quantrs2_device/quantum_network/distributed_protocols/
implementations.rs

1//! Implementations for distributed protocols
2
3use super::types::*;
4use async_trait::async_trait;
5use chrono::{DateTime, Duration as ChronoDuration, Utc};
6use serde::{Deserialize, Serialize};
7use std::collections::{BTreeMap, HashMap, HashSet, VecDeque};
8use std::sync::{Arc, Mutex, RwLock};
9use std::time::{Duration, Instant, SystemTime};
10use tokio::sync::{mpsc, RwLock as AsyncRwLock, Semaphore};
11use uuid::Uuid;
12
13#[async_trait]
14impl LoadBalancer for RoundRobinBalancer {
15    fn select_nodes(
16        &self,
17        partitions: &[CircuitPartition],
18        available_nodes: &HashMap<NodeId, NodeInfo>,
19        _requirements: &ExecutionRequirements,
20    ) -> Result<HashMap<Uuid, NodeId>> {
21        let mut assignments = HashMap::new();
22        let nodes: Vec<_> = available_nodes.keys().cloned().collect();
23
24        if nodes.is_empty() {
25            return Err(DistributedComputationError::ResourceAllocation(
26                "No available nodes".to_string(),
27            ));
28        }
29
30        for partition in partitions {
31            let mut index = self
32                .current_index
33                .lock()
34                .expect("Round-robin index mutex poisoned");
35            let selected_node = nodes[*index % nodes.len()].clone();
36            *index += 1;
37            assignments.insert(partition.partition_id, selected_node);
38        }
39
40        Ok(assignments)
41    }
42
43    fn rebalance_load(
44        &self,
45        _current_allocation: &HashMap<Uuid, NodeId>,
46        _nodes: &HashMap<NodeId, NodeInfo>,
47    ) -> Option<HashMap<Uuid, NodeId>> {
48        None // Round robin doesn't need rebalancing
49    }
50
51    fn predict_execution_time(&self, partition: &CircuitPartition, _node: &NodeInfo) -> Duration {
52        partition.estimated_execution_time
53    }
54
55    async fn select_node(
56        &self,
57        available_nodes: &[NodeInfo],
58        _requirements: &ResourceRequirements,
59    ) -> Result<NodeId> {
60        if available_nodes.is_empty() {
61            return Err(DistributedComputationError::ResourceAllocation(
62                "No available nodes".to_string(),
63            ));
64        }
65
66        let mut index = self
67            .current_index
68            .lock()
69            .expect("Round-robin index mutex poisoned");
70        let selected_node = available_nodes[*index % available_nodes.len()]
71            .node_id
72            .clone();
73        *index += 1;
74        Ok(selected_node)
75    }
76
77    async fn update_node_metrics(
78        &self,
79        _node_id: &NodeId,
80        _metrics: &PerformanceMetrics,
81    ) -> Result<()> {
82        Ok(()) // Round robin doesn't use metrics
83    }
84
85    fn get_balancer_metrics(&self) -> LoadBalancerMetrics {
86        LoadBalancerMetrics {
87            total_decisions: 0,
88            average_decision_time: Duration::from_millis(1),
89            prediction_accuracy: 1.0,
90            load_distribution_variance: 0.0,
91            total_requests: 0,
92            successful_allocations: 0,
93            failed_allocations: 0,
94            average_response_time: Duration::from_millis(0),
95            node_utilization: HashMap::new(),
96        }
97    }
98}
99
100impl Default for RoundRobinBalancer {
101    fn default() -> Self {
102        Self::new()
103    }
104}
105
106impl RoundRobinBalancer {
107    pub fn new() -> Self {
108        Self {
109            current_index: Arc::new(Mutex::new(0)),
110        }
111    }
112}
113
114/// Capability-based load balancer
115#[derive(Debug)]
116pub struct CapabilityBasedBalancer {
117    capability_weights: HashMap<String, f64>,
118    performance_history: Arc<RwLock<HashMap<NodeId, PerformanceHistory>>>,
119}
120
121/// ML-optimized load balancer
122#[derive(Debug)]
123pub struct MLOptimizedBalancer {
124    model_path: String,
125    feature_extractor: Arc<FeatureExtractor>,
126    prediction_cache: Arc<Mutex<HashMap<String, NodeId>>>,
127    training_data_collector: Arc<TrainingDataCollector>,
128}
129
130/// Training data collector for ML models
131#[derive(Debug)]
132pub struct TrainingDataCollector {
133    data_buffer: Arc<Mutex<VecDeque<TrainingDataPoint>>>,
134    collection_interval: Duration,
135    max_buffer_size: usize,
136}
137
138/// Fault tolerance management system
139#[derive(Debug)]
140pub struct FaultToleranceManager {
141    fault_detectors: Vec<Box<dyn FaultDetector + Send + Sync>>,
142    recovery_strategies: HashMap<String, Box<dyn RecoveryStrategy + Send + Sync>>,
143    checkpointing_system: Arc<CheckpointingSystem>,
144    redundancy_manager: Arc<RedundancyManager>,
145}
146
147/// Trait for fault detection
148#[async_trait]
149pub trait FaultDetector: std::fmt::Debug {
150    async fn detect_faults(&self, nodes: &HashMap<NodeId, NodeInfo>) -> Vec<Fault>;
151    fn get_detection_confidence(&self) -> f64;
152    fn get_false_positive_rate(&self) -> f64;
153}
154
155/// Fault representation
156#[derive(Debug, Clone, Serialize, Deserialize)]
157pub struct Fault {
158    pub fault_id: Uuid,
159    pub fault_type: FaultType,
160    pub affected_nodes: Vec<NodeId>,
161    pub severity: Severity,
162    pub detection_time: DateTime<Utc>,
163    pub predicted_impact: Impact,
164}
165
166/// Types of faults in distributed quantum systems
167#[derive(Debug, Clone, Serialize, Deserialize)]
168pub enum FaultType {
169    NodeFailure,
170    NetworkPartition,
171    QuantumDecoherence,
172    HardwareCalibrationDrift,
173    SoftwareBug,
174    ResourceExhaustion,
175    SecurityBreach,
176}
177
178/// Fault severity levels
179#[derive(Debug, Clone, Serialize, Deserialize, PartialEq, Eq, PartialOrd, Ord)]
180pub enum Severity {
181    Low,
182    Medium,
183    High,
184    Critical,
185}
186
187/// Predicted impact of a fault
188#[derive(Debug, Clone, Serialize, Deserialize)]
189pub struct Impact {
190    pub affected_computations: Vec<Uuid>,
191    pub estimated_downtime: Duration,
192    pub performance_degradation: f64,
193    pub recovery_cost: f64,
194}
195
196/// Trait for recovery strategies
197#[async_trait]
198pub trait RecoveryStrategy: std::fmt::Debug {
199    async fn recover_from_fault(
200        &self,
201        fault: &Fault,
202        system_state: &SystemState,
203    ) -> Result<RecoveryResult>;
204
205    fn estimate_recovery_time(&self, fault: &Fault) -> Duration;
206    fn calculate_recovery_cost(&self, fault: &Fault) -> f64;
207}
208
209/// System state snapshot
210#[derive(Debug, Clone, Serialize, Deserialize)]
211pub struct SystemState {
212    pub nodes: HashMap<NodeId, NodeInfo>,
213    pub active_computations: HashMap<Uuid, ExecutionRequest>,
214    pub distributed_states: HashMap<Uuid, DistributedQuantumState>,
215    pub network_topology: NetworkTopology,
216    pub resource_allocation: HashMap<NodeId, ResourceAllocation>,
217}
218
