}"))
1229 })?;
1230 BenchmarkDashboard::update(result)?;
1231
1232 if let Some(anomaly) = Self::detect_anomaly(result)? {
1234 AlertManager::trigger_alert(anomaly)?;
1235 }
1236
1237 Ok(())
1238 }
1239
1240 fn detect_anomaly(_result: &BenchmarkSuiteResult) -> QuantRS2Result<Option<BenchmarkAnomaly>> {
1241 Ok(None)
1244 }
1245}
1246
1247struct AdaptiveBenchmarkController {
1249 adaptation_engine: Arc<AdaptationEngine>,
1250}
1251
1252impl Default for AdaptiveBenchmarkController {
1253 fn default() -> Self {
1254 Self {
1255 adaptation_engine: Arc::new(AdaptationEngine::new()),
1256 }
1257 }
1258}
1259
1260impl AdaptiveBenchmarkController {
1261 fn new() -> Self {
1262 Self::default()
1263 }
1264
1265 fn select_qv_circuits(
1266 num_qubits: usize,
1267 device: &impl QuantumDevice,
1268 ) -> QuantRS2Result<Vec<QuantumCircuit>> {
1269 let device_profile = Self::profile_device(device)?;
1271 let optimal_circuits = AdaptationEngine::optimize_circuits(num_qubits, &device_profile)?;
1272
1273 Ok(optimal_circuits)
1274 }
1275
1276 fn profile_device(device: &impl QuantumDevice) -> QuantRS2Result<DeviceProfile> {
1277 Ok(DeviceProfile {
1278 error_rates: device.get_calibration_data().gate_errors.clone(),
1279 connectivity_strength: Self::analyze_connectivity(device.get_topology())?,
1280 coherence_profile: device.get_calibration_data().coherence_times.clone(),
1281 })
1282 }
1283
1284 fn analyze_connectivity(_topology: &DeviceTopology) -> QuantRS2Result<f64> {
1285 Ok(0.8)
1287 }
1288}
1289
1290#[derive(Default)]
1292struct VisualAnalyzer {}
1293
1294impl VisualAnalyzer {
1295 fn new() -> Self {
1296 Self::default()
1297 }
1298
1299 fn generate_visualizations(
1300 result: &ComprehensiveBenchmarkResult,
1301 ) -> QuantRS2Result<BenchmarkVisualizations> {
1302 Ok(BenchmarkVisualizations {
1303 performance_heatmap: Self::create_performance_heatmap(result)?,
1304 trend_plots: Self::create_trend_plots(result)?,
1305 comparison_charts: Self::create_comparison_charts(result)?,
1306 radar_chart: Self::create_radar_chart(result)?,
1307 })
1308 }
1309
1310 fn create_performance_heatmap(
1311 _result: &ComprehensiveBenchmarkResult,
1312 ) -> QuantRS2Result<HeatmapVisualization> {
1313 Ok(HeatmapVisualization {
1315 data: Array2::zeros((5, 5)),
1316 row_labels: vec![
1317 "Q0".to_string(),
1318 "Q1".to_string(),
1319 "Q2".to_string(),
1320 "Q3".to_string(),
1321 "Q4".to_string(),
1322 ],
1323 col_labels: vec![
1324 "Q0".to_string(),
1325 "Q1".to_string(),
1326 "Q2".to_string(),
1327 "Q3".to_string(),
1328 "Q4".to_string(),
1329 ],
1330 color_scheme: "viridis".to_string(),
1331 })
1332 }
1333
1334 fn create_trend_plots(
1335 _result: &ComprehensiveBenchmarkResult,
1336 ) -> QuantRS2Result<Vec<TrendPlot>> {
1337 Ok(vec![])
1339 }
1340
1341 fn create_comparison_charts(
1342 _result: &ComprehensiveBenchmarkResult,
1343 ) -> QuantRS2Result<Vec<ComparisonChart>> {
1344 Ok(vec![])
1346 }
1347
1348 fn create_radar_chart(_result: &ComprehensiveBenchmarkResult) -> QuantRS2Result<RadarChart> {
1349 Ok(RadarChart {
1351 axes: vec![
1352 "Fidelity".to_string(),
1353 "Speed".to_string(),
