quantrs2_device/quantum_network/quantum_aware_load_balancing/
implementations.rs

1//! Implementations and tests
2
3use super::types_and_defaults::*;
4use crate::quantum_network::distributed_protocols::{
5    self, CircuitPartition, DistributedComputationError, ExecutionRequirements, LoadBalancer,
6    LoadBalancerMetrics, NodeId, NodeInfo, PerformanceHistory, PerformanceMetrics,
7    ResourceRequirements, Result as DistributedResult, TrainingDataPoint,
8};
9use crate::quantum_network::network_optimization::{
10    self as netopt, FeatureVector, FeedbackData, MLModel, ModelMetrics,
11    NetworkOptimizationError as OptimizationError, PredictionResult, Priority, TrainingResult,
12};
13use async_trait::async_trait;
14use chrono::{DateTime, Datelike, Duration as ChronoDuration, Timelike, Utc};
15use serde::{Deserialize, Serialize};
16use std::collections::{BTreeMap, HashMap, VecDeque};
17use std::sync::{Arc, Mutex, RwLock};
18use std::time::Duration;
19use tokio::sync::{mpsc, Semaphore};
20use uuid::Uuid;
21
22impl QuantumLoadBalancingMetricsCollector {
23    pub fn new() -> Self {
24        Self::default()
25    }
26}
27
28/// Implementation of the quantum-aware load balancer
29impl MLOptimizedQuantumLoadBalancer {
30    /// Create a new quantum-aware ML load balancer
31    pub fn new() -> Self {
32        Self {
33            base_strategy: Arc::new(CapabilityBasedQuantumBalancer::new()),
34            ml_predictor: Arc::new(QuantumLoadPredictionModel::new()),
35            quantum_scheduler: Arc::new(QuantumAwareScheduler::new()),
36            performance_learner: Arc::new(QuantumPerformanceLearner::new()),
37            adaptive_weights: Arc::new(Mutex::new(QuantumLoadBalancingWeights::default())),
38            entanglement_tracker: Arc::new(EntanglementQualityTracker::new()),
39            coherence_monitor: Arc::new(CoherenceTimeMonitor::new()),
40            fidelity_preserver: Arc::new(FidelityPreservationSystem::new()),
41            metrics_collector: Arc::new(QuantumLoadBalancingMetricsCollector::new()),
42        }
43    }
44
45    /// Select optimal node for quantum circuit partition
46    pub async fn select_optimal_node(
47        &self,
48        available_nodes: &[NodeInfo],
49        circuit_partition: &CircuitPartition,
50        quantum_requirements: &QuantumResourceRequirements,
51    ) -> Result<NodeId> {
52        // Extract quantum features for ML prediction
53        let features = self
54            .extract_quantum_features(available_nodes, circuit_partition, quantum_requirements)
55            .await?;
56
57        // Get ML prediction for optimal node
58        let ml_prediction = self.ml_predictor.predict_optimal_node(&features).await?;
59
60        // Apply quantum-aware scheduling constraints
61        let quantum_constraints = self
62            .evaluate_quantum_constraints(available_nodes, circuit_partition, quantum_requirements)
63            .await?;
64
65        // Combine ML prediction with quantum constraints
66        let optimal_node = self
67            .combine_ml_and_quantum_decisions(
68                &ml_prediction,
69                &quantum_constraints,
70                available_nodes,
71                circuit_partition,
72            )
73            .await?;
74
75        // Update performance learning system
76        self.update_performance_learning(&optimal_node, circuit_partition, quantum_requirements)
77            .await?;
78
79        // Update metrics
80        self.update_quantum_metrics(&optimal_node, &features, &ml_prediction)
81            .await?;
82
83        Ok(optimal_node)
84    }
85
86    /// Extract quantum-specific features for ML prediction
87    async fn extract_quantum_features(
88        &self,
89        available_nodes: &[NodeInfo],
90        circuit_partition: &CircuitPartition,
91        quantum_requirements: &QuantumResourceRequirements,
92    ) -> Result<FeatureVector> {
93        let mut features = HashMap::new();
94
95        // Circuit complexity features
96        features.insert(
97            "circuit_depth".to_string(),
98            circuit_partition.gates.len() as f64,
99        );
100        features.insert(
101            "entanglement_pairs_needed".to_string(),
102            quantum_requirements.entanglement_pairs as f64,
103        );
104        features.insert(
105            "fidelity_requirement".to_string(),
106            quantum_requirements.fidelity_requirement,
107        );
108
109        // Node capability features
110        for (i, node) in available_nodes.iter().enumerate() {
111            let node_prefix = format!("node_{i}");
112
113            // Quantum hardware features
114            features.insert(
115                format!("{node_prefix}_max_qubits "),
116                node.capabilities.max_qubits as f64,
117            );
118            features.insert(
119                format!("{node_prefix}_readout_fidelity "),
120                node.capabilities.readout_fidelity,
121            );
122
123            // Current load features
124            features.insert(
125                format!("{node_prefix}_qubits_in_use "),
126                node.current_load.qubits_in_use as f64,
127            );
128            features.insert(
129                format!("{node_prefix}_queue_length "),
130                node.current_load.queue_length as f64,
131            );
132
133            // Quantum-specific features
134            if let Some(entanglement_quality) =
135                self.get_node_entanglement_quality(&node.node_id).await?
