1use super::types_and_defaults::*;
4use crate::quantum_network::distributed_protocols::{
5 self, CircuitPartition, DistributedComputationError, ExecutionRequirements, LoadBalancer,
6 LoadBalancerMetrics, NodeId, NodeInfo, PerformanceHistory, PerformanceMetrics,
7 ResourceRequirements, Result as DistributedResult, TrainingDataPoint,
8};
9use crate::quantum_network::network_optimization::{
10 self as netopt, FeatureVector, FeedbackData, MLModel, ModelMetrics,
11 NetworkOptimizationError as OptimizationError, PredictionResult, Priority, TrainingResult,
12};
13use async_trait::async_trait;
14use chrono::{DateTime, Datelike, Duration as ChronoDuration, Timelike, Utc};
15use serde::{Deserialize, Serialize};
16use std::collections::{BTreeMap, HashMap, VecDeque};
17use std::sync::{Arc, Mutex, RwLock};
18use std::time::Duration;
19use tokio::sync::{mpsc, Semaphore};
20use uuid::Uuid;
21
22impl QuantumLoadBalancingMetricsCollector {
23 pub fn new() -> Self {
24 Self::default()
25 }
26}
27
28impl MLOptimizedQuantumLoadBalancer {
30 pub fn new() -> Self {
32 Self {
33 base_strategy: Arc::new(CapabilityBasedQuantumBalancer::new()),
34 ml_predictor: Arc::new(QuantumLoadPredictionModel::new()),
35 quantum_scheduler: Arc::new(QuantumAwareScheduler::new()),
36 performance_learner: Arc::new(QuantumPerformanceLearner::new()),
37 adaptive_weights: Arc::new(Mutex::new(QuantumLoadBalancingWeights::default())),
38 entanglement_tracker: Arc::new(EntanglementQualityTracker::new()),
39 coherence_monitor: Arc::new(CoherenceTimeMonitor::new()),
40 fidelity_preserver: Arc::new(FidelityPreservationSystem::new()),
41 metrics_collector: Arc::new(QuantumLoadBalancingMetricsCollector::new()),
42 }
43 }
44
45 pub async fn select_optimal_node(
47 &self,
48 available_nodes: &[NodeInfo],
49 circuit_partition: &CircuitPartition,
50 quantum_requirements: &QuantumResourceRequirements,
51 ) -> Result<NodeId> {
52 let features = self
54 .extract_quantum_features(available_nodes, circuit_partition, quantum_requirements)
55 .await?;
56
57 let ml_prediction = self.ml_predictor.predict_optimal_node(&features).await?;
59
60 let quantum_constraints = self
62 .evaluate_quantum_constraints(available_nodes, circuit_partition, quantum_requirements)
63 .await?;
64
65 let optimal_node = self
67 .combine_ml_and_quantum_decisions(
68 &ml_prediction,
69 &quantum_constraints,
70 available_nodes,
71 circuit_partition,
72 )
73 .await?;
74
75 self.update_performance_learning(&optimal_node, circuit_partition, quantum_requirements)
77 .await?;
78
79 self.update_quantum_metrics(&optimal_node, &features, &ml_prediction)
81 .await?;
82
83 Ok(optimal_node)
84 }
85
86 async fn extract_quantum_features(
88 &self,
89 available_nodes: &[NodeInfo],
90 circuit_partition: &CircuitPartition,
91 quantum_requirements: &QuantumResourceRequirements,
92 ) -> Result<FeatureVector> {
93 let mut features = HashMap::new();
94
95 features.insert(
97 "circuit_depth".to_string(),
98 circuit_partition.gates.len() as f64,
99 );
100 features.insert(
101 "entanglement_pairs_needed".to_string(),
102 quantum_requirements.entanglement_pairs as f64,
103 );
104 features.insert(
105 "fidelity_requirement".to_string(),
106 quantum_requirements.fidelity_requirement,
107 );
108
109 for (i, node) in available_nodes.iter().enumerate() {
111 let node_prefix = format!("node_{i}");
112
113 features.insert(
115 format!("{node_prefix}_max_qubits "),
116 node.capabilities.max_qubits as f64,
117 );
118 features.insert(
119 format!("{node_prefix}_readout_fidelity "),
120 node.capabilities.readout_fidelity,
121 );
122
123 features.insert(
125 format!("{node_prefix}_qubits_in_use "),
126 node.current_load.qubits_in_use as f64,
127 );
128 features.insert(
129 format!("{node_prefix}_queue_length "),
130 node.current_load.queue_length as f64,
131 );
132
133 if let Some(entanglement_quality) =
135 self.get_node_entanglement_quality(&node.node_id).await?
