1use super::components::*;
4use super::core::*;
5use super::storage::*;
6use super::types::*;
7use async_trait::async_trait;
8use chrono::{DateTime, Duration as ChronoDuration, Utc};
9use serde::{Deserialize, Serialize};
10use std::collections::{BTreeMap, HashMap, HashSet, VecDeque};
11use std::sync::{Arc, Mutex, RwLock};
12use std::time::Duration;
13use uuid::Uuid;
14
15use crate::performance_analytics_dashboard::NotificationDispatcher;
16use crate::quantum_network::distributed_protocols::{NodeId, NodeInfo, PerformanceMetrics};
17use crate::quantum_network::network_optimization::{
18 FeatureVector, MLModel, NetworkOptimizationError, PredictionResult, Priority,
19};
20
21impl EnhancedQuantumNetworkMonitor {
22 pub fn new(config: EnhancedMonitoringConfig) -> Self {
24 Self {
25 metrics_collector: Arc::new(RealTimeMetricsCollector::new(&config.metrics_config)),
26 analytics_engine: Arc::new(QuantumNetworkAnalyticsEngine::new(
27 &config.analytics_config,
28 )),
29 anomaly_detector: Arc::new(QuantumAnomalyDetector::new(
30 &config.anomaly_detection_config,
31 )),
32 predictive_analytics: Arc::new(QuantumNetworkPredictor::new(&config.predictive_config)),
33 alert_system: Arc::new(QuantumNetworkAlertSystem::new(&config.alert_config)),
34 historical_data_manager: Arc::new(QuantumHistoricalDataManager::new(
35 &config.storage_config,
36 )),
37 optimization_recommender: Arc::new(QuantumOptimizationRecommender::new(&())),
38 dashboard_system: Arc::new(QuantumNetworkDashboard::new(&())),
39 config_manager: Arc::new(config),
40 }
41 }
42
43 pub async fn start_monitoring(&self) -> Result<()> {
45 self.metrics_collector.start_collection().await?;
47
48 self.analytics_engine.start_analytics().await?;
50
51 self.anomaly_detector.start_detection().await?;
53
54 self.predictive_analytics.start_prediction().await?;
56
57 self.alert_system.start_alerting().await?;
59
60 self.dashboard_system.initialize().await?;
62
63 Ok(())
64 }
65
66 pub async fn stop_monitoring(&self) -> Result<()> {
68 self.metrics_collector.stop_collection().await?;
70 self.analytics_engine.stop_analytics().await?;
71 self.anomaly_detector.stop_detection().await?;
72 self.predictive_analytics.stop_prediction().await?;
73 self.alert_system.stop_alerting().await?;
74
75 Ok(())
76 }
77
78 pub async fn get_monitoring_status(&self) -> Result<MonitoringStatus> {
80 Ok(MonitoringStatus {
81 overall_status: OverallStatus::Healthy,
82 metrics_collection_status: self.metrics_collector.get_status().await?,
83 analytics_status: self.analytics_engine.get_status().await?,
84 anomaly_detection_status: self.anomaly_detector.get_status().await?,
85 predictive_analytics_status: self.predictive_analytics.get_status().await?,
86 alert_system_status: self.alert_system.get_status().await?,
87 total_data_points_collected: self.get_total_data_points().await?,
88 active_alerts: self.get_active_alerts_count().await?,
89 system_health_score: self.calculate_system_health_score().await?,
90 })
91 }
92
93 pub async fn get_real_time_metrics(
95 &self,
96 metric_types: &[MetricType],
97 ) -> Result<Vec<MetricDataPoint>> {
98 self.metrics_collector
99 .get_real_time_metrics(metric_types)
100 .await
101 }
102
103 pub async fn get_historical_metrics(
105 &self,
106 metric_type: MetricType,
107 start_time: DateTime<Utc>,
108 end_time: DateTime<Utc>,
109 ) -> Result<Vec<MetricDataPoint>> {
110 self.historical_data_manager
111 .get_historical_data(metric_type, start_time, end_time)
112 .await
113 }
114
115 pub async fn get_anomaly_results(&self, time_window: Duration) -> Result<Vec<AnomalyResult>> {
117 self.anomaly_detector
118 .get_recent_anomalies(time_window)
119 .await
120 }
121
122 pub async fn get_predictions(
124 &self,
125 metric_type: MetricType,
126 prediction_horizon: Duration,
127 ) -> Result<PredictionResult> {
128 self.predictive_analytics
129 .get_prediction(metric_type, prediction_horizon)
130 .await
131 }
132
133 pub async fn get_optimization_recommendations(
135 &self,
136 ) -> Result<Vec<OptimizationRecommendation>> {
137 self.optimization_recommender.get_recommendations().await
138 }
139
140 async fn get_total_data_points(&self) -> Result<u64> {
142 Ok(self
143 .metrics_collector
144 .get_collection_statistics()
145 .await?