136            {
137                features.insert(
138                    format!("{node_prefix}_entanglement_quality "),
139                    entanglement_quality,
140                );
141            }
142
143            if let Some(coherence_metrics) = self.get_node_coherence_metrics(&node.node_id).await? {
144                features.insert(
145                    format!("{node_prefix}_avg_coherence_time "),
146                    coherence_metrics.average_coherence_time.as_secs_f64(),
147                );
148            }
149        }
150
151        // Temporal features
152        let now = Utc::now();
153        features.insert("hour_of_day".to_string(), now.hour() as f64);
154        features.insert(
155            "day_of_week".to_string(),
156            now.weekday().number_from_monday() as f64,
157        );
158
159        Ok(FeatureVector {
160            features,
161            timestamp: now,
162            context: self
163                .extract_quantum_context(circuit_partition, quantum_requirements)
164                .await?,
165        })
166    }
167
168    /// Evaluate quantum constraints for scheduling
169    async fn evaluate_quantum_constraints(
170        &self,
171        available_nodes: &[NodeInfo],
172        circuit_partition: &CircuitPartition,
173        quantum_requirements: &QuantumResourceRequirements,
174    ) -> Result<QuantumSchedulingConstraints> {
175        let mut constraints = QuantumSchedulingConstraints {
176            entanglement_constraints: HashMap::new(),
177            coherence_constraints: HashMap::new(),
178            fidelity_constraints: HashMap::new(),
179            error_correction_constraints: HashMap::new(),
180            deadline_constraints: HashMap::new(),
181        };
182
183        for node in available_nodes {
184            // Evaluate entanglement constraints
185            let entanglement_constraint = self
186                .evaluate_entanglement_constraint(
187                    &node.node_id,
188                    circuit_partition,
189                    quantum_requirements,
190                )
191                .await?;
192
193            constraints
194                .entanglement_constraints
195                .insert(node.node_id.clone(), entanglement_constraint);
196
197            // Evaluate coherence constraints
198            let coherence_constraint = self
199                .evaluate_coherence_constraint(
200                    &node.node_id,
201                    circuit_partition,
202                    quantum_requirements,
203                )
204                .await?;
205
206            constraints
207                .coherence_constraints
208                .insert(node.node_id.clone(), coherence_constraint);
209
210            // Evaluate fidelity constraints
211            let fidelity_constraint = self
212                .evaluate_fidelity_constraint(
213                    &node.node_id,
214                    circuit_partition,
215                    quantum_requirements,
216                )
217                .await?;
218
219            constraints
220                .fidelity_constraints
221                .insert(node.node_id.clone(), fidelity_constraint);
222        }
223
224        Ok(constraints)
225    }
226
227    /// Combine ML prediction with quantum constraints to make final decision
228    async fn combine_ml_and_quantum_decisions(
229        &self,
230        ml_prediction: &QuantumPredictionResult,
231        quantum_constraints: &QuantumSchedulingConstraints,
232        available_nodes: &[NodeInfo],
233        circuit_partition: &CircuitPartition,
234    ) -> Result<NodeId> {
235        let weights = self
236            .adaptive_weights
237            .lock()
238            .unwrap_or_else(|e| e.into_inner())
239            .clone();
240
241        let mut node_scores: HashMap<NodeId, f64> = HashMap::new();
242
243        for node in available_nodes {
244            let mut score = 0.0;
245
246            // ML prediction score
247            let ml_score = if node.node_id == ml_prediction.predicted_node {
248                ml_prediction.confidence
249            } else {
250                0.0
251            };
252
253            // Entanglement quality score
254            let entanglement_score = quantum_constraints
255                .entanglement_constraints
256                .get(&node.node_id)
257                .map_or(0.0, |c| c.quality_score);
258
259            // Coherence time score
260            let coherence_score = quantum_constraints
261                .coherence_constraints
262                .get(&node.node_id)
263                .map_or(0.0, |c| c.adequacy_score);
264
265            // Fidelity preservation score
266            let fidelity_score = quantum_constraints
267                .fidelity_constraints
268                .get(&node.node_id)
269                .map_or(0.0, |c| c.preservation_score);
270
271            // Classical resource score
272            let classical_score = self
273                .calculate_classical_resource_score(node, circuit_partition)
274                .await?;
275
276            // Combine scores with adaptive weights
277            score += ml_score * 0.3; // Base ML weight
278            score += entanglement_score * weights.entanglement_quality_weight;
279            score += coherence_score * weights.coherence_time_weight;
280            score += fidelity_score * weights.fidelity_preservation_weight;
281            score += classical_score * weights.classical_resources_weight;
282
283            node_scores.insert(node.node_id.clone(), score);
284        }
285
286        // Select node with highest combined score
287        let optimal_node = node_scores
288            .into_iter()
289            .max_by(|a, b| a.1.partial_cmp(&b.1).unwrap_or(std::cmp::Ordering::Equal))
290            .map(|(node_id, _)| node_id)
291            .ok_or_else(|| {
292                QuantumLoadBalancingError::QuantumSchedulingConflict(
293                    "No suitable node found ".to_string(),
294                )
295            })?;
296
297        Ok(optimal_node)
298    }
299
300    /// Get entanglement quality for a node
301    async fn get_node_entanglement_quality(&self, node_id: &NodeId) -> Result<Option<f64>> {
302        let entanglement_states = self
303            .entanglement_tracker
304            .entanglement_states
305            .read()
306            .unwrap_or_else(|e| e.into_inner());
307
308        let quality: f64 = entanglement_states
309            .iter()
