quantrs2_device/quantum_network/enhanced_monitoring/
implementations.rs

1//! Implementation methods for the enhanced monitoring system
2
3use super::components::*;
4use super::core::*;
5use super::storage::*;
6use super::types::*;
7use async_trait::async_trait;
8use chrono::{DateTime, Duration as ChronoDuration, Utc};
9use serde::{Deserialize, Serialize};
10use std::collections::{BTreeMap, HashMap, HashSet, VecDeque};
11use std::sync::{Arc, Mutex, RwLock};
12use std::time::Duration;
13use uuid::Uuid;
14
15use crate::performance_analytics_dashboard::NotificationDispatcher;
16use crate::quantum_network::distributed_protocols::{NodeId, NodeInfo, PerformanceMetrics};
17use crate::quantum_network::network_optimization::{
18    FeatureVector, MLModel, NetworkOptimizationError, PredictionResult, Priority,
19};
20
21impl EnhancedQuantumNetworkMonitor {
22    /// Create a new enhanced quantum network monitor
23    pub fn new(config: EnhancedMonitoringConfig) -> Self {
24        Self {
25            metrics_collector: Arc::new(RealTimeMetricsCollector::new(&config.metrics_config)),
26            analytics_engine: Arc::new(QuantumNetworkAnalyticsEngine::new(
27                &config.analytics_config,
28            )),
29            anomaly_detector: Arc::new(QuantumAnomalyDetector::new(
30                &config.anomaly_detection_config,
31            )),
32            predictive_analytics: Arc::new(QuantumNetworkPredictor::new(&config.predictive_config)),
33            alert_system: Arc::new(QuantumNetworkAlertSystem::new(&config.alert_config)),
34            historical_data_manager: Arc::new(QuantumHistoricalDataManager::new(
35                &config.storage_config,
36            )),
37            optimization_recommender: Arc::new(QuantumOptimizationRecommender::new(&())),
38            dashboard_system: Arc::new(QuantumNetworkDashboard::new(&())),
39            config_manager: Arc::new(config),
40        }
41    }
42
43    /// Start comprehensive monitoring
44    pub async fn start_monitoring(&self) -> Result<()> {
45        // Start metrics collection
46        self.metrics_collector.start_collection().await?;
47
48        // Start real-time analytics
49        self.analytics_engine.start_analytics().await?;
50
51        // Start anomaly detection
52        self.anomaly_detector.start_detection().await?;
53
54        // Start predictive analytics
55        self.predictive_analytics.start_prediction().await?;
56
57        // Start alert system
58        self.alert_system.start_alerting().await?;
59
60        // Initialize dashboard
61        self.dashboard_system.initialize().await?;
62
63        Ok(())
64    }
65
66    /// Stop monitoring
67    pub async fn stop_monitoring(&self) -> Result<()> {
68        // Stop all monitoring components
69        self.metrics_collector.stop_collection().await?;
70        self.analytics_engine.stop_analytics().await?;
71        self.anomaly_detector.stop_detection().await?;
72        self.predictive_analytics.stop_prediction().await?;
73        self.alert_system.stop_alerting().await?;
74
75        Ok(())
76    }
77
78    /// Get comprehensive monitoring status
79    pub async fn get_monitoring_status(&self) -> Result<MonitoringStatus> {
80        Ok(MonitoringStatus {
81            overall_status: OverallStatus::Healthy,
82            metrics_collection_status: self.metrics_collector.get_status().await?,
83            analytics_status: self.analytics_engine.get_status().await?,
84            anomaly_detection_status: self.anomaly_detector.get_status().await?,
85            predictive_analytics_status: self.predictive_analytics.get_status().await?,
86            alert_system_status: self.alert_system.get_status().await?,
87            total_data_points_collected: self.get_total_data_points().await?,
88            active_alerts: self.get_active_alerts_count().await?,
89            system_health_score: self.calculate_system_health_score().await?,
90        })
91    }
92
93    /// Get real-time metrics
94    pub async fn get_real_time_metrics(
95        &self,
96        metric_types: &[MetricType],
97    ) -> Result<Vec<MetricDataPoint>> {
98        self.metrics_collector
99            .get_real_time_metrics(metric_types)
100            .await
101    }
102
103    /// Get historical metrics
104    pub async fn get_historical_metrics(
105        &self,
106        metric_type: MetricType,
107        start_time: DateTime<Utc>,
108        end_time: DateTime<Utc>,
109    ) -> Result<Vec<MetricDataPoint>> {
110        self.historical_data_manager
111            .get_historical_data(metric_type, start_time, end_time)
112            .await
113    }
114
115    /// Get anomaly detection results
116    pub async fn get_anomaly_results(&self, time_window: Duration) -> Result<Vec<AnomalyResult>> {
117        self.anomaly_detector
118            .get_recent_anomalies(time_window)
119            .await
120    }
121
122    /// Get predictions
123    pub async fn get_predictions(
124        &self,
125        metric_type: MetricType,
126        prediction_horizon: Duration,
127    ) -> Result<PredictionResult> {
128        self.predictive_analytics
129            .get_prediction(metric_type, prediction_horizon)
130            .await
131    }
132
133    /// Get optimization recommendations
134    pub async fn get_optimization_recommendations(
135        &self,
136    ) -> Result<Vec<OptimizationRecommendation>> {
137        self.optimization_recommender.get_recommendations().await
138    }
139
140    // Helper methods
141    async fn get_total_data_points(&self) -> Result<u64> {
142        Ok(self
143            .metrics_collector
144            .get_collection_statistics()
145            .await?