219/// Network topology representation
220#[derive(Debug, Clone, Serialize, Deserialize)]
221pub struct NetworkTopology {
222    pub nodes: Vec<NodeId>,
223    pub edges: Vec<(NodeId, NodeId)>,
224    pub edge_weights: HashMap<(NodeId, NodeId), f64>,
225    pub clustering_coefficient: f64,
226    pub diameter: u32,
227}
228
229/// Resource allocation per node
230#[derive(Debug, Clone, Serialize, Deserialize)]
231pub struct ResourceAllocation {
232    pub allocated_qubits: Vec<QubitId>,
233    pub memory_allocated_mb: u32,
234    pub cpu_allocated_percentage: f64,
235    pub network_bandwidth_allocated_mbps: f64,
236}
237
238/// Recovery result
239#[derive(Debug, Clone, Serialize, Deserialize)]
240pub struct RecoveryResult {
241    pub success: bool,
242    pub recovery_time: Duration,
243    pub restored_computations: Vec<Uuid>,
244    pub failed_computations: Vec<Uuid>,
245    pub performance_impact: f64,
246}
247
248/// Checkpointing system for fault tolerance
249#[derive(Debug)]
250pub struct CheckpointingSystem {
251    checkpoint_storage: Arc<dyn CheckpointStorage + Send + Sync>,
252    checkpoint_frequency: Duration,
253    compression_enabled: bool,
254    incremental_checkpoints: bool,
255}
256
257/// Trait for checkpoint storage
258#[async_trait]
259pub trait CheckpointStorage: std::fmt::Debug {
260    async fn store_checkpoint(&self, checkpoint_id: Uuid, data: &CheckpointData) -> Result<()>;
261
262    async fn load_checkpoint(&self, checkpoint_id: Uuid) -> Result<CheckpointData>;
263
264    async fn list_checkpoints(&self) -> Result<Vec<Uuid>>;
265    async fn delete_checkpoint(&self, checkpoint_id: Uuid) -> Result<()>;
266}
267
268/// Checkpoint data structure
269#[derive(Debug, Clone, Serialize, Deserialize)]
270pub struct CheckpointData {
271    pub timestamp: DateTime<Utc>,
272    pub system_state: SystemState,
273    pub computation_progress: HashMap<Uuid, ComputationProgress>,
274    pub quantum_states: HashMap<Uuid, DistributedQuantumState>,
275    pub metadata: HashMap<String, String>,
276}
277
278/// Computation progress tracking
279#[derive(Debug, Clone, Serialize, Deserialize)]
280pub struct ComputationProgress {
281    pub completed_partitions: Vec<Uuid>,
282    pub in_progress_partitions: Vec<Uuid>,
283    pub pending_partitions: Vec<Uuid>,
284    pub intermediate_results: HashMap<String, Vec<f64>>,
285    pub execution_statistics: ExecutionStatistics,
286}
287
288/// Execution statistics
289#[derive(Debug, Clone, Serialize, Deserialize)]
290pub struct ExecutionStatistics {
291    pub start_time: DateTime<Utc>,
292    pub estimated_completion_time: DateTime<Utc>,
293    pub gates_executed: u32,
294    pub measurements_completed: u32,
295    pub average_fidelity: f64,
296    pub error_rate: f64,
297}
298
299/// Redundancy management for fault tolerance
300#[derive(Debug)]
301pub struct RedundancyManager {
302    redundancy_strategies: HashMap<String, Box<dyn RedundancyStrategy + Send + Sync>>,
303    replication_factor: u32,
304    consistency_protocol: String,
305}
306
307/// Trait for redundancy strategies
308pub trait RedundancyStrategy: std::fmt::Debug {
309    fn replicate_computation(
310        &self,
311        computation: &ExecutionRequest,
312        replication_factor: u32,
313    ) -> Vec<ExecutionRequest>;
314
315    fn aggregate_results(&self, results: &[ComputationResult]) -> Result<ComputationResult>;
316
317    fn detect_byzantine_faults(&self, results: &[ComputationResult]) -> Vec<NodeId>;
318}
319
320/// Computation result
321#[derive(Debug, Clone, Serialize, Deserialize)]
322pub struct ComputationResult {
323    pub result_id: Uuid,
324    pub computation_id: Uuid,
325    pub node_id: NodeId,
326    pub measurements: HashMap<u32, bool>,
327    pub final_state: Option<LocalQuantumState>,
328    pub execution_time: Duration,
329    pub fidelity: f64,
330    pub error_rate: f64,
331    pub metadata: HashMap<String, String>,
332}
333
334/// Consensus engine trait for distributed decision making
335#[async_trait]
336pub trait ConsensusEngine: std::fmt::Debug {
337    async fn reach_consensus<T: Serialize + for<'de> Deserialize<'de> + Clone + Send>(
338        &self,
339        proposal: T,
340        participants: &[NodeId],
341        timeout: Duration,
342    ) -> Result<ConsensusResult<T>>;
343
344    async fn elect_leader(&self, candidates: &[NodeId], timeout: Duration) -> Result<NodeId>;
345
346    fn get_consensus_confidence(&self) -> f64;
347}
348
349/// Consensus result
350#[derive(Debug, Clone, Serialize, Deserialize)]
351pub struct ConsensusResult<T> {
352    pub decision: T,
353    pub consensus_achieved: bool,
354    pub participating_nodes: Vec<NodeId>,
355    pub consensus_time: Duration,
356    pub confidence: f64,
357}
358
359/// Byzantine fault tolerant consensus
360#[derive(Debug)]
361pub struct ByzantineConsensus {
362    fault_tolerance: u32,
363    timeout: Duration,
364    message_authenticator: Arc<MessageAuthenticator>,
365}
366
367/// Raft consensus implementation
368#[derive(Debug)]
369pub struct RaftConsensus {
370    election_timeout: Duration,
371    heartbeat_interval: Duration,
372    log_replication: Arc<LogReplication>,
373    leader_state: Arc<RwLock<LeaderState>>,
374}
375
376/// Leader state for Raft consensus
377#[derive(Debug, Clone)]
378pub struct LeaderState {
379    pub current_leader: Option<NodeId>,
380    pub term: u64,
381    pub last_heartbeat: DateTime<Utc>,
382}
383
384/// Message authenticator for secure consensus
385#[derive(Debug)]
386pub struct MessageAuthenticator {
387    authentication_method: String,
388    key_rotation_interval: Duration,
389    signature_verification: bool,
390}
391
392/// Log replication for Raft consensus
393#[derive(Debug)]
394pub struct LogReplication {
395    log_entries: Arc<RwLock<Vec<LogEntry>>>,
396    commit_index: Arc<RwLock<u64>>,
397    last_applied: Arc<RwLock<u64>>,
398}
399
400/// Log entry for Raft consensus
401#[derive(Debug, Clone, Serialize, Deserialize)]
402pub struct LogEntry {
403    pub term: u64,
404    pub index: u64,
405    pub command: Command,
406    pub timestamp: DateTime<Utc>,
407}
408
409/// Commands for consensus protocol
410#[derive(Debug, Clone, Serialize, Deserialize)]
411pub enum Command {
412    AllocateResources {
413        node_id: NodeId,
414        resources: ResourceRequirements,
415    },
416    StartComputation {
417        computation_id: Uuid,
418        partition: CircuitPartition,
419    },
420    UpdateNodeStatus {
421        node_id: NodeId,
422        status: NodeStatus,
423    },
424    RebalanceLoad {
425        new_allocation: HashMap<Uuid, NodeId>,
426    },
427    HandleFault {
428        fault: Fault,
429        recovery_action: String,
430    },
431}
432
433/// Metrics collection system
434#[derive(Debug)]
435pub struct MetricsCollector {
436    metrics_storage: Arc<dyn MetricsStorage + Send + Sync>,
437    collection_interval: Duration,
438    metrics_aggregator: Arc<MetricsAggregator>,