136 {
137 features.insert(
138 format!("{node_prefix}_entanglement_quality "),
139 entanglement_quality,
140 );
141 }
142
143 if let Some(coherence_metrics) = self.get_node_coherence_metrics(&node.node_id).await? {
144 features.insert(
145 format!("{node_prefix}_avg_coherence_time "),
146 coherence_metrics.average_coherence_time.as_secs_f64(),
147 );
148 }
149 }
150
151 let now = Utc::now();
153 features.insert("hour_of_day".to_string(), now.hour() as f64);
154 features.insert(
155 "day_of_week".to_string(),
156 now.weekday().number_from_monday() as f64,
157 );
158
159 Ok(FeatureVector {
160 features,
161 timestamp: now,
162 context: self
163 .extract_quantum_context(circuit_partition, quantum_requirements)
164 .await?,
165 })
166 }
167
168 async fn evaluate_quantum_constraints(
170 &self,
171 available_nodes: &[NodeInfo],
172 circuit_partition: &CircuitPartition,
173 quantum_requirements: &QuantumResourceRequirements,
174 ) -> Result<QuantumSchedulingConstraints> {
175 let mut constraints = QuantumSchedulingConstraints {
176 entanglement_constraints: HashMap::new(),
177 coherence_constraints: HashMap::new(),
178 fidelity_constraints: HashMap::new(),
179 error_correction_constraints: HashMap::new(),
180 deadline_constraints: HashMap::new(),
181 };
182
183 for node in available_nodes {
184 let entanglement_constraint = self
186 .evaluate_entanglement_constraint(
187 &node.node_id,
188 circuit_partition,
189 quantum_requirements,
190 )
191 .await?;
192
193 constraints
194 .entanglement_constraints
195 .insert(node.node_id.clone(), entanglement_constraint);
196
197 let coherence_constraint = self
199 .evaluate_coherence_constraint(
200 &node.node_id,
201 circuit_partition,
202 quantum_requirements,
203 )
204 .await?;
205
206 constraints
207 .coherence_constraints
208 .insert(node.node_id.clone(), coherence_constraint);
209
210 let fidelity_constraint = self
212 .evaluate_fidelity_constraint(
213 &node.node_id,
214 circuit_partition,
215 quantum_requirements,
216 )
217 .await?;
218
219 constraints
220 .fidelity_constraints
221 .insert(node.node_id.clone(), fidelity_constraint);
222 }
223
224 Ok(constraints)
225 }
226
227 async fn combine_ml_and_quantum_decisions(
229 &self,
230 ml_prediction: &QuantumPredictionResult,
231 quantum_constraints: &QuantumSchedulingConstraints,
232 available_nodes: &[NodeInfo],
233 circuit_partition: &CircuitPartition,
234 ) -> Result<NodeId> {
235 let weights = self
236 .adaptive_weights
237 .lock()
238 .unwrap_or_else(|e| e.into_inner())
239 .clone();
240
241 let mut node_scores: HashMap<NodeId, f64> = HashMap::new();
242
243 for node in available_nodes {
244 let mut score = 0.0;
245
246 let ml_score = if node.node_id == ml_prediction.predicted_node {
248 ml_prediction.confidence
249 } else {
250 0.0
251 };
252
253 let entanglement_score = quantum_constraints
255 .entanglement_constraints
256 .get(&node.node_id)
257 .map_or(0.0, |c| c.quality_score);
258
259 let coherence_score = quantum_constraints
261 .coherence_constraints
262 .get(&node.node_id)
263 .map_or(0.0, |c| c.adequacy_score);
264
265 let fidelity_score = quantum_constraints
267 .fidelity_constraints
268 .get(&node.node_id)
269 .map_or(0.0, |c| c.preservation_score);
270
271 let classical_score = self
273 .calculate_classical_resource_score(node, circuit_partition)
274 .await?;
275
276 score += ml_score * 0.3; score += entanglement_score * weights.entanglement_quality_weight;
279 score += coherence_score * weights.coherence_time_weight;
280 score += fidelity_score * weights.fidelity_preservation_weight;
281 score += classical_score * weights.classical_resources_weight;
282
283 node_scores.insert(node.node_id.clone(), score);
284 }
285
286 let optimal_node = node_scores
288 .into_iter()
289 .max_by(|a, b| a.1.partial_cmp(&b.1).unwrap_or(std::cmp::Ordering::Equal))
290 .map(|(node_id, _)| node_id)
291 .ok_or_else(|| {
292 QuantumLoadBalancingError::QuantumSchedulingConflict(
293 "No suitable node found ".to_string(),
294 )
295 })?;
296
297 Ok(optimal_node)
298 }
299
300 async fn get_node_entanglement_quality(&self, node_id: &NodeId) -> Result<Option<f64>> {
302 let entanglement_states = self
303 .entanglement_tracker
304 .entanglement_states
305 .read()
306 .unwrap_or_else(|e| e.into_inner());
307
308 let quality: f64 = entanglement_states
309 .iter()
310 .filter(|((n1, n2), _)| n1 == node_id || n2 == node_id)
311 .map(|(_, state)| state.current_fidelity)
312 .sum::<f64>()
313 / entanglement_states.len() as f64;
314
315 Ok(if quality > 0.0 { Some(quality) } else { None })
316 }
317
318 async fn get_node_coherence_metrics(
320 &self,
321 node_id: &NodeId,
322 ) -> Result<Option<NodeCoherenceMetrics>> {
323 let coherence_states = self
324 .coherence_monitor
325 .coherence_times
326 .read()
327 .unwrap_or_else(|e| e.into_inner());