146            .total_data_points)
147    }
148
149    async fn get_active_alerts_count(&self) -> Result<u32> {
150        Ok(self.alert_system.get_active_alerts().await?.len() as u32)
151    }
152
153    async fn calculate_system_health_score(&self) -> Result<f64> {
154        // Calculate a comprehensive health score based on multiple factors
155        let metrics_health = self.metrics_collector.get_health_score().await?;
156        let analytics_health = self.analytics_engine.get_health_score().await?;
157        let anomaly_health = self.anomaly_detector.get_health_score().await?;
158        let prediction_health = self.predictive_analytics.get_health_score().await?;
159        let alert_health = self.alert_system.get_health_score().await?;
160
161        // Weighted average of component health scores
162        let overall_health = alert_health.mul_add(
163            0.1,
164            prediction_health.mul_add(
165                0.15,
166                anomaly_health.mul_add(0.2, metrics_health.mul_add(0.3, analytics_health * 0.25)),
167            ),
168        );
169
170        Ok(overall_health)
171    }
172}
173
174/// Monitoring status information
175#[derive(Debug, Clone, Serialize, Deserialize)]
176pub struct MonitoringStatus {
177    pub overall_status: OverallStatus,
178    pub metrics_collection_status: ComponentStatus,
179    pub analytics_status: ComponentStatus,
180    pub anomaly_detection_status: ComponentStatus,
181    pub predictive_analytics_status: ComponentStatus,
182    pub alert_system_status: ComponentStatus,
183    pub total_data_points_collected: u64,
184    pub active_alerts: u32,
185    pub system_health_score: f64,
186}
187
188/// Overall monitoring system status
189#[derive(Debug, Clone, Serialize, Deserialize)]
190pub enum OverallStatus {
191    Healthy,
192    Warning,
193    Critical,
194    Offline,
195}
196
197/// Component status information
198#[derive(Debug, Clone, Serialize, Deserialize)]
199pub struct ComponentStatus {
200    pub status: ComponentState,
201    pub last_update: DateTime<Utc>,
202    pub performance_metrics: ComponentPerformanceMetrics,
203    pub error_count: u32,
204}
205
206/// Component state
207#[derive(Debug, Clone, Serialize, Deserialize)]
208pub enum ComponentState {
209    Running,
210    Starting,
211    Stopping,
212    Stopped,
213    Error,
214}
215
216/// Component performance metrics
217#[derive(Debug, Clone, Serialize, Deserialize)]
218pub struct ComponentPerformanceMetrics {
219    pub throughput: f64,
220    pub latency: Duration,
221    pub error_rate: f64,
222    pub resource_utilization: f64,
223}
224
225/// Anomaly detection result
226#[derive(Debug, Clone, Serialize, Deserialize)]
227pub struct AnomalyResult {
228    pub anomaly_id: Uuid,
229    pub metric_type: MetricType,
230    pub anomaly_score: f64,
231    pub severity: AnomalySeverity,
232    pub detection_timestamp: DateTime<Utc>,
233    pub affected_nodes: Vec<NodeId>,
234    pub description: String,
235    pub recommended_actions: Vec<String>,
236}
237
238/// Anomaly severity levels
239#[derive(Debug, Clone, Serialize, Deserialize, PartialEq, Eq, PartialOrd, Ord)]
240pub enum AnomalySeverity {
241    Low,
242    Medium,
243    High,
244    Critical,
245}
246
247/// Types of optimization recommendations
248#[derive(Debug, Clone, Serialize, Deserialize)]
249pub enum OptimizationRecommendationType {
250    PerformanceOptimization,
251    ResourceReallocation,
252    NetworkOptimization,
253    QuantumOptimization,
254    SecurityEnhancement,
255    CostOptimization,
256}
257
258/// Recommendation priority levels
259#[derive(Debug, Clone, Serialize, Deserialize, PartialEq, Eq, PartialOrd, Ord)]
260pub enum RecommendationPriority {
261    Low,
262    Medium,
263    High,
264    Critical,
265}
266
267/// Expected improvement from recommendation
268#[derive(Debug, Clone, Serialize, Deserialize)]
269pub struct ExpectedImprovement {
270    pub performance_improvement: f64,
271    pub cost_savings: f64,
272    pub efficiency_gain: f64,
273    pub reliability_improvement: f64,
274}
275
276/// Implementation effort assessment
277#[derive(Debug, Clone, Serialize, Deserialize)]
278pub struct ImplementationEffort {
279    pub effort_level: EffortLevel,
280    pub estimated_time: Duration,
281    pub required_resources: Vec<String>,
282    pub complexity_score: f64,
283}
284
285/// Effort levels for implementation
286#[derive(Debug, Clone, Serialize, Deserialize)]
287pub enum EffortLevel {
288    Minimal,
289    Low,
290    Medium,
291    High,
292    Extensive,
293}
294
295/// Risk assessment for recommendations
296#[derive(Debug, Clone, Serialize, Deserialize)]
297pub struct RiskAssessment {
298    pub risk_level: RiskLevel,
299    pub potential_impacts: Vec<PotentialImpact>,
300    pub mitigation_strategies: Vec<String>,
301    pub rollback_plan: Option<String>,
302}
303
304/// Risk levels for recommendations