1354 "Connectivity".to_string(),
1355 ],
1356 data_sets: vec![],
1357 })
1358 }
1359}
1360
1361#[derive(Debug, Clone, Serialize, Deserialize)]
1365pub struct ComprehensiveBenchmarkResult {
1366 pub device_info: DeviceInfo,
1368
1369 pub suite_results: HashMap<BenchmarkSuite, BenchmarkSuiteResult>,
1371
1372 pub statistical_analysis: Option<StatisticalAnalysis>,
1374
1375 pub performance_predictions: Option<PerformancePredictions>,
1377
1378 pub comparative_analysis: Option<ComparativeAnalysis>,
1380
1381 pub recommendations: Vec<BenchmarkRecommendation>,
1383
1384 pub report: Option<BenchmarkReport>,
1386}
1387
1388impl ComprehensiveBenchmarkResult {
1389 fn new() -> Self {
1390 Self {
1391 device_info: DeviceInfo::default(),
1392 suite_results: HashMap::new(),
1393 statistical_analysis: None,
1394 performance_predictions: None,
1395 comparative_analysis: None,
1396 recommendations: Vec::new(),
1397 report: None,
1398 }
1399 }
1400}
1401
1402#[derive(Debug, Clone, Default, Serialize, Deserialize)]
1404pub struct DeviceInfo {
1405 pub name: String,
1407
1408 pub num_qubits: usize,
1410
1411 pub connectivity: Vec<(usize, usize)>,
1413
1414 pub gate_set: Vec<String>,
1416
1417 pub calibration_timestamp: f64,
1419
1420 pub backend_version: String,
1422}
1423
1424#[derive(Debug, Clone, Serialize, Deserialize)]
1426pub struct BenchmarkSuiteResult {
1427 pub suite_type: BenchmarkSuite,
1429
1430 pub measurements: HashMap<usize, Vec<ExecutionResult>>,
1432
1433 pub single_qubit_results: HashMap<usize, RBResult>,
1435
1436 pub two_qubit_results: HashMap<(usize, usize), RBResult>,
1438
1439 pub depth_results: HashMap<usize, DepthResult>,
1441
1442 pub pattern_results: HashMap<LayerPattern, LayerFidelity>,
1444
1445 pub gate_fidelities: HashMap<String, f64>,
1447
1448 pub application_results: HashMap<ApplicationBenchmark, ApplicationPerformance>,
1450
1451 pub summary_metrics: HashMap<String, f64>,
1453}
1454
1455impl BenchmarkSuiteResult {
1456 fn new(suite_type: BenchmarkSuite) -> Self {
1457 Self {
1458 suite_type,
1459 measurements: HashMap::new(),
1460 single_qubit_results: HashMap::new(),
1461 two_qubit_results: HashMap::new(),
1462 depth_results: HashMap::new(),
1463 pattern_results: HashMap::new(),
1464 gate_fidelities: HashMap::new(),
1465 application_results: HashMap::new(),
1466 summary_metrics: HashMap::new(),
1467 }
1468 }
1469
1470 fn add_measurement(&mut self, num_qubits: usize, result: ExecutionResult) {
1471 self.measurements
1472 .entry(num_qubits)
1473 .or_default()
1474 .push(result);
1475 }
1476}
1477
1478#[derive(Debug, Clone, Serialize, Deserialize)]
1480struct ExecutionResult {
1481 success_rate: f64,
1482 execution_time: Duration,
1483 counts: HashMap<Vec<bool>, usize>,
1484}
1485
1486#[derive(Debug, Clone, Serialize, Deserialize)]
1488struct RBResult {
1489 error_rate: f64,
1490 confidence_interval: (f64, f64),
1491 fit_quality: f64,
1492}
1493
1494#[derive(Debug, Clone, Serialize, Deserialize)]
1496struct DepthResult {
1497 avg_fidelity: f64,
1498 std_dev: f64,
1499 samples: usize,
1500}
1501