146 .total_data_points)
147 }
148
149 async fn get_active_alerts_count(&self) -> Result<u32> {
150 Ok(self.alert_system.get_active_alerts().await?.len() as u32)
151 }
152
153 async fn calculate_system_health_score(&self) -> Result<f64> {
154 let metrics_health = self.metrics_collector.get_health_score().await?;
156 let analytics_health = self.analytics_engine.get_health_score().await?;
157 let anomaly_health = self.anomaly_detector.get_health_score().await?;
158 let prediction_health = self.predictive_analytics.get_health_score().await?;
159 let alert_health = self.alert_system.get_health_score().await?;
160
161 let overall_health = alert_health.mul_add(
163 0.1,
164 prediction_health.mul_add(
165 0.15,
166 anomaly_health.mul_add(0.2, metrics_health.mul_add(0.3, analytics_health * 0.25)),
167 ),
168 );
169
170 Ok(overall_health)
171 }
172}
173
174#[derive(Debug, Clone, Serialize, Deserialize)]
176pub struct MonitoringStatus {
177 pub overall_status: OverallStatus,
178 pub metrics_collection_status: ComponentStatus,
179 pub analytics_status: ComponentStatus,
180 pub anomaly_detection_status: ComponentStatus,
181 pub predictive_analytics_status: ComponentStatus,
182 pub alert_system_status: ComponentStatus,
183 pub total_data_points_collected: u64,
184 pub active_alerts: u32,
185 pub system_health_score: f64,
186}
187
188#[derive(Debug, Clone, Serialize, Deserialize)]
190pub enum OverallStatus {
191 Healthy,
192 Warning,
193 Critical,
194 Offline,
195}
196
197#[derive(Debug, Clone, Serialize, Deserialize)]
199pub struct ComponentStatus {
200 pub status: ComponentState,
201 pub last_update: DateTime<Utc>,
202 pub performance_metrics: ComponentPerformanceMetrics,
203 pub error_count: u32,
204}
205
206#[derive(Debug, Clone, Serialize, Deserialize)]
208pub enum ComponentState {
209 Running,
210 Starting,
211 Stopping,
212 Stopped,
213 Error,
214}
215
216#[derive(Debug, Clone, Serialize, Deserialize)]
218pub struct ComponentPerformanceMetrics {
219 pub throughput: f64,
220 pub latency: Duration,
221 pub error_rate: f64,
222 pub resource_utilization: f64,
223}
224
225#[derive(Debug, Clone, Serialize, Deserialize)]
227pub struct AnomalyResult {
228 pub anomaly_id: Uuid,
229 pub metric_type: MetricType,
230 pub anomaly_score: f64,
231 pub severity: AnomalySeverity,
232 pub detection_timestamp: DateTime<Utc>,
233 pub affected_nodes: Vec<NodeId>,
234 pub description: String,
235 pub recommended_actions: Vec<String>,
236}
237
238#[derive(Debug, Clone, Serialize, Deserialize, PartialEq, Eq, PartialOrd, Ord)]
240pub enum AnomalySeverity {
241 Low,
242 Medium,
243 High,
244 Critical,
245}
246
247#[derive(Debug, Clone, Serialize, Deserialize)]
249pub enum OptimizationRecommendationType {
250 PerformanceOptimization,
251 ResourceReallocation,
252 NetworkOptimization,
253 QuantumOptimization,
254 SecurityEnhancement,
255 CostOptimization,
256}
257
258#[derive(Debug, Clone, Serialize, Deserialize, PartialEq, Eq, PartialOrd, Ord)]
260pub enum RecommendationPriority {
261 Low,
262 Medium,
263 High,
264 Critical,
265}
266
267#[derive(Debug, Clone, Serialize, Deserialize)]
269pub struct ExpectedImprovement {
270 pub performance_improvement: f64,
271 pub cost_savings: f64,
272 pub efficiency_gain: f64,
273 pub reliability_improvement: f64,
274}
275
276#[derive(Debug, Clone, Serialize, Deserialize)]
278pub struct ImplementationEffort {
279 pub effort_level: EffortLevel,
280 pub estimated_time: Duration,
281 pub required_resources: Vec<String>,
282 pub complexity_score: f64,
283}
284
285#[derive(Debug, Clone, Serialize, Deserialize)]
287pub enum EffortLevel {
288 Minimal,
289 Low,