439    alerting_system: Arc<AlertingSystem>,
440}
441
442/// Trait for metrics storage
443#[async_trait]
444pub trait MetricsStorage: std::fmt::Debug {
445    async fn store_metric(&self, metric: &Metric) -> Result<()>;
446    async fn query_metrics(&self, query: &MetricsQuery) -> Result<Vec<Metric>>;
447    async fn aggregate_metrics(&self, aggregation: &AggregationQuery) -> Result<AggregatedMetrics>;
448}
449
450/// Individual metric data point
451#[derive(Debug, Clone, Serialize, Deserialize)]
452pub struct Metric {
453    pub metric_name: String,
454    pub value: f64,
455    pub timestamp: DateTime<Utc>,
456    pub tags: HashMap<String, String>,
457    pub node_id: Option<NodeId>,
458}
459
460/// Metrics query structure
461#[derive(Debug, Clone, Serialize, Deserialize)]
462pub struct MetricsQuery {
463    pub metric_names: Vec<String>,
464    pub time_range: (DateTime<Utc>, DateTime<Utc>),
465    pub filters: HashMap<String, String>,
466    pub limit: Option<u32>,
467}
468
469/// Aggregation query
470#[derive(Debug, Clone, Serialize, Deserialize)]
471pub struct AggregationQuery {
472    pub metric_name: String,
473    pub aggregation_function: AggregationFunction,
474    pub time_range: (DateTime<Utc>, DateTime<Utc>),
475    pub group_by: Vec<String>,
476}
477
478/// Aggregation functions
479#[derive(Debug, Clone, Serialize, Deserialize)]
480pub enum AggregationFunction {
481    Sum,
482    Average,
483    Min,
484    Max,
485    Count,
486    Percentile(f64),
487    StandardDeviation,
488}
489
490/// Aggregated metrics result
491#[derive(Debug, Clone, Serialize, Deserialize)]
492pub struct AggregatedMetrics {
493    pub metric_name: String,
494    pub aggregation_function: AggregationFunction,
495    pub value: f64,
496    pub time_range: (DateTime<Utc>, DateTime<Utc>),
497    pub group_by_values: HashMap<String, f64>,
498}
499
500/// Metrics aggregation engine
501#[derive(Debug)]
502pub struct MetricsAggregator {
503    aggregation_strategies: Vec<AggregationStrategy>,
504    real_time_aggregation: bool,
505    batch_size: u32,
506}
507
508/// Aggregation strategy
509#[derive(Debug, Clone)]
510pub struct AggregationStrategy {
511    pub metric_pattern: String,
512    pub aggregation_interval: Duration,
513    pub functions: Vec<AggregationFunction>,
514    pub retention_period: Duration,
515}
516
517/// Alerting system for monitoring
518#[derive(Debug)]
519pub struct AlertingSystem {
520    alert_rules: Vec<AlertRule>,
521    notification_channels: HashMap<String, Box<dyn NotificationChannel + Send + Sync>>,
522    alert_history: Arc<RwLock<VecDeque<Alert>>>,
523}
524
525/// Alert rule definition
526#[derive(Debug, Clone, Serialize, Deserialize)]
527pub struct AlertRule {
528    pub rule_id: String,
529    pub metric_name: String,
530    pub condition: AlertCondition,
531    pub threshold: f64,
532    pub severity: Severity,
533    pub notification_channels: Vec<String>,
534    pub cooldown_period: Duration,
535}
536
537/// Alert conditions
538#[derive(Debug, Clone, Serialize, Deserialize)]
539pub enum AlertCondition {
540    GreaterThan,
541    LessThan,
542    Equals,
543    NotEquals,
544    RateOfChange(f64),
545    AnomalyDetection,
546}
547
548/// Alert notification
549#[derive(Debug, Clone, Serialize, Deserialize)]
550pub struct Alert {
551    pub alert_id: Uuid,
552    pub rule_id: String,
553    pub timestamp: DateTime<Utc>,
554    pub severity: Severity,
555    pub message: String,
556    pub affected_nodes: Vec<NodeId>,
557    pub metric_value: f64,
558}
559
560/// Trait for notification channels
561#[async_trait]
562pub trait NotificationChannel: std::fmt::Debug {
563    async fn send_notification(&self, alert: &Alert) -> Result<()>;
564    fn get_channel_type(&self) -> String;
565    fn is_available(&self) -> bool;
566}
567
568/// Resource allocation system
569#[derive(Debug)]
570pub struct ResourceAllocator {
571    allocation_strategies: HashMap<String, Box<dyn AllocationStrategy + Send + Sync>>,
572    resource_monitor: Arc<ResourceMonitor>,
573    allocation_history: Arc<RwLock<VecDeque<AllocationRecord>>>,
574}
575
576/// Trait for resource allocation strategies
577pub trait AllocationStrategy: std::fmt::Debug {
578    fn allocate_resources(
579        &self,
580        request: &ExecutionRequest,
581        available_resources: &HashMap<NodeId, AvailableResources>,
582    ) -> Result<AllocationPlan>;
583
584    fn deallocate_resources(&self, allocation: &AllocationPlan) -> Result<()>;
585
586    fn estimate_allocation_time(&self, request: &ExecutionRequest) -> Duration;
587}
588
589/// Available resources on a node
590#[derive(Debug, Clone, Serialize, Deserialize)]
591pub struct AvailableResources {
592    pub available_qubits: u32,
593    pub available_memory_mb: u32,
594    pub available_cpu_percentage: f64,
595    pub available_network_bandwidth_mbps: f64,
596    pub estimated_availability_time: Duration,
597}
598
599/// Resource allocation plan
600#[derive(Debug, Clone, Serialize, Deserialize)]
601pub struct AllocationPlan {
602    pub plan_id: Uuid,
603    pub allocations: HashMap<NodeId, ResourceAllocation>,
604    pub estimated_cost: f64,
605    pub estimated_execution_time: Duration,
606    pub allocation_timestamp: DateTime<Utc>,
607}
608
609/// Resource allocation record
610#[derive(Debug, Clone, Serialize, Deserialize)]
611pub struct AllocationRecord {
612    pub record_id: Uuid,
613    pub allocation_plan: AllocationPlan,
614    pub actual_execution_time: Option<Duration>,
615    pub actual_cost: Option<f64>,
616    pub success: Option<bool>,
617    pub performance_metrics: Option<PerformanceMetrics>,
618}
619
620/// Resource monitoring system
621#[derive(Debug)]
622pub struct ResourceMonitor {
623    monitoring_agents: HashMap<NodeId, Box<dyn MonitoringAgent + Send + Sync>>,
624    monitoring_interval: Duration,
625    resource_predictions: Arc<ResourcePredictor>,
626}
627
628/// Trait for monitoring agents
629#[async_trait]
630pub trait MonitoringAgent: std::fmt::Debug {
631    async fn collect_resource_metrics(&self) -> Result<ResourceMetrics>;
632    async fn predict_resource_usage(&self, horizon: Duration) -> Result<ResourceUsagePrediction>;
633    fn get_agent_health(&self) -> AgentHealth;
634}
635
636/// Resource metrics from monitoring
637#[derive(Debug, Clone, Serialize, Deserialize)]
638pub struct ResourceMetrics {
639    pub timestamp: DateTime<Utc>,
640    pub cpu_utilization: f64,
641    pub memory_utilization: f64,
642    pub network_utilization: f64,
643    pub qubit_utilization: f64,
644    pub queue_length: u32,
645    pub active_computations: u32,
646}
647
648/// Resource usage prediction
649#[derive(Debug, Clone, Serialize, Deserialize)]
650pub struct ResourceUsagePrediction {
651    pub prediction_horizon: Duration,
652    pub predicted_cpu_usage: f64,
653    pub predicted_memory_usage: f64,
654    pub predicted_network_usage: f64,
655    pub predicted_qubit_usage: f64,
656    pub confidence_interval: (f64, f64),
657}
658