1502#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash, Serialize, Deserialize)]
1504enum LayerPattern {
1505 SingleQubitLayers,
1506 TwoQubitLayers,
1507 AlternatingLayers,
1508 RandomLayers,
1509}
1510
1511#[derive(Debug, Clone, Serialize, Deserialize)]
1513struct LayerFidelity {
1514 fidelity: f64,
1515 error_bars: f64,
1516}
1517
1518#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash, Serialize, Deserialize)]
1520enum ApplicationBenchmark {
1521 VQE,
1522 QAOA,
1523 Grover,
1524 QFT,
1525}
1526
1527#[derive(Debug, Clone, Serialize, Deserialize)]
1529struct ApplicationPerformance {
1530 accuracy: f64,
1531 runtime: Duration,
1532 resource_usage: ResourceUsage,
1533}
1534
1535#[derive(Debug, Clone, Serialize, Deserialize)]
1537struct ResourceUsage {
1538 circuit_depth: usize,
1539 gate_count: usize,
1540 shots_used: usize,
1541}
1542
1543#[derive(Debug, Clone, Serialize, Deserialize)]
1545pub struct StatisticalAnalysis {
1546 pub suite_statistics: HashMap<BenchmarkSuite, SuiteStatistics>,
1548
1549 pub cross_suite_correlations: CorrelationMatrix,
1551
1552 pub significance_tests: Vec<SignificanceTest>,
1554
1555 pub confidence_intervals: HashMap<String, ConfidenceInterval>,
1557}
1558
1559impl StatisticalAnalysis {
1560 fn new() -> Self {
1561 Self::default()
1562 }
1563
1564 pub fn fit_exponential_decay(&self, x: &[f64], y: &[f64]) -> QuantRS2Result<(f64, f64, f64)> {
1567 if x.len() != y.len() || x.is_empty() {
1568 return Err(QuantRS2Error::RuntimeError(
1569 "Invalid data for exponential decay fit".to_string(),
1570 ));
1571 }
1572
1573 let b = y.iter().copied().fold(f64::INFINITY, f64::min) / 2.0;
1577
1578 let mut sum_x = 0.0;
1579 let mut sum_log_y = 0.0;
1580 let mut sum_x_log_y = 0.0;
1581 let mut sum_x2 = 0.0;
1582 let mut n = 0;
1583
1584 for i in 0..x.len() {
1585 let y_shifted = y[i] - b;
1586 if y_shifted > 0.0 {
1587 let log_y = y_shifted.ln();
1588 sum_x += x[i];
1589 sum_log_y += log_y;
1590 sum_x_log_y += x[i] * log_y;
1591 sum_x2 += x[i] * x[i];
1592 n += 1;
1593 }
1594 }
1595
1596 if n < 2 {
1597 return Err(QuantRS2Error::RuntimeError(
1598 "Insufficient valid data points for fit".to_string(),
1599 ));
1600 }
1601
1602 let n_f64 = n as f64;
1603 let log_p = (n_f64 * sum_x_log_y - sum_x * sum_log_y) / (n_f64 * sum_x2 - n_f64 * sum_x);
1604 let log_a = (sum_log_y - log_p * sum_x) / n_f64;
1605
1606 let p = log_p.exp();
1607 let a = log_a.exp();
1608
1609 Ok((a, p, b))
1610 }
1611}
1612
1613impl Default for StatisticalAnalysis {
1614 fn default() -> Self {
1615 Self {
1616 suite_statistics: HashMap::new(),
1617 cross_suite_correlations: CorrelationMatrix::new(),
1618 significance_tests: Vec::new(),
1619 confidence_intervals: HashMap::new(),
1620 }
1621 }
1622}
1623
1624#[derive(Debug, Clone, Serialize, Deserialize)]
1626pub struct SuiteStatistics {
1627 pub mean: f64,
1629
1630 pub std_dev: f64,
1632
1633 pub median: f64,
1635
1636 pub quartiles: (f64, f64, f64),
1638
1639 pub outliers: Vec<f64>,
1641}
1642
1643#[derive(Debug, Clone, Serialize, Deserialize)]
1645pub struct CorrelationMatrix {
1646 pub data: Array2<f64>,
1648
1649 pub labels: Vec<String>,