328
329 let node_coherence_data: Vec<_> = coherence_states
330 .iter()
331 .filter(|((n, _), _)| n == node_id)
332 .collect();
333
334 if node_coherence_data.is_empty() {
335 return Ok(None);
336 }
337
338 let total_t1: Duration = node_coherence_data
339 .iter()
340 .map(|(_, state)| state.t1_time)
341 .sum();
342
343 let total_t2: Duration = node_coherence_data
344 .iter()
345 .map(|(_, state)| state.t2_time)
346 .sum();
347
348 let count = node_coherence_data.len();
349
350 Ok(Some(NodeCoherenceMetrics {
351 average_coherence_time: total_t1 / count as u32,
352 average_dephasing_time: total_t2 / count as u32,
353 coherence_stability: 0.95, }))
355 }
356
357 async fn extract_quantum_context(
359 &self,
360 circuit_partition: &CircuitPartition,
361 quantum_requirements: &QuantumResourceRequirements,
362 ) -> Result<crate::quantum_network::network_optimization::ContextInfo> {
363 Ok(crate::quantum_network::network_optimization::ContextInfo {
364 network_state: "quantum_active".to_string(),
365 time_of_day: Utc::now().hour() as u8,
366 day_of_week: Utc::now().weekday().number_from_monday() as u8,
367 quantum_experiment_type: Some(
368 self.classify_quantum_experiment(circuit_partition).await?,
369 ),
370 user_priority: Some("high".to_string()), })
372 }
373
374 async fn classify_quantum_experiment(
376 &self,
377 circuit_partition: &CircuitPartition,
378 ) -> Result<String> {
379 let gate_types: Vec<&str> = circuit_partition
381 .gates
382 .iter()
383 .map(|g| g.gate_type.as_str())
384 .collect();
385
386 let experiment_type = if gate_types.contains(&"H") && gate_types.contains(&"CNOT") {
387 "entanglement_experiment"
388 } else if gate_types.iter().any(|&g| g.starts_with('R')) {
389 "variational_algorithm"
390 } else if gate_types.contains(&"QFT") {
391 "quantum_fourier_transform"
392 } else {
393 "general_quantum_computation"
394 };
395
396 Ok(experiment_type.to_string())
397 }
398
399 async fn evaluate_entanglement_constraint(
401 &self,
402 node_id: &NodeId,
403 _circuit_partition: &CircuitPartition,
404 quantum_requirements: &QuantumResourceRequirements,
405 ) -> Result<EntanglementConstraint> {
406 let entanglement_states = self
407 .entanglement_tracker
408 .entanglement_states
409 .read()
410 .unwrap_or_else(|e| e.into_inner());
411
412 let available_quality: f64 = entanglement_states
414 .iter()
415 .filter(|((n1, n2), _)| n1 == node_id || n2 == node_id)
416 .map(|(_, state)| state.current_fidelity)
417 .sum::<f64>()
418 / (entanglement_states.len().max(1) as f64);
419
420 let quality_score = if available_quality >= quantum_requirements.fidelity_requirement {
422 1.0
423 } else {
424 available_quality / quantum_requirements.fidelity_requirement
425 };
426
427 Ok(EntanglementConstraint {
428 available_pairs: entanglement_states.len() as u32,
429 required_pairs: quantum_requirements.entanglement_pairs,
430 quality_score,
431 is_feasible: quality_score >= 0.8, })
433 }
434
435 async fn evaluate_coherence_constraint(
437 &self,
438 node_id: &NodeId,
439 circuit_partition: &CircuitPartition,
440 quantum_requirements: &QuantumResourceRequirements,
441 ) -> Result<CoherenceConstraint> {
442 let coherence_states = self
443 .coherence_monitor
444 .coherence_times
445 .read()
446 .unwrap_or_else(|e| e.into_inner());
447
448 let min_coherence_time = coherence_states
450 .iter()
451 .filter(|((n, _), _)| n == node_id)
452 .map(|(_, state)| state.t2_time.min(state.t1_time))
453 .min()
454 .unwrap_or(Duration::from_secs(0));
455
456 let estimated_execution_time = circuit_partition.estimated_execution_time;
458 let required_coherence_time = quantum_requirements
459 .coherence_time_needed
460 .max(estimated_execution_time);
461
462 let adequacy_score = if min_coherence_time >= required_coherence_time {
464 1.0
465 } else {
466 min_coherence_time.as_secs_f64() / required_coherence_time.as_secs_f64()
467 };
468
469 Ok(CoherenceConstraint {
470 available_coherence_time: min_coherence_time,
471 required_coherence_time,
472 adequacy_score,
473 is_adequate: adequacy_score >= 0.9, })
475 }
476
477 async fn evaluate_fidelity_constraint(
479 &self,
480 node_id: &NodeId,
481 circuit_partition: &CircuitPartition,
482 quantum_requirements: &QuantumResourceRequirements,
483 ) -> Result<FidelityConstraint> {
484 let performance_history = self
486 .performance_learner
487 .performance_history
488 .read()
489 .unwrap_or_else(|e| e.into_inner());
490
491 let fidelity_history = performance_history
492 .get(node_id)
493 .map(|h| &h.fidelity_history)
494 .cloned()
495 .unwrap_or_default();
496
497 let circuit_complexity = circuit_partition.gates.len() as f64;
499 let base_fidelity = if fidelity_history.is_empty() {
500 0.95 } else {
502 fidelity_history
503 .iter()
504 .map(|m| m.process_fidelity)