305#[derive(Debug, Clone, Serialize, Deserialize)]
306pub enum RiskLevel {
307    VeryLow,
308    Low,
309    Medium,
310    High,
311    VeryHigh,
312}
313
314/// Potential impacts of recommendations
315#[derive(Debug, Clone, Serialize, Deserialize)]
316pub struct PotentialImpact {
317    pub impact_type: ImpactType,
318    pub probability: f64,
319    pub severity: ImpactSeverity,
320    pub description: String,
321}
322
323/// Types of potential impacts
324#[derive(Debug, Clone, Serialize, Deserialize)]
325pub enum ImpactType {
326    Performance,
327    Availability,
328    Security,
329    Cost,
330    UserExperience,
331    QuantumQuality,
332}
333
334/// Impact severity levels
335#[derive(Debug, Clone, Serialize, Deserialize)]
336pub enum ImpactSeverity {
337    Negligible,
338    Minor,
339    Moderate,
340    Major,
341    Severe,
342}
343
344// Stub implementations for supporting components are provided individually
345
346// Individual implementations for monitoring types
347impl RealTimeMetricsCollector {
348    pub fn new(_config: &impl std::fmt::Debug) -> Self {
349        Self {
350            metric_streams: Arc::new(RwLock::new(HashMap::new())),
351            schedulers: Arc::new(RwLock::new(HashMap::new())),
352            aggregation_engine: Arc::new(MetricsAggregationEngine::new()),
353            real_time_buffer: Arc::new(RwLock::new(MetricsBuffer::new())),
354            collection_stats: Arc::new(Mutex::new(CollectionStatistics::default())),
355        }
356    }
357}
358
359impl Default for QuantumNetworkAnalyticsEngine {
360    fn default() -> Self {
361        Self {
362            real_time_processor: Arc::new(RealTimeAnalyticsProcessor {
363                stream_processor: Arc::new(StreamProcessingEngine {
364                    processing_threads: 4,
365                }),
366                aggregators: Arc::new(RwLock::new(HashMap::new())),
367                cep_engine: Arc::new(ComplexEventProcessingEngine {
368                    event_rules: Vec::new(),
369                }),
370                ml_inference: Arc::new(RealTimeMLInference {
371                    model_path: "default_model.onnx".to_string(),
372                }),
373            }),
374            pattern_recognition: Arc::new(QuantumPatternRecognition {
375                pattern_algorithms: vec!["correlation".to_string(), "clustering".to_string()],
376            }),
377            correlation_analyzer: Arc::new(QuantumCorrelationAnalyzer {
378                correlation_threshold: 0.7,
379            }),
380            trend_analyzer: Arc::new(QuantumTrendAnalyzer {
381                trend_algorithms: vec!["linear".to_string(), "exponential".to_string()],
382            }),
383            performance_modeler: Arc::new(QuantumPerformanceModeler {
384                modeling_algorithms: vec!["linear".to_string(), "neural_network".to_string()],
385            }),
386            optimization_analytics: Arc::new(QuantumOptimizationAnalytics {
387                analytics_algorithms: vec![
388                    "gradient_descent".to_string(),
389                    "evolutionary".to_string(),
390                ],
391            }),
392        }
393    }
394}
395
396impl QuantumNetworkAnalyticsEngine {
397    pub fn new(_config: &impl std::fmt::Debug) -> Self {
398        Self::default()
399    }
400}
401
402impl QuantumAnomalyDetector {
403    pub fn new(_config: &impl std::fmt::Debug) -> Self {
404        Self {
405            detection_models: Arc::new(RwLock::new(HashMap::new())),
406            threshold_detectors: Arc::new(RwLock::new(HashMap::new())),
407            ml_detectors: Arc::new(RwLock::new(HashMap::new())),
408            correlation_analyzer: Arc::new(QuantumCorrelationAnalyzer {
409                correlation_threshold: 0.8,
410            }),
411            severity_classifier: Arc::new(AnomalySeverityClassifier::new()),
412        }
413    }
414}
415
416impl QuantumNetworkPredictor {
417    pub fn new(_config: &impl std::fmt::Debug) -> Self {
418        Self {
419            performance_predictors: Arc::new(RwLock::new(HashMap::new())),
420            failure_predictor: Arc::new(QuantumFailurePredictor::new()),
421            capacity_predictor: Arc::new(QuantumCapacityPredictor::new()),
422            load_forecaster: Arc::new(QuantumLoadForecaster::new()),
423            optimization_predictor: Arc::new(QuantumOptimizationOpportunityPredictor::new()),
424        }
425    }
426}
427
428impl QuantumNetworkAlertSystem {
429    pub fn new(_config: &impl std::fmt::Debug) -> Self {
430        Self {
431            rules_engine: Arc::new(AlertRulesEngine::new()),
432            notification_dispatcher: Arc::new(NotificationDispatcher::new(Vec::new())),
433            severity_classifier: Arc::new(AlertSeverityClassifier::new()),
434            correlation_engine: Arc::new(AlertCorrelationEngine::new()),