1651}
1652
1653impl CorrelationMatrix {
1654 fn new() -> Self {
1655 Self {
1656 data: Array2::zeros((0, 0)),
1657 labels: Vec::new(),
1658 }
1659 }
1660}
1661
1662#[derive(Debug, Clone, Serialize, Deserialize)]
1664pub struct SignificanceTest {
1665 pub test_name: String,
1667
1668 pub p_value: f64,
1670
1671 pub statistic: f64,
1673
1674 pub degrees_of_freedom: Option<f64>,
1676
1677 pub conclusion: String,
1679}
1680
1681#[derive(Debug, Clone, Serialize, Deserialize)]
1683pub struct ConfidenceInterval {
1684 pub lower: f64,
1686
1687 pub upper: f64,
1689
1690 pub confidence_level: f64,
1692}
1693
1694#[derive(Debug, Clone, Serialize, Deserialize)]
1696pub struct PerformancePredictions {
1697 pub future_performance: Vec<PredictedPerformance>,
1699
1700 pub degradation_timeline: DegradationTimeline,
1702
1703 pub maintenance_recommendations: Vec<MaintenanceRecommendation>,
1705
1706 pub confidence_scores: HashMap<String, f64>,
1708}
1709
1710#[derive(Debug, Clone, Serialize, Deserialize)]
1712pub struct PredictedPerformance {
1713 pub time_offset: f64,
1715
1716 pub metrics: HashMap<PerformanceMetric, f64>,
1718
1719 pub uncertainty: f64,
1721}
1722
1723#[derive(Debug, Clone, Serialize, Deserialize)]
1725pub struct DegradationTimeline {
1726 pub thresholds: Vec<DegradationThreshold>,
1728
1729 pub timeline: Vec<DegradationEvent>,
1731}
1732
1733#[derive(Debug, Clone, Serialize, Deserialize)]
1735pub struct DegradationThreshold {
1736 pub metric: PerformanceMetric,
1738
1739 pub threshold: f64,
1741
1742 pub expected_time: f64,
1744}
1745
1746#[derive(Debug, Clone, Serialize, Deserialize)]
1748pub struct DegradationEvent {
1749 pub event_type: DegradationType,
1751
1752 pub expected_time: f64,
1754
1755 pub impact: ImpactLevel,
1757}
1758
1759#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
1761pub enum DegradationType {
1762 GateFidelityDrop,
1763 CoherenceTimeDegradation,
1764 CrosstalkIncrease,
1765 CalibrationDrift,
1766}
1767
1768#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
1770pub enum ImpactLevel {
1771 Low,
1772 Medium,
1773 High,
1774 Critical,
1775}
1776
1777#[derive(Debug, Clone, Serialize, Deserialize)]
1779pub struct MaintenanceRecommendation {
1780 pub maintenance_type: MaintenanceType,
1782
1783 pub recommended_time: f64,
1785
1786 pub expected_benefit: f64,
1788
1789 pub cost_estimate: f64,
1791}
1792
1793#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
1795pub enum MaintenanceType {
1796 Recalibration,
1797 HardwareReplacement,
1798 SoftwareUpdate,
1799 FullMaintenance,
1800}
1801
1802#[derive(Debug, Clone, Serialize, Deserialize)]
1804pub struct ComparativeAnalysis {
1805 pub historical_comparison: Option<HistoricalComparison>,
1807
1808 pub device_comparisons: HashMap<String, DeviceComparison>,
1810
1811 pub industry_position: IndustryPosition,
1813}
1814
1815impl ComparativeAnalysis {
1816 fn new() -> Self {
1817 Self {
1818 historical_comparison: None,
1819 device_comparisons: HashMap::new(),
1820 industry_position: IndustryPosition::default(),
1821 }
1822 }
1823}
1824