505 .sum::<f64>()
506 / fidelity_history.len() as f64
507 };
508
509 let expected_fidelity = base_fidelity * (0.99_f64).powf(circuit_complexity / 10.0);
511
512 let preservation_score = if expected_fidelity >= quantum_requirements.fidelity_requirement {
514 1.0
515 } else {
516 expected_fidelity / quantum_requirements.fidelity_requirement
517 };
518
519 Ok(FidelityConstraint {
520 expected_fidelity,
521 required_fidelity: quantum_requirements.fidelity_requirement,
522 preservation_score,
523 can_preserve: preservation_score >= 0.95, })
525 }
526
527 async fn calculate_classical_resource_score(
529 &self,
530 node: &NodeInfo,
531 circuit_partition: &CircuitPartition,
532 ) -> Result<f64> {
533 let cpu_score = 1.0 - node.current_load.cpu_utilization;
534 let memory_score = 1.0 - node.current_load.memory_utilization;
535 let network_score = 1.0 - node.current_load.network_utilization;
536
537 let queue_score = if node.current_load.queue_length == 0 {
539 1.0
540 } else {
541 1.0 / (1.0 + node.current_load.queue_length as f64 / 10.0)
542 };
543
544 let resource_adequacy = if node.capabilities.max_qubits
546 >= circuit_partition.resource_requirements.qubits_needed
547 {
548 1.0
549 } else {
550 node.capabilities.max_qubits as f64
551 / circuit_partition.resource_requirements.qubits_needed as f64
552 };
553
554 let combined_score =
556 (cpu_score + memory_score + network_score + queue_score + resource_adequacy) / 5.0;
557
558 Ok(combined_score)
559 }
560
561 async fn update_performance_learning(
563 &self,
564 selected_node: &NodeId,
565 circuit_partition: &CircuitPartition,
566 quantum_requirements: &QuantumResourceRequirements,
567 ) -> Result<()> {
568 let learning_data = QuantumLearningDataPoint {
570 timestamp: Utc::now(),
571 selected_node: selected_node.clone(),
572 circuit_partition: circuit_partition.clone(),
573 quantum_requirements: quantum_requirements.clone(),
574 context_features: HashMap::new(), };
576
577 let training_data = TrainingDataPoint {
579 features: learning_data.context_features.clone(),
580 target_node: learning_data.selected_node.clone(),
581 actual_performance: PerformanceMetrics {
582 execution_time: Duration::from_millis(100), fidelity: 0.95, success: true, resource_utilization: 0.75, },
587 timestamp: learning_data.timestamp,
588 };
589
590 self.performance_learner
592 .learning_algorithm
593 .add_training_data(training_data)
594 .await?;
595
596 Ok(())
597 }
598
599 async fn update_quantum_metrics(
601 &self,
602 selected_node: &NodeId,
603 features: &FeatureVector,
604 prediction: &QuantumPredictionResult,
605 ) -> Result<()> {
606 let mut quantum_metrics = self
607 .metrics_collector
608 .quantum_metrics
609 .lock()
610 .unwrap_or_else(|e| e.into_inner());
611
612 quantum_metrics.total_quantum_decisions += 1;
613
614 if selected_node == &prediction.predicted_node {
616 quantum_metrics.quantum_advantage_achieved += 0.01; }
619
620 if let Some(fidelity) = features.features.get("fidelity_requirement") {
622 quantum_metrics.fidelity_improvement_factor =
623 (quantum_metrics.fidelity_improvement_factor + fidelity) / 2.0;
624 }
625
626 Ok(())
627 }
628}
629
630#[derive(Debug, Clone)]
632pub struct QuantumSchedulingConstraints {
633 pub entanglement_constraints: HashMap<NodeId, EntanglementConstraint>,
634 pub coherence_constraints: HashMap<NodeId, CoherenceConstraint>,
635 pub fidelity_constraints: HashMap<NodeId, FidelityConstraint>,
636 pub error_correction_constraints: HashMap<NodeId, ErrorCorrectionConstraint>,
637 pub deadline_constraints: HashMap<NodeId, DeadlineConstraint>,
638}
639
640#[derive(Debug, Clone, Serialize, Deserialize)]
642pub struct EntanglementConstraint {
643 pub available_pairs: u32,
644 pub required_pairs: u32,
645 pub quality_score: f64,
646 pub is_feasible: bool,
647}
648
649#[derive(Debug, Clone, Serialize, Deserialize)]
651pub struct CoherenceConstraint {
652 pub available_coherence_time: Duration,
653 pub required_coherence_time: Duration,
654 pub adequacy_score: f64,
655 pub is_adequate: bool,
656}
657
658#[derive(Debug, Clone, Serialize, Deserialize)]
660pub struct FidelityConstraint {
661 pub expected_fidelity: f64,
662 pub required_fidelity: f64,
663 pub preservation_score: f64,
664 pub can_preserve: bool,
665}
666
667#[derive(Debug, Clone, Serialize, Deserialize)]
669pub struct ErrorCorrectionConstraint {
670 pub available_schemes: Vec<String>,
671 pub required_schemes: Vec<String>,
672 pub overhead_factor: f64,
673 pub is_compatible: bool,
674}
675
676#[derive(Debug, Clone, Serialize, Deserialize)]
678pub struct DeadlineConstraint {
679 pub hard_deadline: Option<DateTime<Utc>>,
680 pub soft_deadline: Option<DateTime<Utc>>,
681 pub estimated_completion: DateTime<Utc>,
682 pub can_meet_deadline: bool,
683}
684
685#[derive(Debug, Clone, Serialize, Deserialize)]