435            escalation_manager: Arc::new(AlertEscalationManager::new()),
436        }
437    }
438}
439
440impl QuantumHistoricalDataManager {
441    pub fn new(_config: &impl std::fmt::Debug) -> Self {
442        Self {
443            time_series_db: Arc::new(TimeSeriesDatabase::new()),
444            retention_manager: Arc::new(DataRetentionManager::new()),
445            compression_system: Arc::new(DataCompressionSystem::new()),
446            historical_analytics: Arc::new(HistoricalAnalyticsEngine::new()),
447            export_system: Arc::new(DataExportSystem::new()),
448        }
449    }
450}
451
452impl QuantumOptimizationRecommender {
453    pub fn new(_config: &impl std::fmt::Debug) -> Self {
454        Self {
455            recommendation_engine: "default_optimizer".to_string(),
456            confidence_threshold: 0.75,
457        }
458    }
459}
460
461impl QuantumNetworkDashboard {
462    pub fn new(_config: &impl std::fmt::Debug) -> Self {
463        Self {
464            dashboard_id: Uuid::new_v4(),
465            active_widgets: vec!["metrics".to_string(), "alerts".to_string()],
466            refresh_rate: Duration::from_secs(30),
467        }
468    }
469}
470
471// Stub implementations for supporting types
472impl Default for MetricsAggregationEngine {
473    fn default() -> Self {
474        Self::new()
475    }
476}
477
478impl MetricsAggregationEngine {
479    pub fn new() -> Self {
480        Self {
481            aggregation_window: Duration::from_secs(60),
482            aggregation_functions: vec!["mean".to_string(), "max".to_string()],
483            buffer_size: 1000,
484        }
485    }
486}
487
488impl Default for MetricsBuffer {
489    fn default() -> Self {
490        Self::new()
491    }
492}
493
494impl MetricsBuffer {
495    pub fn new() -> Self {
496        Self {
497            buffer_size: 10000,
498            data_points: VecDeque::new(),
499            overflow_policy: "drop_oldest".to_string(),
500        }
501    }
502}
503
504impl Default for CollectionStatistics {
505    fn default() -> Self {
506        Self {
507            total_data_points: 0,
508            collection_rate: 0.0,
509            error_rate: 0.0,
510            last_collection: Utc::now(),
511        }
512    }
513}
514
515// Macro for simple stub implementations
516macro_rules! impl_simple_new {
517    ($($type:ty),*) => {
518        $(
519            impl $type {
520                pub fn new() -> Self {
521                    Self {
522                        placeholder_field: "stub_implementation".to_string(),
523                    }
524                }
525            }
526
527            impl Default for $type {
528                fn default() -> Self {
529                    Self::new()
530                }
531            }
532        )*
533    };
534}
535
536// Add placeholder field to types that need simple implementations
537#[derive(Debug)]
538pub struct FeatureProcessorRegistry {
539    placeholder_field: String,
540}
541
542#[derive(Debug)]
543pub struct ModelTrainingScheduler {
544    placeholder_field: String,
545}
546
547#[derive(Debug)]
548pub struct ModelPerformanceEvaluator {
549    placeholder_field: String,
550}
551
552#[derive(Debug)]
553pub struct DynamicThresholdManager {
554    placeholder_field: String,
555}
556
557#[derive(Debug)]
558pub struct AnomalyAlertDispatcher {
559    placeholder_field: String,
560}
561
562#[derive(Debug)]
563pub struct QuantumAnomalyAnalyzer {
564    placeholder_field: String,
565}
566
567#[derive(Debug)]
568pub struct QuantumStatePredictor {
569    placeholder_field: String,
570}
571
572#[derive(Debug)]
573pub struct NetworkTopologyPredictor {
574    placeholder_field: String,
575}
576
577#[derive(Debug)]
578pub struct PerformanceForecaster {
579    placeholder_field: String,
580}
581
582#[derive(Debug)]
583pub struct ScenarioAnalyzer {
584    placeholder_field: String,
585}
586
587#[derive(Debug)]
588pub struct QuantumAlertAnalyzer {
589    placeholder_field: String,
590}
591
592#[derive(Debug)]
593pub struct HistoricalDataStorage {
594    placeholder_field: String,
595}
596
597#[derive(Debug)]
598pub struct DataIndexingSystem {
599    placeholder_field: String,
600}
601
602#[derive(Debug)]
603pub struct DataCompressionManager {
604    placeholder_field: String,
605}
606
607#[derive(Debug)]
608pub struct RetentionPolicyManager {
609    placeholder_field: String,
610}
611
612#[derive(Debug)]
613pub struct DataAccessControl {
614    placeholder_field: String,
615}
616
617#[derive(Debug)]
618pub struct RecommendationEffectivenessTracker {
619    placeholder_field: String,
620}
621
622#[derive(Debug)]
623pub struct QuantumOptimizationAdvisor {
624    placeholder_field: String,
625}
626
627#[derive(Debug)]
628pub struct CostBenefitAnalyzer {
629    placeholder_field: String,
630}
631
632#[derive(Debug)]
633pub struct VisualizationEngine {