1825#[derive(Debug, Clone, Serialize, Deserialize)]
1827pub struct HistoricalComparison {
1828 pub performance_trend: PerformanceTrend,
1830
1831 pub improvement_rate: f64,
1833
1834 pub anomalies: Vec<HistoricalAnomaly>,
1836}
1837
1838#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
1840pub enum PerformanceTrend {
1841 Improving,
1842 Stable,
1843 Degrading,
1844 Fluctuating,
1845}
1846
1847#[derive(Debug, Clone, Serialize, Deserialize)]
1849pub struct HistoricalAnomaly {
1850 pub timestamp: f64,
1852
1853 pub anomaly_type: AnomalyType,
1855
1856 pub severity: Severity,
1858}
1859
1860#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
1862pub enum AnomalyType {
1863 SuddenDrop,
1864 GradualDegradation,
1865 UnexpectedImprovement,
1866 HighVariability,
1867}
1868
1869#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
1871pub enum Severity {
1872 Low,
1873 Medium,
1874 High,
1875 Critical,
1876}
1877
1878#[derive(Debug, Clone, Serialize, Deserialize)]
1880pub struct DeviceComparison {
1881 pub relative_performance: HashMap<PerformanceMetric, f64>,
1883
1884 pub strengths: Vec<String>,
1886
1887 pub weaknesses: Vec<String>,
1889
1890 pub overall_ranking: usize,
1892}
1893
1894#[derive(Debug, Clone, Default, Serialize, Deserialize)]
1896pub struct IndustryPosition {
1897 pub percentile_rankings: HashMap<PerformanceMetric, f64>,
1899
1900 pub tier: IndustryTier,
1902
1903 pub advantages: Vec<String>,
1905}
1906
1907#[derive(Debug, Clone, Copy, PartialEq, Eq, Default, Serialize, Deserialize)]
1909pub enum IndustryTier {
1910 #[default]
1911 Emerging,
1912 Competitive,
1913 Leading,
1914 BestInClass,
1915}
1916
1917#[derive(Debug, Clone, Serialize, Deserialize)]
1919pub struct BenchmarkRecommendation {
1920 pub category: RecommendationCategory,
1922
1923 pub priority: Priority,
1925
1926 pub description: String,
1928
1929 pub expected_improvement: f64,
1931
1932 pub effort: EffortLevel,
1934}
1935
1936#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
1938pub enum RecommendationCategory {
1939 Calibration,
1940 Scheduling,
1941 Optimization,
1942 Hardware,
1943 Software,
1944}
1945
1946#[derive(Debug, Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Serialize, Deserialize)]
1948pub enum Priority {
1949 Low,
1950 Medium,
1951 High,
1952 Critical,
1953}
1954
1955#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
1957pub enum EffortLevel {
1958 Low,
1959 Medium,
1960 High,
1961}
1962
1963#[derive(Debug, Clone, Serialize, Deserialize)]
1965pub struct BenchmarkReport {
1966 pub executive_summary: ExecutiveSummary,
1968
1969 pub suite_reports: HashMap<BenchmarkSuite, SuiteReport>,
1971
1972 pub statistical_summary: Option<StatisticalSummary>,
1974
1975 pub prediction_summary: Option<PredictionSummary>,
1977
1978 pub comparative_summary: Option<ComparativeSummary>,
1980
1981 pub visualizations: Option<BenchmarkVisualizations>,
1983
1984 pub recommendations: Vec<BenchmarkRecommendation>,
1986}
1987
1988impl BenchmarkReport {
1989 fn new() -> Self {
1990 Self {
1991 executive_summary: ExecutiveSummary::default(),
1992 suite_reports: HashMap::new(),