290 Medium,
291 High,
292 Extensive,
293}
294
295#[derive(Debug, Clone, Serialize, Deserialize)]
297pub struct RiskAssessment {
298 pub risk_level: RiskLevel,
299 pub potential_impacts: Vec<PotentialImpact>,
300 pub mitigation_strategies: Vec<String>,
301 pub rollback_plan: Option<String>,
302}
303
304#[derive(Debug, Clone, Serialize, Deserialize)]
306pub enum RiskLevel {
307 VeryLow,
308 Low,
309 Medium,
310 High,
311 VeryHigh,
312}
313
314#[derive(Debug, Clone, Serialize, Deserialize)]
316pub struct PotentialImpact {
317 pub impact_type: ImpactType,
318 pub probability: f64,
319 pub severity: ImpactSeverity,
320 pub description: String,
321}
322
323#[derive(Debug, Clone, Serialize, Deserialize)]
325pub enum ImpactType {
326 Performance,
327 Availability,
328 Security,
329 Cost,
330 UserExperience,
331 QuantumQuality,
332}
333
334#[derive(Debug, Clone, Serialize, Deserialize)]
336pub enum ImpactSeverity {
337 Negligible,
338 Minor,
339 Moderate,
340 Major,
341 Severe,
342}
343
344impl RealTimeMetricsCollector {
348 pub fn new(_config: &impl std::fmt::Debug) -> Self {
349 Self {
350 metric_streams: Arc::new(RwLock::new(HashMap::new())),
351 schedulers: Arc::new(RwLock::new(HashMap::new())),
352 aggregation_engine: Arc::new(MetricsAggregationEngine::new()),
353 real_time_buffer: Arc::new(RwLock::new(MetricsBuffer::new())),
354 collection_stats: Arc::new(Mutex::new(CollectionStatistics::default())),
355 }
356 }
357}
358
359impl Default for QuantumNetworkAnalyticsEngine {
360 fn default() -> Self {
361 Self {
362 real_time_processor: Arc::new(RealTimeAnalyticsProcessor {
363 stream_processor: Arc::new(StreamProcessingEngine {
364 processing_threads: 4,
365 }),
366 aggregators: Arc::new(RwLock::new(HashMap::new())),
367 cep_engine: Arc::new(ComplexEventProcessingEngine {
368 event_rules: Vec::new(),
369 }),
370 ml_inference: Arc::new(RealTimeMLInference {
371 model_path: "default_model.onnx".to_string(),
372 }),
373 }),
374 pattern_recognition: Arc::new(QuantumPatternRecognition {
375 pattern_algorithms: vec!["correlation".to_string(), "clustering".to_string()],
376 }),
377 correlation_analyzer: Arc::new(QuantumCorrelationAnalyzer {
378 correlation_threshold: 0.7,
379 }),
380 trend_analyzer: Arc::new(QuantumTrendAnalyzer {
381 trend_algorithms: vec!["linear".to_string(), "exponential".to_string()],
382 }),
383 performance_modeler: Arc::new(QuantumPerformanceModeler {
384 modeling_algorithms: vec!["linear".to_string(), "neural_network".to_string()],
385 }),
386 optimization_analytics: Arc::new(QuantumOptimizationAnalytics {
387 analytics_algorithms: vec![
388 "gradient_descent".to_string(),
389 "evolutionary".to_string(),
390 ],
391 }),
392 }
393 }
394}
395
396impl QuantumNetworkAnalyticsEngine {
397 pub fn new(_config: &impl std::fmt::Debug) -> Self {
398 Self::default()
399 }
400}
401
402impl QuantumAnomalyDetector {
403 pub fn new(_config: &impl std::fmt::Debug) -> Self {
404 Self {
405 detection_models: Arc::new(RwLock::new(HashMap::new())),
406 threshold_detectors: Arc::new(RwLock::new(HashMap::new())),
407 ml_detectors: Arc::new(RwLock::new(HashMap::new())),
408 correlation_analyzer: Arc::new(QuantumCorrelationAnalyzer {
409 correlation_threshold: 0.8,
410 }),
411 severity_classifier: Arc::new(AnomalySeverityClassifier::new()),
412 }
413 }
414}
415
416impl QuantumNetworkPredictor {
417 pub fn new(_config: &impl std::fmt::Debug) -> Self {
418 Self {
419 performance_predictors: Arc::new(RwLock::new(HashMap::new())),
420 failure_predictor: Arc::new(QuantumFailurePredictor::new()),
421 capacity_predictor: Arc::new(QuantumCapacityPredictor::new()),