659/// Monitoring agent health status
660#[derive(Debug, Clone, Serialize, Deserialize)]
661pub struct AgentHealth {
662    pub is_healthy: bool,
663    pub last_successful_collection: DateTime<Utc>,
664    pub error_rate: f64,
665    pub response_time: Duration,
666}
667
668/// Resource predictor for capacity planning
669#[derive(Debug)]
670pub struct ResourcePredictor {
671    prediction_models: HashMap<String, Box<dyn PredictionModel + Send + Sync>>,
672    training_scheduler: Arc<TrainingScheduler>,
673    model_evaluator: Arc<ModelEvaluator>,
674}
675
676/// Trait for prediction models
677#[async_trait]
678pub trait PredictionModel: std::fmt::Debug {
679    async fn predict(
680        &self,
681        features: &HashMap<String, f64>,
682        horizon: Duration,
683    ) -> Result<PredictionResult>;
684
685    async fn train(&mut self, training_data: &[TrainingDataPoint]) -> Result<TrainingResult>;
686
687    fn get_model_accuracy(&self) -> f64;
688}
689
690/// Prediction result
691#[derive(Debug, Clone, Serialize, Deserialize)]
692pub struct PredictionResult {
693    pub predicted_value: f64,
694    pub confidence: f64,
695    pub prediction_interval: (f64, f64),
696    pub model_used: String,
697}
698
699/// Training result for ML models
700#[derive(Debug, Clone, Serialize, Deserialize)]
701pub struct TrainingResult {
702    pub training_success: bool,
703    pub model_accuracy: f64,
704    pub training_time: Duration,
705    pub validation_metrics: HashMap<String, f64>,
706}
707
708/// Training scheduler for ML models
709#[derive(Debug)]
710pub struct TrainingScheduler {
711    training_schedule: HashMap<String, TrainingConfig>,
712    auto_retraining: bool,
713    performance_threshold: f64,
714}
715
716/// Training configuration
717#[derive(Debug, Clone, Serialize, Deserialize)]
718pub struct TrainingConfig {
719    pub model_name: String,
720    pub training_frequency: Duration,
721    pub training_data_size: u32,
722    pub validation_split: f64,
723    pub hyperparameters: HashMap<String, f64>,
724}
725
726/// Model evaluator for performance assessment
727#[derive(Debug)]
728pub struct ModelEvaluator {
729    evaluation_metrics: Vec<String>,
730    cross_validation_folds: u32,
731    benchmark_datasets: HashMap<String, Vec<TrainingDataPoint>>,
732}
733
734// Implementation of Default trait for main config
735impl Default for DistributedComputationConfig {
736    fn default() -> Self {
737        Self {
738            max_partition_size: 50,
739            min_partition_size: 5,
740            load_balancing_strategy: LoadBalancingStrategy::CapabilityBased,
741            fault_tolerance_level: FaultToleranceLevel::Basic {
742                redundancy_factor: 2,
743            },
744            state_synchronization_interval: Duration::from_millis(100),
745            entanglement_distribution_protocol: EntanglementDistributionProtocol::Direct,
746            consensus_protocol: ConsensusProtocol::Raft {
747                election_timeout: Duration::from_millis(500),
748                heartbeat_interval: Duration::from_millis(100),
749            },
750            optimization_objectives: vec![
751                OptimizationObjective::MinimizeLatency { weight: 0.3 },
752                OptimizationObjective::MaximizeFidelity { weight: 0.4 },
753                OptimizationObjective::MinimizeResourceUsage { weight: 0.3 },
754            ],
755        }
756    }
757}
758
759// Basic implementations for the main orchestrator
760impl DistributedQuantumOrchestrator {
761    pub fn new(config: DistributedComputationConfig) -> Self {
762        Self {
763            config,
764            nodes: Arc::new(RwLock::new(HashMap::new())),
765            circuit_partitioner: Arc::new(CircuitPartitioner::new()),
766            state_manager: Arc::new(DistributedStateManager::new()),
767            load_balancer: Arc::new(CapabilityBasedBalancer::new()),
768            _private: (),
769        }
770    }
771
772    pub async fn submit_computation(&self, _request: ExecutionRequest) -> Result<Uuid> {
773        // Simplified implementation - execution queue moved to internal implementation
774        Ok(Uuid::new_v4())
775    }
776
777    async fn process_execution_queue(&self) -> Result<()> {
778        // Simplified implementation
779        Ok(())
780    }
781}
782
783// Additional implementation methods
784impl DistributedQuantumOrchestrator {
785    async fn execute_distributed_computation(
786        &self,
787        request: ExecutionRequest,
788    ) -> Result<ComputationResult> {
789        // Partition the circuit
790        let nodes = self.nodes.read().expect("Nodes RwLock poisoned").clone();
791        let partitions =
792            self.circuit_partitioner
793                .partition_circuit(&request.circuit, &nodes, &self.config)?;
794
795        // Simplified - resource allocation and execution simplified
796        // Return dummy result for now
797        Ok(ComputationResult {
798            result_id: request.request_id,
799            node_id: NodeId("simplified".to_string()),
800            final_state: None,
801            fidelity: 1.0,
802            error_rate: 0.0,
803            metadata: HashMap::new(),
804            computation_id: request.request_id,
805            measurements: HashMap::new(),
806            execution_time: Duration::from_millis(0),
807        })
808    }
809
810    async fn execute_partitions_parallel(
811        &self,
812        partitions: Vec<CircuitPartition>,
813        allocation_plan: AllocationPlan,
814    ) -> Result<Vec<ComputationResult>> {
815        // Simplified implementation
816        let mut results = Vec::new();
817
818        for partition in partitions {
819            if let Some(allocated_node) = allocation_plan.allocations.keys().next() {
820                let result = self
821                    .execute_partition_on_node(&partition, allocated_node)
822                    .await?;
823                results.push(result);
824            }
825        }
826
827        Ok(results)
828    }
829
830    async fn execute_partition_on_node(
831        &self,
832        partition: &CircuitPartition,
833        node_id: &NodeId,
834    ) -> Result<ComputationResult> {
835        // Simplified implementation
836        Ok(ComputationResult {
837            result_id: Uuid::new_v4(),
838            computation_id: partition.partition_id,
839            node_id: node_id.clone(),
840            measurements: HashMap::new(),
841            final_state: None,
842            execution_time: Duration::from_millis(100),
843            fidelity: 0.95,
844            error_rate: 0.01,
845            metadata: HashMap::new(),
846        })
847    }
848
849    fn aggregate_partition_results(
850        &self,
851        results: Vec<ComputationResult>,
852    ) -> Result<ComputationResult> {
853        // Simplified aggregation
854        if let Some(first_result) = results.first() {
855            Ok(first_result.clone())