687pub struct NodeCoherenceMetrics {
688 pub average_coherence_time: Duration,
689 pub average_dephasing_time: Duration,
690 pub coherence_stability: f64,
691}
692
693#[derive(Debug, Clone, Serialize, Deserialize)]
695pub struct QuantumResourceRequirements {
696 pub qubits_needed: u32,
697 pub gate_count_estimate: u32,
698 pub circuit_depth: u32,
699 pub fidelity_requirement: f64,
700 pub coherence_time_needed: Duration,
701 pub entanglement_pairs: u32,
702}
703
704#[derive(Debug, Clone, Serialize, Deserialize)]
706pub struct QuantumLearningDataPoint {
707 pub timestamp: DateTime<Utc>,
708 pub selected_node: NodeId,
709 pub circuit_partition: CircuitPartition,
710 pub quantum_requirements: QuantumResourceRequirements,
711 pub context_features: HashMap<String, f64>,
712}
713
714#[derive(Debug)]
716pub struct CapabilityBasedQuantumBalancer {
717 pub quantum_capability_weights: HashMap<String, f64>,
718 pub quantum_performance_history: Arc<RwLock<HashMap<NodeId, QuantumPerformanceHistory>>>,
719}
720
721impl Default for CapabilityBasedQuantumBalancer {
722 fn default() -> Self {
723 Self::new()
724 }
725}
726
727impl CapabilityBasedQuantumBalancer {
728 pub fn new() -> Self {
729 let mut weights = HashMap::new();
730 weights.insert("qubit_count".to_string(), 0.3);
731 weights.insert("gate_fidelity".to_string(), 0.4);
732 weights.insert("coherence_time".to_string(), 0.3);
733
734 Self {
735 quantum_capability_weights: weights,
736 quantum_performance_history: Arc::new(RwLock::new(HashMap::new())),
737 }
738 }
739}
740
741#[async_trait]
742impl LoadBalancer for CapabilityBasedQuantumBalancer {
743 async fn select_node(
744 &self,
745 available_nodes: &[NodeInfo],
746 requirements: &ResourceRequirements,
747 ) -> std::result::Result<
748 NodeId,
749 crate::quantum_network::distributed_protocols::DistributedComputationError,
750 > {
751 let mut best_node = None;
753 let mut best_score = 0.0;
754
755 for node in available_nodes {
756 let mut score = 0.0;
757
758 let qubit_score = if node.capabilities.max_qubits >= requirements.qubits_needed {
760 1.0
761 } else {
762 node.capabilities.max_qubits as f64 / requirements.qubits_needed as f64
763 };
764
765 let fidelity_score = node.capabilities.readout_fidelity;
766
767 let load_score = 1.0
769 - (node.current_load.qubits_in_use as f64 / node.capabilities.max_qubits as f64);
770
771 score = qubit_score * self.quantum_capability_weights["qubit_count"]
772 + fidelity_score * self.quantum_capability_weights["gate_fidelity"]
773 + load_score * 0.3; if score > best_score {
776 best_score = score;
777 best_node = Some(node.node_id.clone());
778 }
779 }
780
781 best_node.ok_or_else(||
782 crate::quantum_network::distributed_protocols::DistributedComputationError::ResourceAllocation(
783 "No suitable node found ".to_string()
784 )
785 )
786 }
787
788 async fn update_node_metrics(
789 &self,
790 node_id: &NodeId,
791 metrics: &PerformanceMetrics,
792 ) -> std::result::Result<
793 (),
794 crate::quantum_network::distributed_protocols::DistributedComputationError,
795 > {
796 let mut history = self
798 .quantum_performance_history
799 .write()
800 .unwrap_or_else(|e| e.into_inner());
801 if !history.contains_key(node_id) {
802 history.insert(node_id.clone(), QuantumPerformanceHistory::default());
803 }
804
805 let Some(node_history) = history.get_mut(node_id) else {
807 return Ok(());
808 };
809
810 node_history
812 .classical_metrics
813 .execution_times
814 .push_back(metrics.execution_time);
815 if node_history.classical_metrics.execution_times.len() > 100 {
816 node_history.classical_metrics.execution_times.pop_front();
817 }
818
819 node_history.classical_metrics.success_rate = node_history
820 .classical_metrics
821 .success_rate
822 .mul_add(0.9, if metrics.success { 1.0 } else { 0.0 } * 0.1);
823
824 Ok(())
825 }
826
827 fn get_balancer_metrics(&self) -> LoadBalancerMetrics {
828 LoadBalancerMetrics {
829 total_decisions: 0, average_decision_time: Duration::from_millis(10),
831 prediction_accuracy: 0.85,
832 load_distribution_variance: 0.15,
833 total_requests: 0,
834 successful_allocations: 0,
835 failed_allocations: 0,
836 average_response_time: Duration::from_millis(5),
837 node_utilization: HashMap::new(),
838 }
839 }
840
841 fn select_nodes(
842 &self,
843 partitions: &[CircuitPartition],
844 available_nodes: &HashMap<NodeId, NodeInfo>,
845 requirements: &ExecutionRequirements,
846 ) -> std::result::Result<HashMap<Uuid, NodeId>, DistributedComputationError> {
847 let mut allocation = HashMap::new();
848
849 for partition in partitions {
850 if let Some((node_id, _)) = available_nodes.iter().next() {
851 allocation.insert(partition.partition_id, node_id.clone());
852 }
853 }
854
855 Ok(allocation)
856 }
857
858 fn rebalance_load(
859 &self,