422 load_forecaster: Arc::new(QuantumLoadForecaster::new()),
423 optimization_predictor: Arc::new(QuantumOptimizationOpportunityPredictor::new()),
424 }
425 }
426}
427
428impl QuantumNetworkAlertSystem {
429 pub fn new(_config: &impl std::fmt::Debug) -> Self {
430 Self {
431 rules_engine: Arc::new(AlertRulesEngine::new()),
432 notification_dispatcher: Arc::new(NotificationDispatcher::new(Vec::new())),
433 severity_classifier: Arc::new(AlertSeverityClassifier::new()),
434 correlation_engine: Arc::new(AlertCorrelationEngine::new()),
435 escalation_manager: Arc::new(AlertEscalationManager::new()),
436 }
437 }
438}
439
440impl QuantumHistoricalDataManager {
441 pub fn new(_config: &impl std::fmt::Debug) -> Self {
442 Self {
443 time_series_db: Arc::new(TimeSeriesDatabase::new()),
444 retention_manager: Arc::new(DataRetentionManager::new()),
445 compression_system: Arc::new(DataCompressionSystem::new()),
446 historical_analytics: Arc::new(HistoricalAnalyticsEngine::new()),
447 export_system: Arc::new(DataExportSystem::new()),
448 }
449 }
450}
451
452impl QuantumOptimizationRecommender {
453 pub fn new(_config: &impl std::fmt::Debug) -> Self {
454 Self {
455 recommendation_engine: "default_optimizer".to_string(),
456 confidence_threshold: 0.75,
457 }
458 }
459}
460
461impl QuantumNetworkDashboard {
462 pub fn new(_config: &impl std::fmt::Debug) -> Self {
463 Self {
464 dashboard_id: Uuid::new_v4(),
465 active_widgets: vec!["metrics".to_string(), "alerts".to_string()],
466 refresh_rate: Duration::from_secs(30),
467 }
468 }
469}
470
471impl Default for MetricsAggregationEngine {
473 fn default() -> Self {
474 Self::new()
475 }
476}
477
478impl MetricsAggregationEngine {
479 pub fn new() -> Self {
480 Self {
481 aggregation_window: Duration::from_secs(60),
482 aggregation_functions: vec!["mean".to_string(), "max".to_string()],
483 buffer_size: 1000,
484 }
485 }
486}
487
488impl Default for MetricsBuffer {
489 fn default() -> Self {
490 Self::new()
491 }
492}
493
494impl MetricsBuffer {
495 pub fn new() -> Self {
496 Self {
497 buffer_size: 10000,
498 data_points: VecDeque::new(),
499 overflow_policy: "drop_oldest".to_string(),
500 }
501 }
502}
503
504impl Default for CollectionStatistics {
505 fn default() -> Self {
506 Self {
507 total_data_points: 0,
508 collection_rate: 0.0,
509 error_rate: 0.0,
510 last_collection: Utc::now(),
511 }
512 }
513}
514
515macro_rules! impl_simple_new {
517 ($($type:ty),*) => {
518 $(
519 impl $type {
520 pub fn new() -> Self {
521 Self {
522 placeholder_field: "stub_implementation".to_string(),
523 }
524 }
525 }
526
527 impl Default for $type {
528 fn default() -> Self {
529 Self::new()
530 }
531 }
532 )*
533 };
534}
535
536#[derive(Debug)]
538pub struct FeatureProcessorRegistry {
539 placeholder_field: String,
540}
541
542#[derive(Debug)]
543pub struct ModelTrainingScheduler {
544 placeholder_field: String,
545}
546
547#[derive(Debug)]
548pub struct ModelPerformanceEvaluator {
549 placeholder_field: String,
550}
551
552#[derive(Debug)]
553pub struct DynamicThresholdManager {
554 placeholder_field: String,
555}
556
557#[derive(Debug)]
558pub struct AnomalyAlertDispatcher {
559 placeholder_field: String,
560}
561
562#[derive(Debug)]
563pub struct QuantumAnomalyAnalyzer {
564 placeholder_field: String,
565}
566
567#[derive(Debug)]
568pub struct QuantumStatePredictor {
569 placeholder_field: String,
570}
571
572#[derive(Debug)]
573pub struct NetworkTopologyPredictor {
574 placeholder_field: String,
575}
576
577#[derive(Debug)]
578pub struct PerformanceForecaster {
579 placeholder_field: String,
580}
581
582#[derive(Debug)]
583pub struct ScenarioAnalyzer {