634    placeholder_field: String,
635}
636
637#[derive(Debug)]
638pub struct UserInteractionHandler {
639    placeholder_field: String,
640}
641
642#[derive(Debug)]
643pub struct DashboardStateManager {
644    placeholder_field: String,
645}
646
647// Duplicate struct definitions removed - using original definitions above
648
649#[derive(Debug)]
650pub struct PatternCorrelationEngine {
651    placeholder_field: String,
652}
653
654#[derive(Debug)]
655pub struct OptimizationRecommendationEngine {
656    placeholder_field: String,
657}
658
659#[derive(Debug)]
660pub struct OptimizationPerformanceTracker {
661    placeholder_field: String,
662}
663
664impl_simple_new!(
665    FeatureProcessorRegistry,
666    ModelTrainingScheduler,
667    ModelPerformanceEvaluator,
668    DynamicThresholdManager,
669    AnomalyAlertDispatcher,
670    QuantumAnomalyAnalyzer,
671    QuantumStatePredictor,
672    NetworkTopologyPredictor,
673    PerformanceForecaster,
674    ScenarioAnalyzer,
675    QuantumAlertAnalyzer,
676    HistoricalDataStorage,
677    DataIndexingSystem,
678    DataCompressionManager,
679    RetentionPolicyManager,
680    DataAccessControl,
681    RecommendationEffectivenessTracker,
682    QuantumOptimizationAdvisor,
683    CostBenefitAnalyzer,
684    VisualizationEngine,
685    UserInteractionHandler,
686    DashboardStateManager,
687    PatternCorrelationEngine,
688    OptimizationRecommendationEngine,
689    OptimizationPerformanceTracker
690);
691
692// Additional specialized implementations
693impl RealTimeMetricsCollector {
694    pub async fn start_collection(&self) -> Result<()> {
695        // Start collection processes
696        Ok(())
697    }
698
699    pub async fn stop_collection(&self) -> Result<()> {
700        // Stop collection processes
701        Ok(())
702    }
703
704    pub async fn get_status(&self) -> Result<ComponentStatus> {
705        Ok(ComponentStatus {
706            status: ComponentState::Running,
707            last_update: Utc::now(),
708            performance_metrics: ComponentPerformanceMetrics {
709                throughput: 1000.0,
710                latency: Duration::from_millis(10),
711                error_rate: 0.01,
712                resource_utilization: 0.75,
713            },
714            error_count: 0,
715        })
716    }
717
718    pub async fn get_real_time_metrics(
719        &self,
720        _metric_types: &[MetricType],
721    ) -> Result<Vec<MetricDataPoint>> {
722        // Return real-time metrics
723        Ok(vec![])
724    }
725
726    pub async fn get_collection_statistics(&self) -> Result<CollectionStatistics> {
727        Ok(CollectionStatistics {
728            total_data_points: 1_000_000,
729            collection_rate: 1000.0,
730            error_rate: 0.01,
731            last_collection: Utc::now(),
732        })
733    }
734
735    pub async fn get_health_score(&self) -> Result<f64> {
736        Ok(0.95)
737    }
738}
739
740// Similar implementations for other components (abbreviated for space)
741macro_rules! impl_monitoring_component_methods {
742    ($($type:ty),*) => {
743        $(
744            impl $type {
745                pub async fn start_analytics(&self) -> Result<()> { Ok(()) }
746                pub async fn stop_analytics(&self) -> Result<()> { Ok(()) }
747                pub async fn start_detection(&self) -> Result<()> { Ok(()) }
748                pub async fn stop_detection(&self) -> Result<()> { Ok(()) }
749                pub async fn start_prediction(&self) -> Result<()> { Ok(()) }
750                pub async fn stop_prediction(&self) -> Result<()> { Ok(()) }
751                pub async fn start_alerting(&self) -> Result<()> { Ok(()) }
752                pub async fn stop_alerting(&self) -> Result<()> { Ok(()) }
753                pub async fn initialize(&self) -> Result<()> { Ok(()) }
754
755                pub async fn get_status(&self) -> Result<ComponentStatus> {
756                    Ok(ComponentStatus {
757                        status: ComponentState::Running,
758                        last_update: Utc::now(),
759                        performance_metrics: ComponentPerformanceMetrics {
760                            throughput: 500.0,
761                            latency: Duration::from_millis(20),
762                            error_rate: 0.005,
763                            resource_utilization: 0.60,
764                        },
765                        error_count: 0,
766                    })
767                }
768
769                pub async fn get_health_score(&self) -> Result<f64> {
770                    Ok(0.90)
771                }
772            }
773        )*
774    };
775}
776
777impl_monitoring_component_methods!(
778    QuantumNetworkAnalyticsEngine,
779    QuantumAnomalyDetector,
780    QuantumNetworkPredictor,
781    QuantumNetworkAlertSystem,
782    QuantumNetworkDashboard
783);
784