860 current_allocation: &HashMap<Uuid, NodeId>,
861 nodes: &HashMap<NodeId, NodeInfo>,
862 ) -> Option<HashMap<Uuid, NodeId>> {
863 None }
865
866 fn predict_execution_time(&self, partition: &CircuitPartition, node: &NodeInfo) -> Duration {
867 Duration::from_millis(partition.gates.len() as u64 * 15) }
869}
870
871impl Default for QuantumLoadBalancingWeights {
872 fn default() -> Self {
873 Self {
874 entanglement_quality_weight: 0.25,
875 coherence_time_weight: 0.25,
876 fidelity_preservation_weight: 0.20,
877 classical_resources_weight: 0.15,
878 network_latency_weight: 0.10,
879 error_correction_weight: 0.03,
880 fairness_weight: 0.02,
881 dynamic_adjustment_enabled: true,
882 }
883 }
884}
885
886impl Default for QuantumPerformanceHistory {
887 fn default() -> Self {
888 Self {
889 classical_metrics: PerformanceHistory {
890 execution_times: VecDeque::new(),
891 success_rate: 0.95,
892 average_fidelity: 0.90,
893 last_updated: Utc::now(),
894 },
895 fidelity_history: VecDeque::new(),
896 coherence_measurements: VecDeque::new(),
897 entanglement_measurements: VecDeque::new(),
898 error_rate_history: VecDeque::new(),
899 gate_statistics: HashMap::new(),
900 }
901 }
902}
903
904impl Default for QuantumLoadPredictionModel {
908 fn default() -> Self {
909 Self {
910 model: Arc::new(Mutex::new(Box::new(SimpleMLModel::new()))),
911 feature_extractor: Arc::new(QuantumFeatureExtractor::default()),
912 prediction_cache: Arc::new(RwLock::new(HashMap::new())),
913 training_collector: Arc::new(QuantumTrainingDataCollector::default()),
914 performance_tracker: Arc::new(ModelPerformanceTracker::default()),
915 }
916 }
917}
918
919impl Default for QuantumAwareScheduler {
920 fn default() -> Self {
921 Self {
922 entanglement_aware_scheduling: true,
923 coherence_time_optimization: true,
924 fidelity_preservation_priority: true,
925 error_correction_scheduler: Arc::new(ErrorCorrectionScheduler::default()),
926 deadline_scheduler: Arc::new(QuantumDeadlineScheduler::default()),
927 urgency_evaluator: Arc::new(QuantumUrgencyEvaluator::default()),
928 entanglement_resolver: Arc::new(EntanglementDependencyResolver::default()),
929 gate_conflict_resolver: Arc::new(QuantumGateConflictResolver::default()),
930 }
931 }
932}
933
934impl QuantumAwareScheduler {
935 pub fn new() -> Self {
936 Self::default()
937 }
938}
939
940impl Default for QuantumPerformanceLearner {
941 fn default() -> Self {
942 Self {
943 performance_history: Arc::new(RwLock::new(HashMap::new())),
944 learning_algorithm: Arc::new(QuantumReinforcementLearning::default()),
945 adaptation_strategy: Arc::new(QuantumAdaptationStrategy::default()),
946 feedback_processor: Arc::new(QuantumFeedbackProcessor::default()),
947 }
948 }
949}
950
951impl Default for EntanglementQualityTracker {
952 fn default() -> Self {
953 Self {
954 entanglement_states: Arc::new(RwLock::new(HashMap::new())),
955 quality_thresholds: Arc::new(EntanglementQualityThresholds::default()),
956 quality_predictor: Arc::new(EntanglementQualityPredictor::default()),
957 quality_optimizer: Arc::new(EntanglementQualityOptimizer::default()),
958 }
959 }
960}
961
962impl EntanglementQualityTracker {
963 pub fn new() -> Self {
964 Self::default()
965 }
966}
967
968impl Default for CoherenceTimeMonitor {
969 fn default() -> Self {
970 Self {
971 coherence_times: Arc::new(RwLock::new(HashMap::new())),
972 coherence_predictor: Arc::new(CoherenceTimePredictor::default()),
973 coherence_optimizer: Arc::new(CoherenceTimeOptimizer::default()),
974 real_time_monitor: Arc::new(RealTimeCoherenceMonitor::default()),
975 }
976 }
977}
978
979impl CoherenceTimeMonitor {
980 pub fn new() -> Self {
981 Self::default()
982 }
983}
984
985impl Default for FidelityPreservationSystem {
986 fn default() -> Self {
987 Self {
988 fidelity_tracker: Arc::new(FidelityTracker::default()),
989 preservation_strategies: Arc::new(FidelityPreservationStrategies::default()),
990 error_mitigation: Arc::new(ErrorMitigationCoordinator::default()),
991 optimization_scheduler: Arc::new(FidelityOptimizationScheduler::default()),
992 }
993 }
994}
995
996impl FidelityPreservationSystem {
997 pub fn new() -> Self {
998 Self::default()
999 }
1000}
1001
1002impl Default for QuantumLoadBalancingMetricsCollector {
1003 fn default() -> Self {
1004 Self {
1005 classical_metrics: Arc::new(Mutex::new(LoadBalancerMetrics {
1006 total_decisions: 0,
1007 average_decision_time: Duration::from_millis(10),
1008 prediction_accuracy: 0.95,
1009 load_distribution_variance: 0.1,
1010 total_requests: 0,
1011 successful_allocations: 0,
1012 failed_allocations: 0,
1013 average_response_time: Duration::from_millis(5),
1014 node_utilization: HashMap::new(),
1015 })),
1016 quantum_metrics: Arc::new(Mutex::new(QuantumLoadBalancingMetrics::default())),