584 placeholder_field: String,
585}
586
587#[derive(Debug)]
588pub struct QuantumAlertAnalyzer {
589 placeholder_field: String,
590}
591
592#[derive(Debug)]
593pub struct HistoricalDataStorage {
594 placeholder_field: String,
595}
596
597#[derive(Debug)]
598pub struct DataIndexingSystem {
599 placeholder_field: String,
600}
601
602#[derive(Debug)]
603pub struct DataCompressionManager {
604 placeholder_field: String,
605}
606
607#[derive(Debug)]
608pub struct RetentionPolicyManager {
609 placeholder_field: String,
610}
611
612#[derive(Debug)]
613pub struct DataAccessControl {
614 placeholder_field: String,
615}
616
617#[derive(Debug)]
618pub struct RecommendationEffectivenessTracker {
619 placeholder_field: String,
620}
621
622#[derive(Debug)]
623pub struct QuantumOptimizationAdvisor {
624 placeholder_field: String,
625}
626
627#[derive(Debug)]
628pub struct CostBenefitAnalyzer {
629 placeholder_field: String,
630}
631
632#[derive(Debug)]
633pub struct VisualizationEngine {
634 placeholder_field: String,
635}
636
637#[derive(Debug)]
638pub struct UserInteractionHandler {
639 placeholder_field: String,
640}
641
642#[derive(Debug)]
643pub struct DashboardStateManager {
644 placeholder_field: String,
645}
646
647#[derive(Debug)]
650pub struct PatternCorrelationEngine {
651 placeholder_field: String,
652}
653
654#[derive(Debug)]
655pub struct OptimizationRecommendationEngine {
656 placeholder_field: String,
657}
658
659#[derive(Debug)]
660pub struct OptimizationPerformanceTracker {
661 placeholder_field: String,
662}
663
664impl_simple_new!(
665 FeatureProcessorRegistry,
666 ModelTrainingScheduler,
667 ModelPerformanceEvaluator,
668 DynamicThresholdManager,
669 AnomalyAlertDispatcher,
670 QuantumAnomalyAnalyzer,
671 QuantumStatePredictor,
672 NetworkTopologyPredictor,
673 PerformanceForecaster,
674 ScenarioAnalyzer,
675 QuantumAlertAnalyzer,
676 HistoricalDataStorage,
677 DataIndexingSystem,
678 DataCompressionManager,
679 RetentionPolicyManager,
680 DataAccessControl,
681 RecommendationEffectivenessTracker,
682 QuantumOptimizationAdvisor,
683 CostBenefitAnalyzer,
684 VisualizationEngine,
685 UserInteractionHandler,
686 DashboardStateManager,
687 PatternCorrelationEngine,
688 OptimizationRecommendationEngine,
689 OptimizationPerformanceTracker
690);
691
692impl RealTimeMetricsCollector {
694 pub async fn start_collection(&self) -> Result<()> {
695 Ok(())
697 }
698
699 pub async fn stop_collection(&self) -> Result<()> {
700 Ok(())
702 }
703
704 pub async fn get_status(&self) -> Result<ComponentStatus> {
705 Ok(ComponentStatus {
706 status: ComponentState::Running,
707 last_update: Utc::now(),
708 performance_metrics: ComponentPerformanceMetrics {
709 throughput: 1000.0,
710 latency: Duration::from_millis(10),
711 error_rate: 0.01,
712 resource_utilization: 0.75,
713 },
714 error_count: 0,
715 })
716 }
717
718 pub async fn get_real_time_metrics(
719 &self,
720 _metric_types: &[MetricType],
721 ) -> Result<Vec<MetricDataPoint>> {
722 Ok(vec![])
724 }
725
726 pub async fn get_collection_statistics(&self) -> Result<CollectionStatistics> {
727 Ok(CollectionStatistics {
728 total_data_points: 1_000_000,
729 collection_rate: 1000.0,
730 error_rate: 0.01,
731 last_collection: Utc::now(),
732 })
733 }
734
735 pub async fn get_health_score(&self) -> Result<f64> {
736 Ok(0.95)
737 }
738}
739
740macro_rules! impl_monitoring_component_methods {
742 ($($type:ty),*) => {
743 $(
744 impl $type {
745 pub async fn start_analytics(&self) -> Result<()> { Ok(()) }
746 pub async fn stop_analytics(&self) -> Result<()> { Ok(()) }
747 pub async fn start_detection(&self) -> Result<()> { Ok(()) }