856        } else {
857            Err(DistributedComputationError::StateSynchronization(
858                "No results to aggregate".to_string(),
859            ))
860        }
861    }
862
863    pub async fn register_node(&self, node_info: NodeInfo) -> Result<()> {
864        let mut nodes = self.nodes.write().expect("Nodes RwLock poisoned");
865        nodes.insert(node_info.node_id.clone(), node_info);
866        Ok(())
867    }
868
869    pub async fn unregister_node(&self, node_id: &NodeId) -> Result<()> {
870        let mut nodes = self.nodes.write().expect("Nodes RwLock poisoned");
871        nodes.remove(node_id);
872        Ok(())
873    }
874
875    pub async fn get_system_status(&self) -> SystemStatus {
876        let nodes = self.nodes.read().expect("Nodes RwLock poisoned");
877
878        SystemStatus {
879            total_nodes: nodes.len() as u32,
880            active_nodes: nodes
881                .values()
882                .filter(|n| matches!(n.status, NodeStatus::Active))
883                .count() as u32,
884            total_qubits: nodes.values().map(|n| n.capabilities.max_qubits).sum(),
885            active_computations: 0, // Simplified
886            system_health: 0.95,    // Simplified
887        }
888    }
889}
890
891/// System status summary
892#[derive(Debug, Clone, Serialize, Deserialize)]
893pub struct SystemStatus {
894    pub total_nodes: u32,
895    pub active_nodes: u32,
896    pub total_qubits: u32,
897    pub active_computations: u32,
898    pub system_health: f64,
899}
900
901// Basic implementations for supporting structures
902impl Default for CircuitPartitioner {
903    fn default() -> Self {
904        Self::new()
905    }
906}
907
908impl CircuitPartitioner {
909    pub fn new() -> Self {
910        Self {
911            partitioning_strategies: vec![
912                Box::new(GraphBasedPartitioning::new()),
913                Box::new(LoadBalancedPartitioning::new()),
914            ],
915            optimization_engine: Arc::new(PartitionOptimizer::new()),
916        }
917    }
918
919    pub fn partition_circuit(
920        &self,
921        circuit: &QuantumCircuit,
922        nodes: &HashMap<NodeId, NodeInfo>,
923        config: &DistributedComputationConfig,
924    ) -> Result<Vec<CircuitPartition>> {
925        // Use the first strategy for simplicity
926        if let Some(strategy) = self.partitioning_strategies.first() {
927            strategy.partition_circuit(circuit, nodes, config)
928        } else {
929            Err(DistributedComputationError::CircuitPartitioning(
930                "No partitioning strategies available".to_string(),
931            ))
932        }
933    }
934}
935
936impl Default for GraphBasedPartitioning {
937    fn default() -> Self {
938        Self::new()
939    }
940}
941
942impl GraphBasedPartitioning {
943    pub fn new() -> Self {
944        Self {
945            min_cut_algorithm: "Kernighan-Lin".to_string(),
946            load_balancing_weight: 0.3,
947            communication_weight: 0.7,
948        }
949    }
950}
951
952impl PartitioningStrategy for GraphBasedPartitioning {
953    fn partition_circuit(
954        &self,
955        circuit: &QuantumCircuit,
956        nodes: &HashMap<NodeId, NodeInfo>,
957        config: &DistributedComputationConfig,
958    ) -> Result<Vec<CircuitPartition>> {
959        // Enhanced graph-based partitioning logic
960        let mut partitions = Vec::new();
961
962        if nodes.is_empty() {
963            return Err(DistributedComputationError::CircuitPartitioning(
964                "No nodes available for partitioning".to_string(),
965            ));
966        }
967
968        // Build dependency graph of gates
969        let gate_dependencies = self.build_gate_dependency_graph(&circuit.gates);
970
971        // Use min-cut algorithm to partition gates
972        let gate_partitions =
973            self.min_cut_partition(&circuit.gates, &gate_dependencies, nodes.len());
974
975        let nodes_vec: Vec<_> = nodes.iter().collect();
976
977        for (partition_idx, gate_indices) in gate_partitions.iter().enumerate() {
978            let node_idx = partition_idx % nodes_vec.len();
979            let (node_id, node_info) = &nodes_vec[node_idx];
980
981            let partition_gates: Vec<_> = gate_indices
982                .iter()
983                .map(|&idx| circuit.gates[idx].clone())
984                .collect();
985
986            // Calculate qubits involved in this partition
987            let mut qubits_used = std::collections::HashSet::new();
988            for gate in &partition_gates {
989                qubits_used.extend(&gate.target_qubits);
990                qubits_used.extend(&gate.control_qubits);
991            }
992
993            let qubits_needed = qubits_used.len() as u32;
994
995            // Validate node capacity
996            if qubits_needed > node_info.capabilities.max_qubits {
997                return Err(DistributedComputationError::ResourceAllocation(format!(
998                    "Node {} insufficient capacity: needs {} qubits, has {}",
999                    node_id.0, qubits_needed, node_info.capabilities.max_qubits
1000                )));
1001            }
1002
1003            // Calculate communication overhead between partitions
1004            let communication_cost = self.calculate_inter_partition_communication(
1005                gate_indices,
1006                &gate_partitions,
1007                &circuit.gates,
1008            );
1009
1010            let estimated_time =
1011                self.estimate_partition_execution_time(&partition_gates, node_info);
1012            let gates_count = partition_gates.len() as u32;
1013            let memory_mb = self.estimate_memory_usage(&partition_gates);
1014            let entanglement_pairs_needed = self.count_entangling_operations(&partition_gates);
1015
1016            let partition = CircuitPartition {
1017                partition_id: Uuid::new_v4(),
1018                node_id: (*node_id).clone(),
1019                gates: partition_gates.clone(),
1020                dependencies: self.calculate_partition_dependencies(
1021                    partition_idx,
1022                    &gate_partitions,
1023                    &gate_dependencies,
1024                ),
1025                input_qubits: qubits_used
1026                    .iter()
1027                    .map(|qubit_id| QubitId {
1028                        node_id: (*node_id).clone(),
1029                        local_id: qubit_id.local_id,
1030                        global_id: Uuid::new_v4(),
1031                    })
1032                    .collect(),
1033                output_qubits: qubits_used
1034                    .iter()
1035                    .map(|qubit_id| QubitId {
1036                        node_id: (*node_id).clone(),
1037                        local_id: qubit_id.local_id,
1038                        global_id: Uuid::new_v4(),
1039                    })