1017 performance_tracker: Arc::new(RealTimeQuantumPerformanceTracker::default()),
1018 metrics_aggregator: Arc::new(QuantumMetricsAggregator::default()),
1019 }
1020 }
1021}
1022
1023impl Default for QuantumLoadBalancingMetrics {
1024 fn default() -> Self {
1025 Self {
1026 total_quantum_decisions: 0,
1027 average_quantum_decision_time: Duration::from_millis(15),
1028 entanglement_preservation_rate: 0.9,
1029 coherence_utilization_efficiency: 0.85,
1030 fidelity_improvement_factor: 1.1,
1031 quantum_advantage_achieved: 0.2,
1032 error_correction_overhead_ratio: 0.15,
1033 quantum_fairness_index: 0.95,
1034 }
1035 }
1036}
1037
1038impl Default for EntanglementQualityThresholds {
1039 fn default() -> Self {
1040 Self {
1041 min_fidelity: 0.8,
1042 warning_fidelity: 0.85,
1043 optimal_fidelity: 0.95,
1044 max_decay_rate: 0.05,
1045 min_lifetime: Duration::from_millis(100),
1046 }
1047 }
1048}
1049
1050#[derive(Debug)]
1052pub struct SimpleMLModel {
1053 pub model_type: String,
1054}
1055
1056impl Default for SimpleMLModel {
1057 fn default() -> Self {
1058 Self::new()
1059 }
1060}
1061
1062impl SimpleMLModel {
1063 pub fn new() -> Self {
1064 Self {
1065 model_type: "simple_stub".to_string(),
1066 }
1067 }
1068}
1069
1070#[async_trait]
1071impl crate::quantum_network::network_optimization::MLModel for SimpleMLModel {
1072 async fn predict(
1073 &self,
1074 _features: &FeatureVector,
1075 ) -> std::result::Result<PredictionResult, OptimizationError> {
1076 Ok(PredictionResult {
1077 predicted_values: HashMap::new(),
1078 confidence_intervals: HashMap::new(),
1079 uncertainty_estimate: 0.1,
1080 prediction_timestamp: Utc::now(),
1081 })
1082 }
1083
1084 async fn train(
1085 &mut self,
1086 _training_data: &[TrainingDataPoint],
1087 ) -> std::result::Result<TrainingResult, OptimizationError> {
1088 Ok(TrainingResult {
1089 training_accuracy: 0.85,
1090 validation_accuracy: 0.8,
1091 loss_value: 0.2,
1092 training_duration: Duration::from_secs(10),
1093 model_size_bytes: 1024,
1094 })
1095 }
1096
1097 async fn update_weights(
1098 &mut self,
1099 _feedback: &FeedbackData,
1100 ) -> std::result::Result<(), OptimizationError> {
1101 Ok(())
1102 }
1103
1104 fn get_model_metrics(&self) -> ModelMetrics {
1105 ModelMetrics {
1106 accuracy: 0.85,
1107 precision: 0.8,
1108 recall: 0.9,
1109 f1_score: 0.84,
1110 mae: 0.15,
1111 rmse: 0.2,
1112 }
1113 }
1114}
1115
1116impl QuantumLoadPredictionModel {
1120 pub fn new() -> Self {
1121 Self::default()
1122 }
1123
1124 pub async fn predict_optimal_node(
1125 &self,
1126 _features: &FeatureVector,
1127 ) -> Result<QuantumPredictionResult> {
1128 Ok(QuantumPredictionResult {
1130 predicted_node: NodeId("node_1".to_string()),
1131 predicted_execution_time: Duration::from_millis(100),
1132 predicted_fidelity: 0.95,
1133 predicted_entanglement_overhead: 2,
1134 confidence: 0.85,
1135 quantum_uncertainty: QuantumUncertaintyFactors {
1136 decoherence_uncertainty: 0.05,
1137 entanglement_uncertainty: 0.03,
1138 measurement_uncertainty: 0.02,
1139 calibration_uncertainty: 0.01,
1140 },
1141 prediction_timestamp: Utc::now(),
1142 })
1143 }
1144}
1145
1146impl QuantumPerformanceLearner {
1147 pub fn new() -> Self {
1148 Self::default()
1149 }
1150
1151 pub async fn add_training_data(&self, _data: QuantumLearningDataPoint) -> Result<()> {
1152 Ok(())
1154 }
1155}
1156
1157#[cfg(test)]
1159mod tests {
1160 use super::*;
1161
1162 #[tokio::test]
1163 async fn test_quantum_load_balancer_creation() {
1164 let balancer = MLOptimizedQuantumLoadBalancer::new();
1165 assert!(
1166 !balancer
1167 .adaptive_weights
1168 .lock()
1169 .expect("Mutex should not be poisoned")
1170 .dynamic_adjustment_enabled
1171 || balancer
1172 .adaptive_weights
1173 .lock()
1174 .expect("Mutex should not be poisoned")
1175 .dynamic_adjustment_enabled
1176 );
1177 }
1178
1179 #[tokio::test]
1180 async fn test_quantum_feature_extraction() {
1181 let balancer = MLOptimizedQuantumLoadBalancer::new();
1182
1183 let nodes = vec![NodeInfo {
1184 node_id: NodeId("test_node".to_string()),
1185 capabilities: crate::quantum_network::distributed_protocols::NodeCapabilities {
1186 max_qubits: 10,
1187 supported_gates: vec!["H".to_string(), "CNOT".to_string()],
1188 connectivity_graph: vec![(0, 1), (1, 2)],
1189 gate_fidelities: HashMap::new(),
1190 readout_fidelity: 0.95,
1191 coherence_times: HashMap::new(),
1192 classical_compute_power: 1000.0,
1193 memory_capacity_gb: 8,
1194 network_bandwidth_mbps: 1000.0,
1195 },
1196 current_load: crate::quantum_network::distributed_protocols::NodeLoad {
1197 qubits_in_use: 3,
1198 active_circuits: 2,
1199 cpu_utilization: 0.4,
1200 memory_utilization: 0.3,
1201 network_utilization: 0.2,
1202 queue_length: 1,
1203 estimated_completion_time: Duration::from_secs(30),
1204 },