310            .filter(|((n1, n2), _)| n1 == node_id || n2 == node_id)
311            .map(|(_, state)| state.current_fidelity)
312            .sum::<f64>()
313            / entanglement_states.len() as f64;
314
315        Ok(if quality > 0.0 { Some(quality) } else { None })
316    }
317
318    /// Get coherence metrics for a node
319    async fn get_node_coherence_metrics(
320        &self,
321        node_id: &NodeId,
322    ) -> Result<Option<NodeCoherenceMetrics>> {
323        let coherence_states = self
324            .coherence_monitor
325            .coherence_times
326            .read()
327            .unwrap_or_else(|e| e.into_inner());
328
329        let node_coherence_data: Vec<_> = coherence_states
330            .iter()
331            .filter(|((n, _), _)| n == node_id)
332            .collect();
333
334        if node_coherence_data.is_empty() {
335            return Ok(None);
336        }
337
338        let total_t1: Duration = node_coherence_data
339            .iter()
340            .map(|(_, state)| state.t1_time)
341            .sum();
342
343        let total_t2: Duration = node_coherence_data
344            .iter()
345            .map(|(_, state)| state.t2_time)
346            .sum();
347
348        let count = node_coherence_data.len();
349
350        Ok(Some(NodeCoherenceMetrics {
351            average_coherence_time: total_t1 / count as u32,
352            average_dephasing_time: total_t2 / count as u32,
353            coherence_stability: 0.95, // Placeholder calculation
354        }))
355    }
356
357    /// Extract quantum context information
358    async fn extract_quantum_context(
359        &self,
360        circuit_partition: &CircuitPartition,
361        quantum_requirements: &QuantumResourceRequirements,
362    ) -> Result<crate::quantum_network::network_optimization::ContextInfo> {
363        Ok(crate::quantum_network::network_optimization::ContextInfo {
364            network_state: "quantum_active".to_string(),
365            time_of_day: Utc::now().hour() as u8,
366            day_of_week: Utc::now().weekday().number_from_monday() as u8,
367            quantum_experiment_type: Some(
368                self.classify_quantum_experiment(circuit_partition).await?,
369            ),
370            user_priority: Some("high".to_string()), // Placeholder
371        })
372    }
373
374    /// Classify type of quantum experiment
375    async fn classify_quantum_experiment(
376        &self,
377        circuit_partition: &CircuitPartition,
378    ) -> Result<String> {
379        // Simple classification based on gate types and circuit structure
380        let gate_types: Vec<&str> = circuit_partition
381            .gates
382            .iter()
383            .map(|g| g.gate_type.as_str())
384            .collect();
385
386        let experiment_type = if gate_types.contains(&"H") && gate_types.contains(&"CNOT") {
387            "entanglement_experiment"
388        } else if gate_types.iter().any(|&g| g.starts_with('R')) {
389            "variational_algorithm"
390        } else if gate_types.contains(&"QFT") {
391            "quantum_fourier_transform"
392        } else {
393            "general_quantum_computation"
394        };
395
396        Ok(experiment_type.to_string())
397    }
398
399    /// Evaluate entanglement constraint for a node
400    async fn evaluate_entanglement_constraint(
401        &self,
402        node_id: &NodeId,
403        _circuit_partition: &CircuitPartition,
404        quantum_requirements: &QuantumResourceRequirements,
405    ) -> Result<EntanglementConstraint> {
406        let entanglement_states = self
407            .entanglement_tracker
408            .entanglement_states
409            .read()
410            .unwrap_or_else(|e| e.into_inner());
411
412        // Calculate available entanglement quality
413        let available_quality: f64 = entanglement_states
414            .iter()
415            .filter(|((n1, n2), _)| n1 == node_id || n2 == node_id)
416            .map(|(_, state)| state.current_fidelity)
417            .sum::<f64>()
418            / (entanglement_states.len().max(1) as f64);
419
420        // Calculate quality score based on requirements
421        let quality_score = if available_quality >= quantum_requirements.fidelity_requirement {
422            1.0
423        } else {
424            available_quality / quantum_requirements.fidelity_requirement
425        };
426
427        Ok(EntanglementConstraint {
428            available_pairs: entanglement_states.len() as u32,
429            required_pairs: quantum_requirements.entanglement_pairs,
430            quality_score,
431            is_feasible: quality_score >= 0.8, // Threshold for feasibility
432        })
433    }
434
435    /// Evaluate coherence constraint for a node
436    async fn evaluate_coherence_constraint(
437        &self,
438        node_id: &NodeId,
439        circuit_partition: &CircuitPartition,
440        quantum_requirements: &QuantumResourceRequirements,
441    ) -> Result<CoherenceConstraint> {
442        let coherence_states = self
443            .coherence_monitor
444            .coherence_times
445            .read()
446            .unwrap_or_else(|e| e.into_inner());
447
448        // Get minimum coherence time available on this node
449        let min_coherence_time = coherence_states
450            .iter()
451            .filter(|((n, _), _)| n == node_id)
452            .map(|(_, state)| state.t2_time.min(state.t1_time))
453            .min()
454            .unwrap_or(Duration::from_secs(0));
455
456        // Estimate required coherence time based on circuit
457        let estimated_execution_time = circuit_partition.estimated_execution_time;
458        let required_coherence_time = quantum_requirements
459            .coherence_time_needed
460            .max(estimated_execution_time);
461
462        // Calculate adequacy score
463        let adequacy_score = if min_coherence_time >= required_coherence_time {
464            1.0
465        } else {
466            min_coherence_time.as_secs_f64() / required_coherence_time.as_secs_f64()
467        };
468
469        Ok(CoherenceConstraint {
470            available_coherence_time: min_coherence_time,
471            required_coherence_time,
472            adequacy_score,
473            is_adequate: adequacy_score >= 0.9, // High threshold for coherence adequacy
474        })
475    }
476
477    /// Evaluate fidelity constraint for a node
478    async fn evaluate_fidelity_constraint(
479        &self,
480        node_id: &NodeId,
481        circuit_partition: &CircuitPartition,