1040                    .collect(),
1041                classical_inputs: vec![],
1042                estimated_execution_time: estimated_time,
1043                resource_requirements: ResourceRequirements {
1044                    qubits_needed,
1045                    gates_count,
1046                    memory_mb,
1047                    execution_time_estimate: estimated_time,
1048                    entanglement_pairs_needed,
1049                    classical_communication_bits: communication_cost,
1050                },
1051            };
1052            partitions.push(partition);
1053        }
1054
1055        Ok(partitions)
1056    }
1057
1058    fn estimate_execution_time(&self, partition: &CircuitPartition, node: &NodeInfo) -> Duration {
1059        self.estimate_partition_execution_time(&partition.gates, node)
1060    }
1061
1062    fn calculate_communication_overhead(
1063        &self,
1064        partitions: &[CircuitPartition],
1065        nodes: &HashMap<NodeId, NodeInfo>,
1066    ) -> f64 {
1067        // Calculate communication overhead based on inter-partition dependencies
1068        let mut total_overhead = 0.0;
1069
1070        for partition in partitions {
1071            // Communication cost based on entanglement pairs needed
1072            total_overhead +=
1073                partition.resource_requirements.entanglement_pairs_needed as f64 * 0.5;
1074
1075            // Add cost for classical communication
1076            total_overhead +=
1077                partition.resource_requirements.classical_communication_bits as f64 * 0.01;
1078        }
1079
1080        total_overhead
1081    }
1082}
1083
1084impl GraphBasedPartitioning {
1085    // Private helper methods for enhanced partitioning
1086    fn build_gate_dependency_graph(&self, gates: &[QuantumGate]) -> Vec<Vec<usize>> {
1087        let mut dependencies = vec![Vec::new(); gates.len()];
1088
1089        for (i, gate) in gates.iter().enumerate() {
1090            for (j, other_gate) in gates.iter().enumerate().take(i) {
1091                // Check if gates share qubits (dependency)
1092                let gate_qubits: std::collections::HashSet<_> = gate
1093                    .target_qubits
1094                    .iter()
1095                    .chain(gate.control_qubits.iter())
1096                    .collect();
1097                let other_qubits: std::collections::HashSet<_> = other_gate
1098                    .target_qubits
1099                    .iter()
1100                    .chain(other_gate.control_qubits.iter())
1101                    .collect();
1102
1103                if !gate_qubits.is_disjoint(&other_qubits) {
1104                    dependencies[i].push(j);
1105                }
1106            }
1107        }
1108
1109        dependencies
1110    }
1111
1112    fn min_cut_partition(
1113        &self,
1114        gates: &[QuantumGate],
1115        _dependencies: &[Vec<usize>],
1116        num_partitions: usize,
1117    ) -> Vec<Vec<usize>> {
1118        // Simplified min-cut algorithm using balanced partitioning
1119        let partition_size = gates.len() / num_partitions;
1120        let mut partitions = Vec::new();
1121
1122        for i in 0..num_partitions {
1123            let start = i * partition_size;
1124            let end = if i == num_partitions - 1 {
1125                gates.len()
1126            } else {
1127                (i + 1) * partition_size
1128            };
1129            let partition: Vec<usize> = (start..end).collect();
1130            partitions.push(partition);
1131        }
1132
1133        partitions
1134    }
1135
1136    fn calculate_inter_partition_communication(
1137        &self,
1138        partition_indices: &[usize],
1139        all_partitions: &[Vec<usize>],
1140        gates: &[QuantumGate],
1141    ) -> u32 {
1142        let mut communication_bits = 0;
1143
1144        for &gate_idx in partition_indices {
1145            let gate = &gates[gate_idx];
1146
1147            // Check if this gate needs data from other partitions
1148            for other_partition in all_partitions {
1149                if other_partition != partition_indices {
1150                    for &other_gate_idx in other_partition {
1151                        if other_gate_idx < gate_idx {
1152                            let other_gate = &gates[other_gate_idx];
1153
1154                            // Check for qubit overlap (indicates communication needed)
1155                            let gate_qubits: std::collections::HashSet<_> = gate
1156                                .target_qubits
1157                                .iter()
1158                                .chain(gate.control_qubits.iter())
1159                                .collect();
1160                            let other_qubits: std::collections::HashSet<_> = other_gate
1161                                .target_qubits
1162                                .iter()
1163                                .chain(other_gate.control_qubits.iter())
1164                                .collect();
1165
1166                            if !gate_qubits.is_disjoint(&other_qubits) {
1167                                communication_bits += 1; // One bit of communication per shared qubit
1168                            }
1169                        }
1170                    }
1171                }
1172            }
1173        }
1174
1175        communication_bits
1176    }
1177
1178    const fn calculate_partition_dependencies(
1179        &self,
1180        _partition_idx: usize,
1181        _all_partitions: &[Vec<usize>],
1182        _gate_dependencies: &[Vec<usize>],
1183    ) -> Vec<Uuid> {
1184        // For now, return empty dependencies as this requires more complex logic
1185        // In a full implementation, this would map partition dependencies to UUIDs
1186        vec![]
1187    }
1188
1189    fn estimate_partition_execution_time(
1190        &self,
1191        gates: &[QuantumGate],
1192        node_info: &NodeInfo,
1193    ) -> Duration {
1194        let base_gate_time = Duration::from_nanos(100_000); // 100 microseconds per gate
1195        let mut total_time = Duration::ZERO;
1196
1197        for gate in gates {
1198            let gate_fidelity = node_info
1199                .capabilities
1200                .gate_fidelities
1201                .get(&gate.gate_type)
1202                .unwrap_or(&0.95);
1203
1204            // Higher fidelity gates execute faster (better calibration)
1205            let adjusted_time =
1206                Duration::from_nanos((base_gate_time.as_nanos() as f64 / gate_fidelity) as u64);
1207            total_time += adjusted_time;
1208        }
1209
1210        // Add coherence time impact if coherence times are available
1211        if !node_info.capabilities.coherence_times.is_empty() {
1212            let avg_coherence = node_info
1213                .capabilities
1214                .coherence_times
1215                .values()