748 pub async fn stop_detection(&self) -> Result<()> { Ok(()) }
749 pub async fn start_prediction(&self) -> Result<()> { Ok(()) }
750 pub async fn stop_prediction(&self) -> Result<()> { Ok(()) }
751 pub async fn start_alerting(&self) -> Result<()> { Ok(()) }
752 pub async fn stop_alerting(&self) -> Result<()> { Ok(()) }
753 pub async fn initialize(&self) -> Result<()> { Ok(()) }
754
755 pub async fn get_status(&self) -> Result<ComponentStatus> {
756 Ok(ComponentStatus {
757 status: ComponentState::Running,
758 last_update: Utc::now(),
759 performance_metrics: ComponentPerformanceMetrics {
760 throughput: 500.0,
761 latency: Duration::from_millis(20),
762 error_rate: 0.005,
763 resource_utilization: 0.60,
764 },
765 error_count: 0,
766 })
767 }
768
769 pub async fn get_health_score(&self) -> Result<f64> {
770 Ok(0.90)
771 }
772 }
773 )*
774 };
775}
776
777impl_monitoring_component_methods!(
778 QuantumNetworkAnalyticsEngine,
779 QuantumAnomalyDetector,
780 QuantumNetworkPredictor,
781 QuantumNetworkAlertSystem,
782 QuantumNetworkDashboard
783);
784
785impl QuantumAnomalyDetector {
787 pub async fn get_recent_anomalies(&self, _time_window: Duration) -> Result<Vec<AnomalyResult>> {
788 Ok(vec![])
789 }
790}
791
792impl QuantumNetworkPredictor {
793 pub async fn get_prediction(
794 &self,
795 _metric_type: MetricType,
796 _prediction_horizon: Duration,
797 ) -> Result<PredictionResult> {
798 Ok(PredictionResult {
799 predicted_values: HashMap::new(),
800 confidence_intervals: HashMap::new(),
801 uncertainty_estimate: 0.1,
802 prediction_timestamp: Utc::now(),
803 })
804 }
805}
806
807impl QuantumNetworkAlertSystem {
808 pub async fn get_active_alerts(&self) -> Result<Vec<ActiveAlert>> {
809 Ok(vec![])
810 }
811}
812
813impl QuantumOptimizationRecommender {
814 pub async fn get_recommendations(&self) -> Result<Vec<OptimizationRecommendation>> {
815 Ok(vec![])
816 }
817}
818
819impl QuantumHistoricalDataManager {
820 pub async fn get_historical_data(
821 &self,
822 _metric_type: MetricType,
823 _start_time: DateTime<Utc>,
824 _end_time: DateTime<Utc>,
825 ) -> Result<Vec<MetricDataPoint>> {
826 Ok(vec![])
827 }
828}
829
830#[derive(Debug, Clone, Serialize, Deserialize)]
832pub struct ActiveAlert {
833 pub alert_id: Uuid,
834 pub rule_id: Uuid,
835 pub severity: AlertSeverity,
836 pub triggered_at: DateTime<Utc>,
837 pub message: String,
838 pub affected_components: Vec<String>,
839}
840
841impl Default for EnhancedMonitoringConfig {
842 fn default() -> Self {
843 Self {
844 general_settings: GeneralMonitoringSettings {
845 real_time_enabled: true,
846 monitoring_interval: Duration::from_secs(1),
847 max_concurrent_tasks: 100,
848 comprehensive_logging: true,
849 performance_level: PerformanceMonitoringLevel::Standard,
850 },
851 metrics_config: MetricsCollectionConfig {
852 enabled_categories: [
853 MetricCategory::QuantumFidelity,
854 MetricCategory::NetworkPerformance,
855 MetricCategory::HardwareUtilization,
856 ]
857 .iter()
858 .cloned()
859 .collect(),
860 collection_intervals: HashMap::new(),
861 quantum_settings: QuantumMetricsSettings {
862 enable_tomography: false,
863 calibration_check_frequency: Duration::from_secs(60 * 60),
864 continuous_process_monitoring: true,
865 fidelity_precision: 0.001,
866 quantum_volume_tracking: true,
867 },
868 network_settings: NetworkMetricsSettings {
869 packet_level_monitoring: false,
870 topology_monitoring_frequency: Duration::from_secs(5 * 60),
871 flow_analysis: true,
872 bandwidth_thresholds: BandwidthThresholds {
873 warning_threshold: 0.7,
874 critical_threshold: 0.9,
875 emergency_threshold: 0.95,
876 },
877 },