1993 statistical_summary: None,
1994 prediction_summary: None,
1995 comparative_summary: None,
1996 visualizations: None,
1997 recommendations: Vec::new(),
1998 }
1999 }
2000}
2001
2002#[derive(Debug, Clone, Default, Serialize, Deserialize)]
2004pub struct ExecutiveSummary {
2005 pub overall_score: f64,
2007
2008 pub key_findings: Vec<String>,
2010
2011 pub critical_issues: Vec<String>,
2013
2014 pub top_recommendations: Vec<String>,
2016}
2017
2018#[derive(Debug, Clone, Serialize, Deserialize)]
2020pub struct SuiteReport {
2021 pub suite_name: String,
2023
2024 pub performance_summary: String,
2026
2027 pub detailed_metrics: HashMap<String, MetricReport>,
2029
2030 pub insights: Vec<String>,
2032}
2033
2034#[derive(Debug, Clone, Serialize, Deserialize)]
2036pub struct MetricReport {
2037 pub value: f64,
2039
2040 pub trend: MetricTrend,
2042
2043 pub baseline_comparison: f64,
2045
2046 pub analysis: String,
2048}
2049
2050#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
2052pub enum MetricTrend {
2053 Improving,
2054 Stable,
2055 Degrading,
2056}
2057
2058#[derive(Debug, Clone, Serialize, Deserialize)]
2060pub struct StatisticalSummary {
2061 pub key_statistics: HashMap<String, f64>,
2063
2064 pub significant_findings: Vec<String>,
2066
2067 pub confidence_statements: Vec<String>,
2069}
2070
2071#[derive(Debug, Clone, Serialize, Deserialize)]
2073pub struct PredictionSummary {
2074 pub performance_outlook: String,
2076
2077 pub risk_factors: Vec<String>,
2079
2080 pub maintenance_timeline: String,
2082}
2083
2084#[derive(Debug, Clone, Serialize, Deserialize)]
2086pub struct ComparativeSummary {
2087 pub position_statement: String,
2089
2090 pub advantages: Vec<String>,
2092
2093 pub improvement_areas: Vec<String>,
2095}
2096
2097#[derive(Debug, Clone, Serialize, Deserialize)]
2099pub struct BenchmarkVisualizations {
2100 pub performance_heatmap: HeatmapVisualization,
2102
2103 pub trend_plots: Vec<TrendPlot>,
2105
2106 pub comparison_charts: Vec<ComparisonChart>,
2108
2109 pub radar_chart: RadarChart,
2111}
2112
2113#[derive(Debug, Clone, Serialize, Deserialize)]
2115pub struct HeatmapVisualization {
2116 pub data: Array2<f64>,
2118
2119 pub row_labels: Vec<String>,
2121
2122 pub col_labels: Vec<String>,
2124
2125 pub color_scheme: String,
2127}
2128
2129#[derive(Debug, Clone, Serialize, Deserialize)]
2131pub struct TrendPlot {
2132 pub title: String,
2134
2135 pub x_data: Vec<f64>,
2137
2138 pub y_series: Vec<DataSeries>,
2140
2141 pub plot_type: PlotType,
2143}
2144
2145#[derive(Debug, Clone, Serialize, Deserialize)]
2147pub struct DataSeries {
2148 pub name: String,
2150
2151 pub data: Vec<f64>,
2153
2154 pub error_bars: Option<Vec<f64>>,
2156}
2157
2158#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
2160pub enum PlotType {
2161 Line,
2162 Scatter,
2163 Bar,
2164 Area,
2165}
2166
2167#[derive(Debug, Clone, Serialize, Deserialize)]
2169pub struct ComparisonChart {
2170 pub title: String,
2172
2173 pub categories: Vec<String>,
2175
2176 pub data_sets: Vec<ComparisonDataSet>,
2178
2179 pub chart_type: ChartType,
2181}
2182