1216                .map(|t| t.as_nanos())
1217                .sum::<u128>() as f64
1218                / node_info.capabilities.coherence_times.len() as f64;
1219
1220            if total_time.as_nanos() as f64 > avg_coherence * 0.5 {
1221                // Add penalty for operations close to coherence time
1222                total_time = Duration::from_nanos((total_time.as_nanos() as f64 * 1.2) as u64);
1223            }
1224        }
1225
1226        total_time
1227    }
1228
1229    fn estimate_memory_usage(&self, gates: &[QuantumGate]) -> u32 {
1230        let max_qubit_id = gates
1231            .iter()
1232            .flat_map(|g| g.target_qubits.iter().chain(g.control_qubits.iter()))
1233            .map(|qubit_id| qubit_id.local_id)
1234            .max()
1235            .unwrap_or(0);
1236
1237        // Memory for state vector: 2^n complex numbers (16 bytes each)
1238        let state_vector_mb = (1u64 << (max_qubit_id + 1)) * 16 / (1024 * 1024);
1239
1240        // Add overhead for gate operations and classical storage
1241        let overhead_mb = gates.len() as u64 / 100; // 1MB per 100 gates
1242
1243        std::cmp::max(state_vector_mb + overhead_mb, 10) as u32 // Minimum 10MB
1244    }
1245
1246    fn count_entangling_operations(&self, gates: &[QuantumGate]) -> u32 {
1247        gates
1248            .iter()
1249            .filter(|g| {
1250                !g.control_qubits.is_empty()
1251                    || g.gate_type.contains("CX")
1252                    || g.gate_type.contains("CNOT")
1253                    || g.gate_type.contains("CZ")
1254                    || g.gate_type.contains("Bell")
1255            })
1256            .count() as u32
1257    }
1258}
1259
1260impl Default for LoadBalancedPartitioning {
1261    fn default() -> Self {
1262        Self::new()
1263    }
1264}
1265
1266impl LoadBalancedPartitioning {
1267    pub fn new() -> Self {
1268        Self {
1269            load_threshold: 0.8,
1270            rebalancing_strategy: "min_max".to_string(),
1271        }
1272    }
1273}
1274
1275impl PartitioningStrategy for LoadBalancedPartitioning {
1276    fn partition_circuit(
1277        &self,
1278        circuit: &QuantumCircuit,
1279        nodes: &HashMap<NodeId, NodeInfo>,
1280        config: &DistributedComputationConfig,
1281    ) -> Result<Vec<CircuitPartition>> {
1282        // Similar simplified implementation
1283        let strategy = GraphBasedPartitioning::new();
1284        strategy.partition_circuit(circuit, nodes, config)
1285    }
1286
1287    fn estimate_execution_time(&self, partition: &CircuitPartition, node: &NodeInfo) -> Duration {
1288        Duration::from_millis(partition.gates.len() as u64 * 10)
1289    }
1290
1291    fn calculate_communication_overhead(
1292        &self,
1293        partitions: &[CircuitPartition],
1294        nodes: &HashMap<NodeId, NodeInfo>,
1295    ) -> f64 {
1296        partitions.len() as f64 * 0.1
1297    }
1298}
1299
1300impl Default for PartitionOptimizer {
1301    fn default() -> Self {
1302        Self::new()
1303    }
1304}
1305
1306impl PartitionOptimizer {
1307    pub fn new() -> Self {
1308        Self {
1309            objectives: vec![
1310                OptimizationObjective::MinimizeLatency { weight: 0.3 },
1311                OptimizationObjective::MaximizeThroughput { weight: 0.3 },
1312                OptimizationObjective::MinimizeResourceUsage { weight: 0.4 },
1313            ],
1314            solver: "genetic_algorithm".to_string(),
1315            timeout: Duration::from_secs(30),
1316        }
1317    }
1318}
1319
1320impl Default for DistributedStateManager {
1321    fn default() -> Self {
1322        Self::new()
1323    }
1324}
1325
1326impl DistributedStateManager {
1327    pub fn new() -> Self {
1328        Self {
1329            local_states: Arc::new(RwLock::new(HashMap::new())),
1330            entanglement_registry: Arc::new(RwLock::new(HashMap::new())),
1331            synchronization_protocol: Arc::new(BasicSynchronizationProtocol::new()),
1332            state_transfer_engine: Arc::new(StateTransferEngine::new()),
1333            consistency_checker: Arc::new(ConsistencyChecker::new()),
1334        }
1335    }
1336}
1337
1338/// Basic synchronization protocol implementation
1339#[derive(Debug)]
1340pub struct BasicSynchronizationProtocol;
1341
1342impl Default for BasicSynchronizationProtocol {
1343    fn default() -> Self {
1344        Self::new()
1345    }
1346}
1347
1348impl BasicSynchronizationProtocol {
1349    pub const fn new() -> Self {
1350        Self
1351    }
1352}
1353
1354#[async_trait]
1355impl StateSynchronizationProtocol for BasicSynchronizationProtocol {
1356    async fn synchronize_states(
1357        &self,
1358        nodes: &[NodeId],
1359        target_consistency: f64,
1360    ) -> Result<SynchronizationResult> {
1361        Ok(SynchronizationResult {
1362            success: true,
1363            consistency_level: target_consistency,
1364            synchronized_nodes: nodes.to_vec(),
1365            failed_nodes: vec![],
1366            synchronization_time: Duration::from_millis(50),
1367        })
1368    }
1369
1370    async fn detect_inconsistencies(
1371        &self,
1372        states: &HashMap<NodeId, LocalQuantumState>,
1373    ) -> Vec<Inconsistency> {
1374        vec![] // Simplified
1375    }
1376
1377    async fn resolve_conflicts(&self, conflicts: &[StateConflict]) -> Result<Resolution> {
1378        Ok(Resolution {
1379            strategy: ResolutionStrategy::LastWriterWins,
1380            resolved_conflicts: conflicts.iter().map(|c| c.conflict_id).collect(),
1381            unresolved_conflicts: vec![],
1382            resolution_time: Duration::from_millis(10),
1383        })
1384    }
1385}
1386
1387impl Default for StateTransferEngine {
1388    fn default() -> Self {
1389        Self::new()
1390    }
1391}
1392
1393impl StateTransferEngine {
1394    pub fn new() -> Self {
1395        Self {
1396            transfer_protocols: HashMap::new(),
1397            compression_engine: Arc::new(QuantumStateCompressor::new()),
1398            encryption_engine: Arc::new(QuantumCryptography::new()),
1399        }
1400    }
1401}
1402
1403impl Default for QuantumStateCompressor {
1404    fn default() -> Self {
1405        Self::new()
1406    }
1407}
1408
1409impl QuantumStateCompressor {
1410    pub fn new() -> Self {
1411        Self {
1412            compression_algorithms: vec![
1413                "quantum_huffman".to_string(),
1414                "schmidt_decomposition".to_string(),
1415            ],
1416            compression_ratio_target: 0.5,
1417            fidelity_preservation_threshold: 0.99,
1418        }
1419    }
1420}
1421
1422impl Default for QuantumCryptography {
1423    fn default() -> Self {
1424        Self::new()
1425    }
1426}
1427
1428impl QuantumCryptography {
1429    pub fn new() -> Self {
1430        Self {
1431            encryption_protocols: vec![