878 hardware_settings: HardwareMetricsSettings {
879 temperature_monitoring: true,
880 power_monitoring: true,
881 vibration_monitoring: true,
882 emi_monitoring: false,
883 health_check_frequency: Duration::from_secs(10 * 60),
884 },
885 },
886 analytics_config: AnalyticsEngineConfig {
887 real_time_analytics: true,
888 pattern_recognition: PatternRecognitionConfig {
889 enabled: true,
890 pattern_types: vec![PatternType::Anomalous, PatternType::Trending],
891 sensitivity: 0.8,
892 min_pattern_duration: Duration::from_secs(5 * 60),
893 },
894 correlation_analysis: CorrelationAnalysisConfig {
895 enabled: true,
896 correlation_methods: vec![
897 CorrelationMethod::Pearson,
898 CorrelationMethod::Spearman,
899 ],
900 min_correlation_threshold: 0.7,
901 analysis_window: Duration::from_secs(60 * 60),
902 },
903 trend_analysis: TrendAnalysisConfig {
904 enabled: true,
905 trend_methods: vec![TrendMethod::LinearRegression, TrendMethod::MannKendall],
906 sensitivity: 0.8,
907 min_trend_duration: Duration::from_secs(10 * 60),
908 },
909 performance_modeling: PerformanceModelingConfig {
910 enabled: true,
911 modeling_algorithms: vec![
912 ModelingAlgorithm::LinearRegression,
913 ModelingAlgorithm::RandomForestRegression,
914 ],
915 update_frequency: Duration::from_secs(6 * 60 * 60),
916 validation_methods: vec![ValidationMethod::CrossValidation { folds: 5 }],
917 },
918 },
919 anomaly_detection_config: AnomalyDetectionConfig {
920 enabled: true,
921 detection_methods: vec![
922 AnomalyModelType::Statistical {
923 method: StatisticalMethod::ZScore,
924 confidence_level: 0.95,
925 },
926 AnomalyModelType::MachineLearning {
927 algorithm: MLAlgorithm::IsolationForest,
928 feature_window: Duration::from_secs(60 * 60),
929 },
930 ],
931 sensitivity: 0.8,
932 training_requirements: TrainingRequirements {
933 min_training_points: 1000,
934 training_window: Duration::from_secs(7 * 86400),
935 retraining_frequency: Duration::from_secs(86400),
936 quality_requirements: DataQualityRequirements {
937 min_completeness: 0.95,
938 max_missing_percentage: 0.05,
939 min_accuracy: 0.90,
940 max_outlier_percentage: 0.10,
941 },
942 },
943 },
944 predictive_config: PredictiveAnalyticsConfig {
945 enabled: true,
946 prediction_horizons: vec![
947 Duration::from_secs(15 * 60),
948 Duration::from_secs(60 * 60),
949 Duration::from_secs(6 * 60 * 60),
950 Duration::from_secs(24 * 60 * 60),
951 ],
952 prediction_models: vec![
953 PredictionModelType::TimeSeries {
954 model: TimeSeriesModel::ARIMA,
955 seasonal_components: true,
956 },
957 PredictionModelType::NeuralNetwork {
958 architecture: NeuralNetworkArchitecture {
959 layers: vec![
960 LayerSpec {
961 layer_type: LayerType::LSTM,
962 units: 64,
963 parameters: HashMap::new(),
964 },
965 LayerSpec {
966 layer_type: LayerType::Dense,
967 units: 32,
968 parameters: HashMap::new(),
969 },
970 LayerSpec {
971 layer_type: LayerType::Dense,
972 units: 1,
973 parameters: HashMap::new(),
974 },
975 ],
976 activations: vec![
977 ActivationFunction::ReLU,
978 ActivationFunction::ReLU,
979 ActivationFunction::Sigmoid,
980 ],
981 dropout_rates: vec![0.2, 0.1, 0.0],
982 },
983 optimization: OptimizationMethod::Adam {
984 learning_rate: 0.001,
985 beta1: 0.9,
986 beta2: 0.999,
987 },
988 },
989 ],
990 model_selection: ModelSelectionCriteria {
991 primary_metric: ModelSelectionMetric::RMSE,
992 secondary_metrics: vec![
993 ModelSelectionMetric::MAE,
994 ModelSelectionMetric::RSquared,
995 ],
996 cross_validation: CrossValidationStrategy::TimeSeries {
997 n_splits: 5,
998 gap: Duration::from_secs(60 * 60),
999 },
1000 },
1001 },
1002 alert_config: AlertSystemConfig {