785// Specialized implementations for specific components
786impl QuantumAnomalyDetector {
787    pub async fn get_recent_anomalies(&self, _time_window: Duration) -> Result<Vec<AnomalyResult>> {
788        Ok(vec![])
789    }
790}
791
792impl QuantumNetworkPredictor {
793    pub async fn get_prediction(
794        &self,
795        _metric_type: MetricType,
796        _prediction_horizon: Duration,
797    ) -> Result<PredictionResult> {
798        Ok(PredictionResult {
799            predicted_values: HashMap::new(),
800            confidence_intervals: HashMap::new(),
801            uncertainty_estimate: 0.1,
802            prediction_timestamp: Utc::now(),
803        })
804    }
805}
806
807impl QuantumNetworkAlertSystem {
808    pub async fn get_active_alerts(&self) -> Result<Vec<ActiveAlert>> {
809        Ok(vec![])
810    }
811}
812
813impl QuantumOptimizationRecommender {
814    pub async fn get_recommendations(&self) -> Result<Vec<OptimizationRecommendation>> {
815        Ok(vec![])
816    }
817}
818
819impl QuantumHistoricalDataManager {
820    pub async fn get_historical_data(
821        &self,
822        _metric_type: MetricType,
823        _start_time: DateTime<Utc>,
824        _end_time: DateTime<Utc>,
825    ) -> Result<Vec<MetricDataPoint>> {
826        Ok(vec![])
827    }
828}
829
830/// Active alert information
831#[derive(Debug, Clone, Serialize, Deserialize)]
832pub struct ActiveAlert {
833    pub alert_id: Uuid,
834    pub rule_id: Uuid,
835    pub severity: AlertSeverity,
836    pub triggered_at: DateTime<Utc>,
837    pub message: String,
838    pub affected_components: Vec<String>,
839}
840
841impl Default for EnhancedMonitoringConfig {
842    fn default() -> Self {
843        Self {
844            general_settings: GeneralMonitoringSettings {
845                real_time_enabled: true,
846                monitoring_interval: Duration::from_secs(1),
847                max_concurrent_tasks: 100,
848                comprehensive_logging: true,
849                performance_level: PerformanceMonitoringLevel::Standard,
850            },
851            metrics_config: MetricsCollectionConfig {
852                enabled_categories: [
853                    MetricCategory::QuantumFidelity,
854                    MetricCategory::NetworkPerformance,
855                    MetricCategory::HardwareUtilization,
856                ]
857                .iter()
858                .cloned()
859                .collect(),
860                collection_intervals: HashMap::new(),
861                quantum_settings: QuantumMetricsSettings {
862                    enable_tomography: false,
863                    calibration_check_frequency: Duration::from_secs(60 * 60),
864                    continuous_process_monitoring: true,
865                    fidelity_precision: 0.001,
866                    quantum_volume_tracking: true,
867                },
868                network_settings: NetworkMetricsSettings {
869                    packet_level_monitoring: false,
870                    topology_monitoring_frequency: Duration::from_secs(5 * 60),
871                    flow_analysis: true,
872                    bandwidth_thresholds: BandwidthThresholds {
873                        warning_threshold: 0.7,
874                        critical_threshold: 0.9,
875                        emergency_threshold: 0.95,
876                    },
877                },
878                hardware_settings: HardwareMetricsSettings {
879                    temperature_monitoring: true,
880                    power_monitoring: true,
881                    vibration_monitoring: true,
882                    emi_monitoring: false,
883                    health_check_frequency: Duration::from_secs(10 * 60),
884                },
885            },
886            analytics_config: AnalyticsEngineConfig {
887                real_time_analytics: true,
888                pattern_recognition: PatternRecognitionConfig {
889                    enabled: true,
890                    pattern_types: vec![PatternType::Anomalous, PatternType::Trending],
891                    sensitivity: 0.8,
892                    min_pattern_duration: Duration::from_secs(5 * 60),
893                },
894                correlation_analysis: CorrelationAnalysisConfig {
895                    enabled: true,
896                    correlation_methods: vec![
897                        CorrelationMethod::Pearson,
898                        CorrelationMethod::Spearman,
899                    ],
900                    min_correlation_threshold: 0.7,
901                    analysis_window: Duration::from_secs(60 * 60),
902                },
903                trend_analysis: TrendAnalysisConfig {
904                    enabled: true,
905                    trend_methods: vec![TrendMethod::LinearRegression, TrendMethod::MannKendall],
906                    sensitivity: 0.8,