482        quantum_requirements: &QuantumResourceRequirements,
483    ) -> Result<FidelityConstraint> {
484        // Get historical fidelity data for this node
485        let performance_history = self
486            .performance_learner
487            .performance_history
488            .read()
489            .unwrap_or_else(|e| e.into_inner());
490
491        let fidelity_history = performance_history
492            .get(node_id)
493            .map(|h| &h.fidelity_history)
494            .cloned()
495            .unwrap_or_default();
496
497        // Calculate expected fidelity based on circuit complexity
498        let circuit_complexity = circuit_partition.gates.len() as f64;
499        let base_fidelity = if fidelity_history.is_empty() {
500            0.95 // Default assumption
501        } else {
502            fidelity_history
503                .iter()
504                .map(|m| m.process_fidelity)
505                .sum::<f64>()
506                / fidelity_history.len() as f64
507        };
508
509        // Apply fidelity degradation based on circuit complexity
510        let expected_fidelity = base_fidelity * (0.99_f64).powf(circuit_complexity / 10.0);
511
512        // Calculate preservation score
513        let preservation_score = if expected_fidelity >= quantum_requirements.fidelity_requirement {
514            1.0
515        } else {
516            expected_fidelity / quantum_requirements.fidelity_requirement
517        };
518
519        Ok(FidelityConstraint {
520            expected_fidelity,
521            required_fidelity: quantum_requirements.fidelity_requirement,
522            preservation_score,
523            can_preserve: preservation_score >= 0.95, // High threshold for fidelity preservation
524        })
525    }
526
527    /// Calculate classical resource score for a node
528    async fn calculate_classical_resource_score(
529        &self,
530        node: &NodeInfo,
531        circuit_partition: &CircuitPartition,
532    ) -> Result<f64> {
533        let cpu_score = 1.0 - node.current_load.cpu_utilization;
534        let memory_score = 1.0 - node.current_load.memory_utilization;
535        let network_score = 1.0 - node.current_load.network_utilization;
536
537        // Consider queue length
538        let queue_score = if node.current_load.queue_length == 0 {
539            1.0
540        } else {
541            1.0 / (1.0 + node.current_load.queue_length as f64 / 10.0)
542        };
543
544        // Consider resource requirements
545        let resource_adequacy = if node.capabilities.max_qubits
546            >= circuit_partition.resource_requirements.qubits_needed
547        {
548            1.0
549        } else {
550            node.capabilities.max_qubits as f64
551                / circuit_partition.resource_requirements.qubits_needed as f64
552        };
553
554        // Combine all classical scores
555        let combined_score =
556            (cpu_score + memory_score + network_score + queue_score + resource_adequacy) / 5.0;
557
558        Ok(combined_score)
559    }
560
561    /// Update performance learning system with feedback
562    async fn update_performance_learning(
563        &self,
564        selected_node: &NodeId,
565        circuit_partition: &CircuitPartition,
566        quantum_requirements: &QuantumResourceRequirements,
567    ) -> Result<()> {
568        // Record the decision for future learning
569        let learning_data = QuantumLearningDataPoint {
570            timestamp: Utc::now(),
571            selected_node: selected_node.clone(),
572            circuit_partition: circuit_partition.clone(),
573            quantum_requirements: quantum_requirements.clone(),
574            context_features: HashMap::new(), // To be filled with context
575        };
576
577        // Convert to TrainingDataPoint for compatibility
578        let training_data = TrainingDataPoint {
579            features: learning_data.context_features.clone(),
580            target_node: learning_data.selected_node.clone(),
581            actual_performance: PerformanceMetrics {
582                execution_time: Duration::from_millis(100), // Placeholder
583                fidelity: 0.95,                             // Placeholder
584                success: true,                              // Placeholder
585                resource_utilization: 0.75,                 // Placeholder
586            },
587            timestamp: learning_data.timestamp,
588        };
589
590        // Add to learning system (placeholder implementation)
591        self.performance_learner
592            .learning_algorithm
593            .add_training_data(training_data)
594            .await?;
595
596        Ok(())
597    }
598
599    /// Update quantum-specific metrics
600    async fn update_quantum_metrics(
601        &self,
602        selected_node: &NodeId,
603        features: &FeatureVector,
604        prediction: &QuantumPredictionResult,
605    ) -> Result<()> {
606        let mut quantum_metrics = self
607            .metrics_collector
608            .quantum_metrics
609            .lock()
610            .unwrap_or_else(|e| e.into_inner());
611
612        quantum_metrics.total_quantum_decisions += 1;
613
614        // Update prediction accuracy if we have feedback
615        if selected_node == &prediction.predicted_node {
616            // Prediction was followed - potentially good decision
617            quantum_metrics.quantum_advantage_achieved += 0.01; // Incremental improvement
618        }
619
620        // Update other metrics based on features
621        if let Some(fidelity) = features.features.get("fidelity_requirement") {
622            quantum_metrics.fidelity_improvement_factor =
623                (quantum_metrics.fidelity_improvement_factor + fidelity) / 2.0;
624        }
625
626        Ok(())
627    }
628}
629
630/// Quantum scheduling constraints
631#[derive(Debug, Clone)]
632pub struct QuantumSchedulingConstraints {
633    pub entanglement_constraints: HashMap<NodeId, EntanglementConstraint>,
634    pub coherence_constraints: HashMap<NodeId, CoherenceConstraint>,
635    pub fidelity_constraints: HashMap<NodeId, FidelityConstraint>,
636    pub error_correction_constraints: HashMap<NodeId, ErrorCorrectionConstraint>,
637    pub deadline_constraints: HashMap<NodeId, DeadlineConstraint>,
638}
639
640/// Entanglement constraint for scheduling
641#[derive(Debug, Clone, Serialize, Deserialize)]
642pub struct EntanglementConstraint {
643    pub available_pairs: u32,
644    pub required_pairs: u32,
645    pub quality_score: f64,
646    pub is_feasible: bool,
647}