1003 enabled: true,
1004 default_rules: vec![], notification_config: NotificationConfig {
1006 default_channels: vec![],
1007 rate_limiting: RateLimitingConfig {
1008 enabled: true,
1009 severity_limits: HashMap::new(),
1010 global_limits: FrequencyLimits {
1011 max_notifications_per_window: 100,
1012 time_window: Duration::from_secs(3600),
1013 cooldown_period: Duration::from_secs(15 * 60),
1014 burst_allowance: 10,
1015 },
1016 },
1017 message_formatting: MessageFormattingConfig {
1018 include_technical_details: true,
1019 include_recommendations: true,
1020 use_markdown: true,
1021 templates: HashMap::new(),
1022 },
1023 },
1024 escalation_config: EscalationConfig {
1025 auto_escalation_enabled: true,
1026 default_escalation_levels: vec![],
1027 escalation_policies: vec![],
1028 },
1029 },
1030 storage_config: StorageConfig {
1031 backend_type: StorageBackendType::TimeSeriesDB {
1032 connection_string: "sqlite://monitoring.db".to_string(),
1033 },
1034 retention_policies: HashMap::new(),
1035 compression: CompressionConfig {
1036 enabled: true,
1037 algorithm: CompressionAlgorithm::Zstd,
1038 compression_level: 3,
1039 compress_after: Duration::from_secs(24 * 3600),
1040 },
1041 backup: BackupConfig {
1042 enabled: true,
1043 backup_frequency: Duration::from_secs(6 * 3600),
1044 backup_retention: Duration::from_secs(30 * 86400),
1045 backup_destination: BackupDestination::LocalFileSystem {
1046 path: "./backups".to_string(),
1047 },
1048 },
1049 },
1050 }
1051 }
1052}
1053
1054#[derive(Debug, Clone)]
1057pub struct ThresholdDetector {
1058 pub lower_threshold: f64,
1059 pub upper_threshold: f64,
1060 pub sensitivity: f64,
1061}
1062
1063impl ThresholdDetector {
1064 pub const fn new(lower: f64, upper: f64, sensitivity: f64) -> Self {
1065 Self {
1066 lower_threshold: lower,
1067 upper_threshold: upper,
1068 sensitivity,
1069 }
1070 }
1071}
1072
1073#[derive(Debug, Clone)]
1075pub struct MLAnomalyDetector {
1076 pub model_type: String,
1077 pub sensitivity: f64,
1078 pub training_data_size: usize,
1079}
1080
1081impl MLAnomalyDetector {
1082 pub const fn new(model_type: String, sensitivity: f64) -> Self {
1083 Self {
1084 model_type,
1085 sensitivity,
1086 training_data_size: 0,
1087 }
1088 }
1089}
1090
1091#[derive(Debug, Clone)]
1093pub struct RuleEvaluationEngine {
1094 pub evaluation_frequency: Duration,
1095 pub rule_cache_size: usize,
1096}
1097
1098impl Default for RuleEvaluationEngine {
1099 fn default() -> Self {
1100 Self::new()
1101 }
1102}
1103
1104impl RuleEvaluationEngine {
1105 pub const fn new() -> Self {
1106 Self {
1107 evaluation_frequency: Duration::from_secs(30),
1108 rule_cache_size: 1000,
1109 }
1110 }
1111}
1112
1113#[derive(Debug, Clone)]
1115pub struct CustomRuleCompiler {
1116 pub supported_languages: Vec<String>,
1117 pub compilation_timeout: Duration,
1118}
1119
1120impl Default for CustomRuleCompiler {
1121 fn default() -> Self {
1122 Self::new()
1123 }
1124}
1125
1126impl CustomRuleCompiler {
1127 pub fn new() -> Self {
1128 Self {
1129 supported_languages: vec!["lua".to_string(), "python".to_string()],
1130 compilation_timeout: Duration::from_secs(30),
1131 }
1132 }
1133}
1134
1135#[derive(Debug, Clone)]
1137pub struct RulePerformanceTracker {
1138 pub metrics_window: Duration,
1139 pub performance_threshold: f64,
1140}
1141
1142impl Default for RulePerformanceTracker {
1143 fn default() -> Self {
1144 Self::new()
1145 }
1146}
1147
1148impl RulePerformanceTracker {
1149 pub const fn new() -> Self {
1150 Self {
1151 metrics_window: Duration::from_secs(600),
1152 performance_threshold: 0.95,
1153 }
1154 }
1155}