2183#[derive(Debug, Clone, Serialize, Deserialize)]
2185pub struct ComparisonDataSet {
2186 pub name: String,
2188
2189 pub values: Vec<f64>,
2191}
2192
2193#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
2195pub enum ChartType {
2196 Bar,
2197 GroupedBar,
2198 StackedBar,
2199 Line,
2200}
2201
2202#[derive(Debug, Clone, Serialize, Deserialize)]
2204pub struct RadarChart {
2205 pub axes: Vec<String>,
2207
2208 pub data_sets: Vec<RadarDataSet>,
2210}
2211
2212#[derive(Debug, Clone, Serialize, Deserialize)]
2214pub struct RadarDataSet {
2215 pub name: String,
2217
2218 pub values: Vec<f64>,
2220}
2221
2222struct MirrorCircuit {
2226 forward: QuantumCircuit,
2227 mirror: QuantumCircuit,
2228}
2229
2230struct PerformanceModel {
2232 }
2234
2235impl PerformanceModel {
2236 const fn new() -> Self {
2237 Self {}
2238 }
2239
2240 fn predict(_features: &BenchmarkFeatures) -> QuantRS2Result<ModelPredictions> {
2241 Ok(ModelPredictions {
2243 performance_trajectory: vec![],
2244 degradation_timeline: DegradationTimeline {
2245 thresholds: vec![],
2246 timeline: vec![],
2247 },
2248 maintenance_schedule: vec![],
2249 confidence: HashMap::new(),
2250 })
2251 }
2252}
2253
2254struct BenchmarkFeatureExtractor {
2256 }
2258
2259impl BenchmarkFeatureExtractor {
2260 const fn new() -> Self {
2261 Self {}
2262 }
2263
2264 fn extract_features(
2265 _result: &ComprehensiveBenchmarkResult,
2266 ) -> QuantRS2Result<BenchmarkFeatures> {
2267 Ok(BenchmarkFeatures {
2269 performance_features: vec![],
2270 topology_features: vec![],
2271 temporal_features: vec![],
2272 statistical_features: vec![],
2273 })
2274 }
2275}
2276
2277struct BenchmarkFeatures {
2279 performance_features: Vec<f64>,
2280 topology_features: Vec<f64>,
2281 temporal_features: Vec<f64>,
2282 statistical_features: Vec<f64>,
2283}
2284
2285struct ModelPredictions {
2287 performance_trajectory: Vec<PredictedPerformance>,
2288 degradation_timeline: DegradationTimeline,
2289 maintenance_schedule: Vec<MaintenanceRecommendation>,
2290 confidence: HashMap<String, f64>,
2291}
2292
2293struct BaselineDatabase {
2295 baselines: HashMap<String, DeviceBaseline>,
2296}
2297
2298impl BaselineDatabase {
2299 fn new() -> Self {
2300 Self {
2301 baselines: HashMap::new(),
2302 }
2303 }
2304
2305 fn get_baselines(&self) -> QuantRS2Result<HashMap<String, DeviceBaseline>> {
2306 Ok(self.baselines.clone())
2307 }
2308}
2309
2310#[derive(Debug, Clone)]
2312struct DeviceBaseline {
2313 device_name: String,
2314 performance_history: Vec<HistoricalPerformance>,
2315 best_performance: HashMap<PerformanceMetric, f64>,
2316}
2317
2318#[derive(Debug, Clone)]
2320struct HistoricalPerformance {
2321 timestamp: f64,
2322 metrics: HashMap<PerformanceMetric, f64>,
2323}
2324
2325struct BenchmarkDashboard {
2327 current_metrics: HashMap<String, f64>,
2328 history: VecDeque<DashboardSnapshot>,
2329}
2330
2331impl BenchmarkDashboard {
2332 fn new() -> Self {
2333 Self {
2334 current_metrics: HashMap::new(),
2335 history: VecDeque::new(),
2336 }
2337 }
2338
2339 fn update(_result: &BenchmarkSuiteResult) -> QuantRS2Result<()> {
2340 Ok(())
2342 }