648
649/// Coherence constraint for scheduling
650#[derive(Debug, Clone, Serialize, Deserialize)]
651pub struct CoherenceConstraint {
652    pub available_coherence_time: Duration,
653    pub required_coherence_time: Duration,
654    pub adequacy_score: f64,
655    pub is_adequate: bool,
656}
657
658/// Fidelity constraint for scheduling
659#[derive(Debug, Clone, Serialize, Deserialize)]
660pub struct FidelityConstraint {
661    pub expected_fidelity: f64,
662    pub required_fidelity: f64,
663    pub preservation_score: f64,
664    pub can_preserve: bool,
665}
666
667/// Error correction constraint for scheduling
668#[derive(Debug, Clone, Serialize, Deserialize)]
669pub struct ErrorCorrectionConstraint {
670    pub available_schemes: Vec<String>,
671    pub required_schemes: Vec<String>,
672    pub overhead_factor: f64,
673    pub is_compatible: bool,
674}
675
676/// Deadline constraint for scheduling
677#[derive(Debug, Clone, Serialize, Deserialize)]
678pub struct DeadlineConstraint {
679    pub hard_deadline: Option<DateTime<Utc>>,
680    pub soft_deadline: Option<DateTime<Utc>>,
681    pub estimated_completion: DateTime<Utc>,
682    pub can_meet_deadline: bool,
683}
684
685/// Node coherence metrics
686#[derive(Debug, Clone, Serialize, Deserialize)]
687pub struct NodeCoherenceMetrics {
688    pub average_coherence_time: Duration,
689    pub average_dephasing_time: Duration,
690    pub coherence_stability: f64,
691}
692
693/// Quantum resource requirements
694#[derive(Debug, Clone, Serialize, Deserialize)]
695pub struct QuantumResourceRequirements {
696    pub qubits_needed: u32,
697    pub gate_count_estimate: u32,
698    pub circuit_depth: u32,
699    pub fidelity_requirement: f64,
700    pub coherence_time_needed: Duration,
701    pub entanglement_pairs: u32,
702}
703
704/// Quantum learning data point
705#[derive(Debug, Clone, Serialize, Deserialize)]
706pub struct QuantumLearningDataPoint {
707    pub timestamp: DateTime<Utc>,
708    pub selected_node: NodeId,
709    pub circuit_partition: CircuitPartition,
710    pub quantum_requirements: QuantumResourceRequirements,
711    pub context_features: HashMap<String, f64>,
712}
713
714/// Capability-based quantum load balancer (base implementation)
715#[derive(Debug)]
716pub struct CapabilityBasedQuantumBalancer {
717    pub quantum_capability_weights: HashMap<String, f64>,
718    pub quantum_performance_history: Arc<RwLock<HashMap<NodeId, QuantumPerformanceHistory>>>,
719}
720
721impl Default for CapabilityBasedQuantumBalancer {
722    fn default() -> Self {
723        Self::new()
724    }
725}
726
727impl CapabilityBasedQuantumBalancer {
728    pub fn new() -> Self {
729        let mut weights = HashMap::new();
730        weights.insert("qubit_count".to_string(), 0.3);
731        weights.insert("gate_fidelity".to_string(), 0.4);
732        weights.insert("coherence_time".to_string(), 0.3);
733
734        Self {
735            quantum_capability_weights: weights,
736            quantum_performance_history: Arc::new(RwLock::new(HashMap::new())),
737        }
738    }
739}
740
741#[async_trait]
742impl LoadBalancer for CapabilityBasedQuantumBalancer {
743    async fn select_node(
744        &self,
745        available_nodes: &[NodeInfo],
746        requirements: &ResourceRequirements,
747    ) -> std::result::Result<
748        NodeId,
749        crate::quantum_network::distributed_protocols::DistributedComputationError,
750    > {
751        // Simple capability-based selection with quantum awareness
752        let mut best_node = None;
753        let mut best_score = 0.0;
754
755        for node in available_nodes {
756            let mut score = 0.0;
757
758            // Quantum capability score
759            let qubit_score = if node.capabilities.max_qubits >= requirements.qubits_needed {
760                1.0
761            } else {
762                node.capabilities.max_qubits as f64 / requirements.qubits_needed as f64
763            };
764
765            let fidelity_score = node.capabilities.readout_fidelity;
766
767            // Load-based score
768            let load_score = 1.0
769                - (node.current_load.qubits_in_use as f64 / node.capabilities.max_qubits as f64);
770
771            score = qubit_score * self.quantum_capability_weights["qubit_count"]
772                + fidelity_score * self.quantum_capability_weights["gate_fidelity"]
773                + load_score * 0.3; // Load balancing component
774
775            if score > best_score {
776                best_score = score;
777                best_node = Some(node.node_id.clone());
778            }
779        }
780
781        best_node.ok_or_else(||
782            crate::quantum_network::distributed_protocols::DistributedComputationError::ResourceAllocation(
783                "No suitable node found ".to_string()
784            )
785        )
786    }
787
788    async fn update_node_metrics(
789        &self,
790        node_id: &NodeId,
791        metrics: &PerformanceMetrics,
792    ) -> std::result::Result<
793        (),
794        crate::quantum_network::distributed_protocols::DistributedComputationError,
795    > {
796        // Update performance history
797        let mut history = self
798            .quantum_performance_history
799            .write()
800            .unwrap_or_else(|e| e.into_inner());
801        if !history.contains_key(node_id) {
802            history.insert(node_id.clone(), QuantumPerformanceHistory::default());
803        }
804
805        // Add performance data point
806        let Some(node_history) = history.get_mut(node_id) else {
807            return Ok(());
808        };
809
810        // Update classical metrics
811        node_history
812            .classical_metrics
813            .execution_times
814            .push_back(metrics.execution_time);
815        if node_history.classical_metrics.execution_times.len() > 100 {
816            node_history.classical_metrics.execution_times.pop_front();
817        }
818
819        node_history.classical_metrics.success_rate = node_history
820            .classical_metrics
821            .success_rate
822            .mul_add(0.9, if metrics.success { 1.0 } else { 0.0 } * 0.1);
823
824        Ok(())
825    }
826
827    fn get_balancer_metrics(&self) -> LoadBalancerMetrics {
828        LoadBalancerMetrics {
829            total_decisions: 0, // Placeholder
830            average_decision_time: Duration::from_millis(10),
831            prediction_accuracy: 0.85,
832            load_distribution_variance: 0.15,
833            total_requests: 0,
834            successful_allocations: 0,