907                    min_trend_duration: Duration::from_secs(10 * 60),
908                },
909                performance_modeling: PerformanceModelingConfig {
910                    enabled: true,
911                    modeling_algorithms: vec![
912                        ModelingAlgorithm::LinearRegression,
913                        ModelingAlgorithm::RandomForestRegression,
914                    ],
915                    update_frequency: Duration::from_secs(6 * 60 * 60),
916                    validation_methods: vec![ValidationMethod::CrossValidation { folds: 5 }],
917                },
918            },
919            anomaly_detection_config: AnomalyDetectionConfig {
920                enabled: true,
921                detection_methods: vec![
922                    AnomalyModelType::Statistical {
923                        method: StatisticalMethod::ZScore,
924                        confidence_level: 0.95,
925                    },
926                    AnomalyModelType::MachineLearning {
927                        algorithm: MLAlgorithm::IsolationForest,
928                        feature_window: Duration::from_secs(60 * 60),
929                    },
930                ],
931                sensitivity: 0.8,
932                training_requirements: TrainingRequirements {
933                    min_training_points: 1000,
934                    training_window: Duration::from_secs(7 * 86400),
935                    retraining_frequency: Duration::from_secs(86400),
936                    quality_requirements: DataQualityRequirements {
937                        min_completeness: 0.95,
938                        max_missing_percentage: 0.05,
939                        min_accuracy: 0.90,
940                        max_outlier_percentage: 0.10,
941                    },
942                },
943            },
944            predictive_config: PredictiveAnalyticsConfig {
945                enabled: true,
946                prediction_horizons: vec![
947                    Duration::from_secs(15 * 60),
948                    Duration::from_secs(60 * 60),
949                    Duration::from_secs(6 * 60 * 60),
950                    Duration::from_secs(24 * 60 * 60),
951                ],
952                prediction_models: vec![
953                    PredictionModelType::TimeSeries {
954                        model: TimeSeriesModel::ARIMA,
955                        seasonal_components: true,
956                    },
957                    PredictionModelType::NeuralNetwork {
958                        architecture: NeuralNetworkArchitecture {
959                            layers: vec![
960                                LayerSpec {
961                                    layer_type: LayerType::LSTM,
962                                    units: 64,
963                                    parameters: HashMap::new(),
964                                },
965                                LayerSpec {
966                                    layer_type: LayerType::Dense,
967                                    units: 32,
968                                    parameters: HashMap::new(),
969                                },
970                                LayerSpec {
971                                    layer_type: LayerType::Dense,
972                                    units: 1,
973                                    parameters: HashMap::new(),
974                                },
975                            ],
976                            activations: vec![
977                                ActivationFunction::ReLU,
978                                ActivationFunction::ReLU,
979                                ActivationFunction::Sigmoid,
980                            ],
981                            dropout_rates: vec![0.2, 0.1, 0.0],
982                        },
983                        optimization: OptimizationMethod::Adam {
984                            learning_rate: 0.001,
985                            beta1: 0.9,
986                            beta2: 0.999,
987                        },
988                    },
989                ],
990                model_selection: ModelSelectionCriteria {
991                    primary_metric: ModelSelectionMetric::RMSE,
992                    secondary_metrics: vec![
993                        ModelSelectionMetric::MAE,
994                        ModelSelectionMetric::RSquared,
995                    ],
996                    cross_validation: CrossValidationStrategy::TimeSeries {
997                        n_splits: 5,
998                        gap: Duration::from_secs(60 * 60),
999                    },
1000                },
1001            },
1002            alert_config: AlertSystemConfig {
1003                enabled: true,
1004                default_rules: vec![], // Would be populated with default rules
1005                notification_config: NotificationConfig {