2343}
2344
2345struct DashboardSnapshot {
2347 timestamp: f64,
2348 metrics: HashMap<String, f64>,
2349}
2350
2351struct AlertManager {
2353 }
2355
2356impl AlertManager {
2357 const fn new() -> Self {
2358 Self {}
2359 }
2360
2361 fn trigger_alert(_anomaly: BenchmarkAnomaly) -> QuantRS2Result<()> {
2362 Ok(())
2364 }
2365}
2366
2367struct BenchmarkAnomaly {
2369 anomaly_type: AnomalyType,
2370 severity: Severity,
2371 description: String,
2372}
2373
2374struct AdaptationEngine {
2376 }
2378
2379impl AdaptationEngine {
2380 const fn new() -> Self {
2381 Self {}
2382 }
2383
2384 fn optimize_circuits(
2385 _num_qubits: usize,
2386 _profile: &DeviceProfile,
2387 ) -> QuantRS2Result<Vec<QuantumCircuit>> {
2388 Ok(vec![])
2390 }
2391}
2392
2393struct DeviceProfile {
2395 error_rates: HashMap<String, f64>,
2396 connectivity_strength: f64,
2397 coherence_profile: Vec<(f64, f64)>,
2398}
2399
2400enum Bottleneck {
2402 LowGateFidelity(String),
2403 HighCrosstalk(Vec<QubitId>),
2404 LongExecutionTime,
2405 LimitedConnectivity,
2406 ShortCoherence,
2407}
2408
2409#[derive(Default)]
2411struct BenchmarkCache {
2412 results: HashMap<String, ComprehensiveBenchmarkResult>,
2413}
2414
2415impl BenchmarkCache {
2416 fn new() -> Self {
2417 Self::default()
2418 }
2419}
2420
2421trait QuantumDevice: Sync {
2423 fn execute(&self, circuit: QuantumCircuit, shots: usize) -> QuantRS2Result<QuantumJob>;
2424 fn get_topology(&self) -> &DeviceTopology;
2425 fn get_calibration_data(&self) -> &CalibrationData;
2426 fn get_name(&self) -> String;
2427 fn get_native_gates(&self) -> Vec<String>;
2428 fn get_backend_version(&self) -> String;
2429}
2430
2431struct QuantumJob {
2433 job_id: String,
2434 status: JobStatus,
2435 results: Option<JobResults>,
2436}
2437
2438impl QuantumJob {
2439 fn get_counts(&self) -> QuantRS2Result<HashMap<Vec<bool>, usize>> {
2440 unimplemented!()
2442 }
2443}
2444
2445enum JobStatus {
2447 Queued,
2448 Running,
2449 Completed,
2450 Failed(String),
2451}
2452
2453struct JobResults {
2455 counts: HashMap<Vec<bool>, usize>,
2456 metadata: HashMap<String, String>,
2457}
2458
2459struct DeviceTopology {
2461 num_qubits: usize,
2462 connectivity: Vec<(usize, usize)>,
2463}
2464
2465struct CalibrationData {
2467 gate_errors: HashMap<String, f64>,
2468 readout_errors: Vec<f64>,
2469 coherence_times: Vec<(f64, f64)>,
2470 timestamp: f64,
2471}
2472
2473#[cfg(test)]
2474mod tests {
2475 use super::*;
2476
2477 #[test]
2478 fn test_benchmark_creation() {
2479 let config = EnhancedBenchmarkConfig::default();
2480 let benchmark = EnhancedHardwareBenchmark::new(config);
2481
2482 assert!(benchmark.config.enable_ml_prediction);
2484 }
2485
2486 #[test]
2487 fn test_benchmark_suite_result() {
2488 let mut result = BenchmarkSuiteResult::new(BenchmarkSuite::QuantumVolume);
2489
2490 result.add_measurement(
2491 4,
2492 ExecutionResult {
2493 success_rate: 0.85,
2494 execution_time: Duration::from_millis(100),
2495 counts: HashMap::new(),
2496 },
2497 );
2498
2499 assert_eq!(result.measurements.len(), 1);
2500 assert_eq!(result.measurements[&4].len(), 1);
2501 }
2502}