835            failed_allocations: 0,
836            average_response_time: Duration::from_millis(5),
837            node_utilization: HashMap::new(),
838        }
839    }
840
841    fn select_nodes(
842        &self,
843        partitions: &[CircuitPartition],
844        available_nodes: &HashMap<NodeId, NodeInfo>,
845        requirements: &ExecutionRequirements,
846    ) -> std::result::Result<HashMap<Uuid, NodeId>, DistributedComputationError> {
847        let mut allocation = HashMap::new();
848
849        for partition in partitions {
850            if let Some((node_id, _)) = available_nodes.iter().next() {
851                allocation.insert(partition.partition_id, node_id.clone());
852            }
853        }
854
855        Ok(allocation)
856    }
857
858    fn rebalance_load(
859        &self,
860        current_allocation: &HashMap<Uuid, NodeId>,
861        nodes: &HashMap<NodeId, NodeInfo>,
862    ) -> Option<HashMap<Uuid, NodeId>> {
863        None // No rebalancing needed in simplified implementation
864    }
865
866    fn predict_execution_time(&self, partition: &CircuitPartition, node: &NodeInfo) -> Duration {
867        Duration::from_millis(partition.gates.len() as u64 * 15) // Slightly higher than basic implementation
868    }
869}
870
871impl Default for QuantumLoadBalancingWeights {
872    fn default() -> Self {
873        Self {
874            entanglement_quality_weight: 0.25,
875            coherence_time_weight: 0.25,
876            fidelity_preservation_weight: 0.20,
877            classical_resources_weight: 0.15,
878            network_latency_weight: 0.10,
879            error_correction_weight: 0.03,
880            fairness_weight: 0.02,
881            dynamic_adjustment_enabled: true,
882        }
883    }
884}
885
886impl Default for QuantumPerformanceHistory {
887    fn default() -> Self {
888        Self {
889            classical_metrics: PerformanceHistory {
890                execution_times: VecDeque::new(),
891                success_rate: 0.95,
892                average_fidelity: 0.90,
893                last_updated: Utc::now(),
894            },
895            fidelity_history: VecDeque::new(),
896            coherence_measurements: VecDeque::new(),
897            entanglement_measurements: VecDeque::new(),
898            error_rate_history: VecDeque::new(),
899            gate_statistics: HashMap::new(),
900        }
901    }
902}
903
904// Individual default implementations are provided below
905
906// Individual implementations for each type to avoid unsafe operations
907impl Default for QuantumLoadPredictionModel {
908    fn default() -> Self {
909        Self {
910            model: Arc::new(Mutex::new(Box::new(SimpleMLModel::new()))),
911            feature_extractor: Arc::new(QuantumFeatureExtractor::default()),
912            prediction_cache: Arc::new(RwLock::new(HashMap::new())),
913            training_collector: Arc::new(QuantumTrainingDataCollector::default()),
914            performance_tracker: Arc::new(ModelPerformanceTracker::default()),
915        }
916    }
917}
918
919impl Default for QuantumAwareScheduler {
920    fn default() -> Self {
921        Self {
922            entanglement_aware_scheduling: true,
923            coherence_time_optimization: true,
924            fidelity_preservation_priority: true,
925            error_correction_scheduler: Arc::new(ErrorCorrectionScheduler::default()),
926            deadline_scheduler: Arc::new(QuantumDeadlineScheduler::default()),
927            urgency_evaluator: Arc::new(QuantumUrgencyEvaluator::default()),
928            entanglement_resolver: Arc::new(EntanglementDependencyResolver::default()),
929            gate_conflict_resolver: Arc::new(QuantumGateConflictResolver::default()),
930        }
931    }
932}
933
934impl QuantumAwareScheduler {
935    pub fn new() -> Self {
936        Self::default()
937    }
938}
939
940impl Default for QuantumPerformanceLearner {
941    fn default() -> Self {
942        Self {
943            performance_history: Arc::new(RwLock::new(HashMap::new())),
944            learning_algorithm: Arc::new(QuantumReinforcementLearning::default()),
945            adaptation_strategy: Arc::new(QuantumAdaptationStrategy::default()),
946            feedback_processor: Arc::new(QuantumFeedbackProcessor::default()),
947        }
948    }
949}
950
951impl Default for EntanglementQualityTracker {
952    fn default() -> Self {
953        Self {
954            entanglement_states: Arc::new(RwLock::new(HashMap::new())),
955            quality_thresholds: Arc::new(EntanglementQualityThresholds::default()),
956            quality_predictor: Arc::new(EntanglementQualityPredictor::default()),
957            quality_optimizer: Arc::new(EntanglementQualityOptimizer::default()),
958        }
959    }
960}
961
962impl EntanglementQualityTracker {
963    pub fn new() -> Self {
964        Self::default()
965    }
966}
967
968impl Default for CoherenceTimeMonitor {
969    fn default() -> Self {
970        Self {
971            coherence_times: Arc::new(RwLock::new(HashMap::new())),
972            coherence_predictor: Arc::new(CoherenceTimePredictor::default()),
973            coherence_optimizer: Arc::new(CoherenceTimeOptimizer::default()),
974            real_time_monitor: Arc::new(RealTimeCoherenceMonitor::default()),
975        }
976    }
977}
978
979impl CoherenceTimeMonitor {
980    pub fn new() -> Self {
981        Self::default()
982    }
983}
984
985impl Default for FidelityPreservationSystem {
986    fn default() -> Self {
987        Self {
988            fidelity_tracker: Arc::new(FidelityTracker::default()),
989            preservation_strategies: Arc::new(FidelityPreservationStrategies::default()),
990            error_mitigation: Arc::new(ErrorMitigationCoordinator::default()),
991            optimization_scheduler: Arc::new(FidelityOptimizationScheduler::default()),
992        }
993    }
994}
995
996impl FidelityPreservationSystem {
997    pub fn new() -> Self {
998        Self::default()
999    }
1000}
1001
1002impl Default for QuantumLoadBalancingMetricsCollector {
1003    fn default() -> Self {
1004        Self {
1005            classical_metrics: Arc::new(Mutex::new(LoadBalancerMetrics {
1006                total_decisions: 0,
1007                average_decision_time: Duration::from_millis(10),
1008                prediction_accuracy: 0.95,
1009                load_distribution_variance: 0.1,
1010                total_requests: 0,
1011                successful_allocations: 0,
1012                failed_allocations: 0,