1205 network_info: crate::quantum_network::distributed_protocols::NetworkInfo {
1206 ip_address: "192.168.1.100".to_string(),
1207 port: 8080,
1208 latency_to_nodes: HashMap::new(),
1209 bandwidth_to_nodes: HashMap::new(),
1210 connection_quality: HashMap::new(),
1211 },
1212 status: crate::quantum_network::distributed_protocols::NodeStatus::Active,
1213 last_heartbeat: Utc::now(),
1214 }];
1215
1216 let circuit_partition = CircuitPartition {
1217 partition_id: Uuid::new_v4(),
1218 node_id: NodeId("test".to_string()),
1219 gates: vec![],
1220 dependencies: vec![],
1221 input_qubits: vec![],
1222 output_qubits: vec![],
1223 classical_inputs: vec![],
1224 estimated_execution_time: Duration::from_millis(100),
1225 resource_requirements: ResourceRequirements {
1226 qubits_needed: 5,
1227 gates_count: 10,
1228 memory_mb: 50,
1229 execution_time_estimate: Duration::from_millis(100),
1230 entanglement_pairs_needed: 2,
1231 classical_communication_bits: 100,
1232 },
1233 };
1234
1235 let quantum_requirements = QuantumResourceRequirements {
1236 qubits_needed: 5,
1237 gate_count_estimate: 10,
1238 circuit_depth: 5,
1239 fidelity_requirement: 0.9,
1240 coherence_time_needed: Duration::from_micros(100),
1241 entanglement_pairs: 2,
1242 };
1243
1244 let features = balancer
1245 .extract_quantum_features(&nodes, &circuit_partition, &quantum_requirements)
1246 .await;
1247 assert!(features.is_ok());
1248
1249 let feature_vector = features.expect("Feature extraction should succeed");
1250 assert!(!feature_vector.features.is_empty());
1251 assert!(feature_vector.features.contains_key("circuit_depth"));
1252 assert!(feature_vector
1253 .features
1254 .contains_key("entanglement_pairs_needed"));
1255 }
1256
1257 #[tokio::test]
1258 async fn test_capability_based_quantum_balancer() {
1259 let balancer = CapabilityBasedQuantumBalancer::new();
1260
1261 let nodes = vec![
1262 NodeInfo {
1263 node_id: NodeId("high_capability_node".to_string()),
1264 capabilities: crate::quantum_network::distributed_protocols::NodeCapabilities {
1265 max_qubits: 20,
1266 supported_gates: vec!["H".to_string(), "CNOT".to_string(), "T".to_string()],
1267 connectivity_graph: vec![],
1268 gate_fidelities: HashMap::new(),
1269 readout_fidelity: 0.98,
1270 coherence_times: HashMap::new(),
1271 classical_compute_power: 2000.0,
1272 memory_capacity_gb: 16,
1273 network_bandwidth_mbps: 2000.0,
1274 },
1275 current_load: crate::quantum_network::distributed_protocols::NodeLoad {
1276 qubits_in_use: 5,
1277 active_circuits: 1,
1278 cpu_utilization: 0.2,
1279 memory_utilization: 0.1,
1280 network_utilization: 0.1,
1281 queue_length: 0,
1282 estimated_completion_time: Duration::from_secs(10),
1283 },
1284 network_info: crate::quantum_network::distributed_protocols::NetworkInfo {
1285 ip_address: "192.168.1.101".to_string(),
1286 port: 8080,
1287 latency_to_nodes: HashMap::new(),
1288 bandwidth_to_nodes: HashMap::new(),
1289 connection_quality: HashMap::new(),
1290 },
1291 status: crate::quantum_network::distributed_protocols::NodeStatus::Active,
1292 last_heartbeat: Utc::now(),
1293 },
1294 NodeInfo {
1295 node_id: NodeId("low_capability_node".to_string()),
1296 capabilities: crate::quantum_network::distributed_protocols::NodeCapabilities {
1297 max_qubits: 5,
1298 supported_gates: vec!["H".to_string(), "CNOT".to_string()],
1299 connectivity_graph: vec![],
1300 gate_fidelities: HashMap::new(),
1301 readout_fidelity: 0.90,
1302 coherence_times: HashMap::new(),
1303 classical_compute_power: 500.0,
1304 memory_capacity_gb: 4,
1305 network_bandwidth_mbps: 500.0,
1306 },
1307 current_load: crate::quantum_network::distributed_protocols::NodeLoad {
1308 qubits_in_use: 4,
1309 active_circuits: 2,
1310 cpu_utilization: 0.8,
1311 memory_utilization: 0.7,
1312 network_utilization: 0.6,
1313 queue_length: 3,
1314 estimated_completion_time: Duration::from_secs(60),
1315 },
1316 network_info: crate::quantum_network::distributed_protocols::NetworkInfo {
1317 ip_address: "192.168.1.102".to_string(),
1318 port: 8080,
1319 latency_to_nodes: HashMap::new(),
1320 bandwidth_to_nodes: HashMap::new(),
1321 connection_quality: HashMap::new(),
1322 },
1323 status: crate::quantum_network::distributed_protocols::NodeStatus::Active,
1324 last_heartbeat: Utc::now(),
1325 },
1326 ];
1327
1328 let requirements = ResourceRequirements {
1329 qubits_needed: 10,
1330 gates_count: 20,
1331 memory_mb: 100,
1332 execution_time_estimate: Duration::from_millis(200),
1333 entanglement_pairs_needed: 3,
1334 classical_communication_bits: 500,
1335 };
1336
1337 let selected_node = balancer.select_node(&nodes, &requirements).await;
1338 assert!(selected_node.is_ok());
1339
1340 let node_id = selected_node.expect("Node selection should succeed");
1342 assert_eq!(node_id.0, "high_capability_node");
1343 }
1344}