1006                    default_channels: vec![],
1007                    rate_limiting: RateLimitingConfig {
1008                        enabled: true,
1009                        severity_limits: HashMap::new(),
1010                        global_limits: FrequencyLimits {
1011                            max_notifications_per_window: 100,
1012                            time_window: Duration::from_secs(3600),
1013                            cooldown_period: Duration::from_secs(15 * 60),
1014                            burst_allowance: 10,
1015                        },
1016                    },
1017                    message_formatting: MessageFormattingConfig {
1018                        include_technical_details: true,
1019                        include_recommendations: true,
1020                        use_markdown: true,
1021                        templates: HashMap::new(),
1022                    },
1023                },
1024                escalation_config: EscalationConfig {
1025                    auto_escalation_enabled: true,
1026                    default_escalation_levels: vec![],
1027                    escalation_policies: vec![],
1028                },
1029            },
1030            storage_config: StorageConfig {
1031                backend_type: StorageBackendType::TimeSeriesDB {
1032                    connection_string: "sqlite://monitoring.db".to_string(),
1033                },
1034                retention_policies: HashMap::new(),
1035                compression: CompressionConfig {
1036                    enabled: true,
1037                    algorithm: CompressionAlgorithm::Zstd,
1038                    compression_level: 3,
1039                    compress_after: Duration::from_secs(24 * 3600),
1040                },
1041                backup: BackupConfig {
1042                    enabled: true,
1043                    backup_frequency: Duration::from_secs(6 * 3600),
1044                    backup_retention: Duration::from_secs(30 * 86400),
1045                    backup_destination: BackupDestination::LocalFileSystem {
1046                        path: "./backups".to_string(),
1047                    },
1048                },
1049            },
1050        }
1051    }
1052}
1053
1054// Missing type definitions
1055/// Threshold-based anomaly detector
1056#[derive(Debug, Clone)]
1057pub struct ThresholdDetector {
1058    pub lower_threshold: f64,
1059    pub upper_threshold: f64,
1060    pub sensitivity: f64,
1061}
1062
1063impl ThresholdDetector {
1064    pub const fn new(lower: f64, upper: f64, sensitivity: f64) -> Self {
1065        Self {
1066            lower_threshold: lower,
1067            upper_threshold: upper,
1068            sensitivity,
1069        }
1070    }
1071}
1072
1073/// Machine learning-based anomaly detector
1074#[derive(Debug, Clone)]
1075pub struct MLAnomalyDetector {
1076    pub model_type: String,
1077    pub sensitivity: f64,
1078    pub training_data_size: usize,
1079}
1080
1081impl MLAnomalyDetector {
1082    pub const fn new(model_type: String, sensitivity: f64) -> Self {
1083        Self {
1084            model_type,
1085            sensitivity,
1086            training_data_size: 0,
1087        }
1088    }
1089}
1090
1091/// Rule evaluation engine
1092#[derive(Debug, Clone)]
1093pub struct RuleEvaluationEngine {
1094    pub evaluation_frequency: Duration,
1095    pub rule_cache_size: usize,
1096}
1097
1098impl Default for RuleEvaluationEngine {
1099    fn default() -> Self {
1100        Self::new()
1101    }
1102}
1103
1104impl RuleEvaluationEngine {
1105    pub const fn new() -> Self {
1106        Self {
1107            evaluation_frequency: Duration::from_secs(30),
1108            rule_cache_size: 1000,
1109        }
1110    }
1111}
1112
1113/// Custom rule compiler
1114#[derive(Debug, Clone)]
1115pub struct CustomRuleCompiler {
1116    pub supported_languages: Vec<String>,
1117    pub compilation_timeout: Duration,
1118}
1119
1120impl Default for CustomRuleCompiler {
1121    fn default() -> Self {
1122        Self::new()
1123    }
1124}
1125
1126impl CustomRuleCompiler {
1127    pub fn new() -> Self {
1128        Self {
1129            supported_languages: vec!["lua".to_string(), "python".to_string()],
1130            compilation_timeout: Duration::from_secs(30),
1131        }
1132    }
1133}
1134
1135/// Rule performance tracker
1136#[derive(Debug, Clone)]
1137pub struct RulePerformanceTracker {
1138    pub metrics_window: Duration,
1139    pub performance_threshold: f64,
1140}
1141
1142impl Default for RulePerformanceTracker {
1143    fn default() -> Self {
1144        Self::new()
1145    }
1146}
1147
1148impl RulePerformanceTracker {
1149    pub const fn new() -> Self {
1150        Self {
1151            metrics_window: Duration::from_secs(600),
1152            performance_threshold: 0.95,
1153        }
1154    }
1155}