1013                average_response_time: Duration::from_millis(5),
1014                node_utilization: HashMap::new(),
1015            })),
1016            quantum_metrics: Arc::new(Mutex::new(QuantumLoadBalancingMetrics::default())),
1017            performance_tracker: Arc::new(RealTimeQuantumPerformanceTracker::default()),
1018            metrics_aggregator: Arc::new(QuantumMetricsAggregator::default()),
1019        }
1020    }
1021}
1022
1023impl Default for QuantumLoadBalancingMetrics {
1024    fn default() -> Self {
1025        Self {
1026            total_quantum_decisions: 0,
1027            average_quantum_decision_time: Duration::from_millis(15),
1028            entanglement_preservation_rate: 0.9,
1029            coherence_utilization_efficiency: 0.85,
1030            fidelity_improvement_factor: 1.1,
1031            quantum_advantage_achieved: 0.2,
1032            error_correction_overhead_ratio: 0.15,
1033            quantum_fairness_index: 0.95,
1034        }
1035    }
1036}
1037
1038impl Default for EntanglementQualityThresholds {
1039    fn default() -> Self {
1040        Self {
1041            min_fidelity: 0.8,
1042            warning_fidelity: 0.85,
1043            optimal_fidelity: 0.95,
1044            max_decay_rate: 0.05,
1045            min_lifetime: Duration::from_millis(100),
1046        }
1047    }
1048}
1049
1050// Simple ML model implementation for stubs
1051#[derive(Debug)]
1052pub struct SimpleMLModel {
1053    pub model_type: String,
1054}
1055
1056impl Default for SimpleMLModel {
1057    fn default() -> Self {
1058        Self::new()
1059    }
1060}
1061
1062impl SimpleMLModel {
1063    pub fn new() -> Self {
1064        Self {
1065            model_type: "simple_stub".to_string(),
1066        }
1067    }
1068}
1069
1070#[async_trait]
1071impl crate::quantum_network::network_optimization::MLModel for SimpleMLModel {
1072    async fn predict(
1073        &self,
1074        _features: &FeatureVector,
1075    ) -> std::result::Result<PredictionResult, OptimizationError> {
1076        Ok(PredictionResult {
1077            predicted_values: HashMap::new(),
1078            confidence_intervals: HashMap::new(),
1079            uncertainty_estimate: 0.1,
1080            prediction_timestamp: Utc::now(),
1081        })
1082    }
1083
1084    async fn train(
1085        &mut self,
1086        _training_data: &[TrainingDataPoint],
1087    ) -> std::result::Result<TrainingResult, OptimizationError> {
1088        Ok(TrainingResult {
1089            training_accuracy: 0.85,
1090            validation_accuracy: 0.8,
1091            loss_value: 0.2,
1092            training_duration: Duration::from_secs(10),
1093            model_size_bytes: 1024,
1094        })
1095    }
1096
1097    async fn update_weights(
1098        &mut self,
1099        _feedback: &FeedbackData,
1100    ) -> std::result::Result<(), OptimizationError> {
1101        Ok(())
1102    }
1103
1104    fn get_model_metrics(&self) -> ModelMetrics {
1105        ModelMetrics {
1106            accuracy: 0.85,
1107            precision: 0.8,
1108            recall: 0.9,
1109            f1_score: 0.84,
1110            mae: 0.15,
1111            rmse: 0.2,
1112        }
1113    }
1114}
1115
1116// Stub implementations with placeholder fields are provided individually
1117
1118// Additional implementations for key functionality
1119impl QuantumLoadPredictionModel {
1120    pub fn new() -> Self {
1121        Self::default()
1122    }
1123
1124    pub async fn predict_optimal_node(
1125        &self,
1126        _features: &FeatureVector,
1127    ) -> Result<QuantumPredictionResult> {
1128        // Placeholder implementation
1129        Ok(QuantumPredictionResult {
1130            predicted_node: NodeId("node_1".to_string()),
1131            predicted_execution_time: Duration::from_millis(100),
1132            predicted_fidelity: 0.95,
1133            predicted_entanglement_overhead: 2,
1134            confidence: 0.85,
1135            quantum_uncertainty: QuantumUncertaintyFactors {
1136                decoherence_uncertainty: 0.05,
1137                entanglement_uncertainty: 0.03,
1138                measurement_uncertainty: 0.02,
1139                calibration_uncertainty: 0.01,
1140            },
1141            prediction_timestamp: Utc::now(),
1142        })
1143    }
1144}
1145
1146impl QuantumPerformanceLearner {
1147    pub fn new() -> Self {
1148        Self::default()
1149    }
1150
1151    pub async fn add_training_data(&self, _data: QuantumLearningDataPoint) -> Result<()> {
1152        // Placeholder implementation
1153        Ok(())
1154    }
1155}
1156
1157/// Test module for quantum-aware load balancing
1158#[cfg(test)]
1159mod tests {
1160    use super::*;
1161
1162    #[tokio::test]
1163    async fn test_quantum_load_balancer_creation() {
1164        let balancer = MLOptimizedQuantumLoadBalancer::new();
1165        assert!(
1166            !balancer
1167                .adaptive_weights
1168                .lock()
1169                .expect("Mutex should not be poisoned")
1170                .dynamic_adjustment_enabled
1171                || balancer
1172                    .adaptive_weights
1173                    .lock()
1174                    .expect("Mutex should not be poisoned")
1175                    .dynamic_adjustment_enabled
1176        );
1177    }
1178
1179    #[tokio::test]
1180    async fn test_quantum_feature_extraction() {
1181        let balancer = MLOptimizedQuantumLoadBalancer::new();
1182
1183        let nodes = vec![NodeInfo {
1184            node_id: NodeId("test_node".to_string()),
1185            capabilities: crate::quantum_network::distributed_protocols::NodeCapabilities {
1186                max_qubits: 10,
1187                supported_gates: vec!["H".to_string(), "CNOT".to_string()],
1188                connectivity_graph: vec![(0, 1), (1, 2)],
1189                gate_fidelities: HashMap::new(),
1190                readout_fidelity: 0.95,
1191                coherence_times: HashMap::new(),
1192                classical_compute_power: 1000.0,
1193                memory_capacity_gb: 8,
1194                network_bandwidth_mbps: 1000.0,
1195            },
1196            current_load: crate::quantum_network::distributed_protocols::NodeLoad {
1197                qubits_in_use: 3,
1198                active_circuits: 2,
1199                cpu_utilization: 0.4,
1200                memory_utilization: 0.3,
1201                network_utilization: 0.2,
1202                queue_length: 1,
1203                estimated_completion_time: Duration::from_secs(30),
1204            },
1205            network_info: crate::quantum_network::distributed_protocols::NetworkInfo {
1206                ip_address: "192.168.1.100".to_string(),
1207                port: 8080,
1208                latency_to_nodes: HashMap::new(),
1209                bandwidth_to_nodes: HashMap::new(),
1210                connection_quality: HashMap::new(),
1211            },
1212            status: crate::quantum_network::distributed_protocols::NodeStatus::Active,
1213            last_heartbeat: Utc::now(),
1214        }];
1215
1216        let circuit_partition = CircuitPartition {
1217            partition_id: Uuid::new_v4(),
1218            node_id: NodeId("test".to_string()),
1219            gates: vec![],
1220            dependencies: vec![],
1221            input_qubits: vec![],
1222            output_qubits: vec![],
1223            classical_inputs: vec![],
1224            estimated_execution_time: Duration::from_millis(100),
1225            resource_requirements: ResourceRequirements {
1226                qubits_needed: 5,
1227                gates_count: 10,
1228                memory_mb: 50,
1229                execution_time_estimate: Duration::from_millis(100),
1230                entanglement_pairs_needed: 2,
1231                classical_communication_bits: 100,
1232            },
1233        };
1234
1235        let quantum_requirements = QuantumResourceRequirements {
1236            qubits_needed: 5,
1237            gate_count_estimate: 10,
1238            circuit_depth: 5,
1239            fidelity_requirement: 0.9,
1240            coherence_time_needed: Duration::from_micros(100),
1241            entanglement_pairs: 2,
1242        };
1243
1244        let features = balancer
1245            .extract_quantum_features(&nodes, &circuit_partition, &quantum_requirements)
1246            .await;
1247        assert!(features.is_ok());
1248
1249        let feature_vector = features.expect("Feature extraction should succeed");
1250        assert!(!feature_vector.features.is_empty());
1251        assert!(feature_vector.features.contains_key("circuit_depth"));
1252        assert!(feature_vector
1253            .features
1254            .contains_key("entanglement_pairs_needed"));
1255    }
1256
1257    #[tokio::test]
1258    async fn test_capability_based_quantum_balancer() {
1259        let balancer = CapabilityBasedQuantumBalancer::new();
1260
1261        let nodes = vec![
1262            NodeInfo {
1263                node_id: NodeId("high_capability_node".to_string()),
1264                capabilities: crate::quantum_network::distributed_protocols::NodeCapabilities {
1265                    max_qubits: 20,
1266                    supported_gates: vec!["H".to_string(), "CNOT".to_string(), "T".to_string()],
1267                    connectivity_graph: vec![],
1268                    gate_fidelities: HashMap::new(),
1269                    readout_fidelity: 0.98,
1270                    coherence_times: HashMap::new(),
1271                    classical_compute_power: 2000.0,
1272                    memory_capacity_gb: 16,
1273                    network_bandwidth_mbps: 2000.0,
1274                },
1275                current_load: crate::quantum_network::distributed_protocols::NodeLoad {
1276                    qubits_in_use: 5,
1277                    active_circuits: 1,
1278                    cpu_utilization: 0.2,
1279                    memory_utilization: 0.1,
1280                    network_utilization: 0.1,
1281                    queue_length: 0,
1282                    estimated_completion_time: Duration::from_secs(10),
1283                },
1284                network_info: crate::quantum_network::distributed_protocols::NetworkInfo {
1285                    ip_address: "192.168.1.101".to_string(),
1286                    port: 8080,
1287                    latency_to_nodes: HashMap::new(),
1288                    bandwidth_to_nodes: HashMap::new(),
1289                    connection_quality: HashMap::new(),
1290                },
1291                status: crate::quantum_network::distributed_protocols::NodeStatus::Active,
1292                last_heartbeat: Utc::now(),
1293            },
1294            NodeInfo {
1295                node_id: NodeId("low_capability_node".to_string()),
1296                capabilities: crate::quantum_network::distributed_protocols::NodeCapabilities {
1297                    max_qubits: 5,
1298                    supported_gates: vec!["H".to_string(), "CNOT".to_string()],
1299                    connectivity_graph: vec![],
1300                    gate_fidelities: HashMap::new(),
1301                    readout_fidelity: 0.90,
1302                    coherence_times: HashMap::new(),
1303                    classical_compute_power: 500.0,
1304                    memory_capacity_gb: 4,
1305                    network_bandwidth_mbps: 500.0,
1306                },
1307                current_load: crate::quantum_network::distributed_protocols::NodeLoad {
1308                    qubits_in_use: 4,
1309                    active_circuits: 2,
1310                    cpu_utilization: 0.8,
1311                    memory_utilization: 0.7,
1312                    network_utilization: 0.6,
1313                    queue_length: 3,
1314                    estimated_completion_time: Duration::from_secs(60),
1315                },
1316                network_info: crate::quantum_network::distributed_protocols::NetworkInfo {
1317                    ip_address: "192.168.1.102".to_string(),
1318                    port: 8080,
1319                    latency_to_nodes: HashMap::new(),
1320                    bandwidth_to_nodes: HashMap::new(),
1321                    connection_quality: HashMap::new(),
1322                },
1323                status: crate::quantum_network::distributed_protocols::NodeStatus::Active,
1324                last_heartbeat: Utc::now(),
1325            },
1326        ];
1327
1328        let requirements = ResourceRequirements {
1329            qubits_needed: 10,
1330            gates_count: 20,
1331            memory_mb: 100,
1332            execution_time_estimate: Duration::from_millis(200),
1333            entanglement_pairs_needed: 3,
1334            classical_communication_bits: 500,
1335        };
1336
1337        let selected_node = balancer.select_node(&nodes, &requirements).await;
1338        assert!(selected_node.is_ok());
1339
1340        // Should select the high capability node
1341        let node_id = selected_node.expect("Node selection should succeed");
1342        assert_eq!(node_id.0, "high_capability_node");
1343    }
1344}