1432                "quantum_key_distribution".to_string(),
1433                "post_quantum_crypto".to_string(),
1434            ],
1435            key_distribution_method: "BB84".to_string(),
1436            security_level: 256,
1437        }
1438    }
1439}
1440
1441impl Default for ConsistencyChecker {
1442    fn default() -> Self {
1443        Self::new()
1444    }
1445}
1446
1447impl ConsistencyChecker {
1448    pub fn new() -> Self {
1449        Self {
1450            consistency_protocols: vec![
1451                "eventual_consistency".to_string(),
1452                "strong_consistency".to_string(),
1453            ],
1454            verification_frequency: Duration::from_secs(1),
1455            automatic_correction: true,
1456        }
1457    }
1458}
1459
1460impl Default for CapabilityBasedBalancer {
1461    fn default() -> Self {
1462        Self::new()
1463    }
1464}
1465
1466impl CapabilityBasedBalancer {
1467    pub fn new() -> Self {
1468        let mut capability_weights = HashMap::new();
1469        capability_weights.insert("qubit_count".to_string(), 0.3);
1470        capability_weights.insert("gate_fidelity".to_string(), 0.4);
1471        capability_weights.insert("connectivity".to_string(), 0.3);
1472
1473        Self {
1474            capability_weights,
1475            performance_history: Arc::new(RwLock::new(HashMap::new())),
1476        }
1477    }
1478}
1479
1480#[async_trait]
1481impl LoadBalancer for CapabilityBasedBalancer {
1482    fn select_nodes(
1483        &self,
1484        partitions: &[CircuitPartition],
1485        available_nodes: &HashMap<NodeId, NodeInfo>,
1486        requirements: &ExecutionRequirements,
1487    ) -> Result<HashMap<Uuid, NodeId>> {
1488        let mut allocation = HashMap::new();
1489
1490        for partition in partitions {
1491            if let Some((node_id, _)) = available_nodes.iter().next() {
1492                allocation.insert(partition.partition_id, node_id.clone());
1493            }
1494        }
1495
1496        Ok(allocation)
1497    }
1498
1499    fn rebalance_load(
1500        &self,
1501        current_allocation: &HashMap<Uuid, NodeId>,
1502        nodes: &HashMap<NodeId, NodeInfo>,
1503    ) -> Option<HashMap<Uuid, NodeId>> {
1504        None // No rebalancing needed in simplified implementation
1505    }
1506
1507    fn predict_execution_time(&self, partition: &CircuitPartition, node: &NodeInfo) -> Duration {
1508        Duration::from_millis(partition.gates.len() as u64 * 10)
1509    }
1510
1511    async fn select_node(
1512        &self,
1513        available_nodes: &[NodeInfo],
1514        requirements: &ResourceRequirements,
1515    ) -> Result<NodeId> {
1516        // Select the first available node that meets requirements
1517        available_nodes
1518            .iter()
1519            .find(|node| {
1520                node.capabilities.max_qubits >= requirements.qubits_needed
1521                    && node
1522                        .capabilities
1523                        .gate_fidelities
1524                        .values()
1525                        .all(|&fidelity| fidelity >= 0.999) // Default threshold (equivalent to error rate <= 0.001)
1526            })
1527            .map(|node| node.node_id.clone())
1528            .ok_or_else(|| {
1529                DistributedComputationError::NodeSelectionFailed(
1530                    "No suitable node found".to_string(),
1531                )
1532            })
1533    }
1534
1535    async fn update_node_metrics(
1536        &self,
1537        node_id: &NodeId,
1538        metrics: &PerformanceMetrics,
1539    ) -> Result<()> {
1540        // Update metrics for the specified node
1541        // In a real implementation, this would update internal state
1542        Ok(())
1543    }
1544
1545    fn get_balancer_metrics(&self) -> LoadBalancerMetrics {
1546        LoadBalancerMetrics {
1547            total_decisions: 0,
1548            average_decision_time: Duration::from_millis(1),
1549            prediction_accuracy: 1.0,
1550            load_distribution_variance: 0.0,
1551            total_requests: 0,
1552            successful_allocations: 0,
1553            failed_allocations: 0,
1554            average_response_time: Duration::from_millis(0),
1555            node_utilization: HashMap::new(),
1556        }
1557    }
1558}
1559
1560impl Default for FaultToleranceManager {
1561    fn default() -> Self {
1562        Self::new()
1563    }
1564}
1565
1566impl FaultToleranceManager {
1567    pub fn new() -> Self {
1568        Self {
1569            fault_detectors: vec![],
1570            recovery_strategies: HashMap::new(),
1571            checkpointing_system: Arc::new(CheckpointingSystem::new()),
1572            redundancy_manager: Arc::new(RedundancyManager::new()),
1573        }
1574    }
1575}
1576
1577impl Default for CheckpointingSystem {
1578    fn default() -> Self {
1579        Self::new()
1580    }
1581}
1582
1583impl CheckpointingSystem {
1584    pub fn new() -> Self {
1585        Self {
1586            checkpoint_storage: Arc::new(InMemoryCheckpointStorage::new()),
1587            checkpoint_frequency: Duration::from_secs(60),
1588            compression_enabled: true,
1589            incremental_checkpoints: true,
1590        }
1591    }
1592}
1593
1594/// In-memory checkpoint storage for testing
1595#[derive(Debug)]
1596pub struct InMemoryCheckpointStorage {
1597    checkpoints: Arc<RwLock<HashMap<Uuid, CheckpointData>>>,
1598}
1599
1600impl Default for InMemoryCheckpointStorage {
1601    fn default() -> Self {
1602        Self::new()
1603    }
1604}
1605
1606impl InMemoryCheckpointStorage {
1607    pub fn new() -> Self {
1608        Self {
1609            checkpoints: Arc::new(RwLock::new(HashMap::new())),
1610        }
1611    }
1612}
1613
1614#[async_trait]
1615impl CheckpointStorage for InMemoryCheckpointStorage {
1616    async fn store_checkpoint(&self, checkpoint_id: Uuid, data: &CheckpointData) -> Result<()> {
1617        let mut checkpoints = self
1618            .checkpoints
1619            .write()
1620            .expect("Checkpoints RwLock poisoned");
1621        checkpoints.insert(checkpoint_id, data.clone());
1622        Ok(())
1623    }
1624
1625    async fn load_checkpoint(&self, checkpoint_id: Uuid) -> Result<CheckpointData> {
1626        let checkpoints = self
1627            .checkpoints
1628            .read()
1629            .expect("Checkpoints RwLock poisoned");
1630        checkpoints.get(&checkpoint_id).cloned().ok_or_else(|| {
1631            DistributedComputationError::ResourceAllocation("Checkpoint not found".to_string())
1632        })
1633    }
1634
1635    async fn list_checkpoints(&self) -> Result<Vec<Uuid>> {
1636        let checkpoints = self
1637            .checkpoints
1638            .read()
1639            .expect("Checkpoints RwLock poisoned");
1640        Ok(checkpoints.keys().copied().collect())
1641    }
1642
1643    async fn delete_checkpoint(&self, checkpoint_id: Uuid) -> Result<()> {
1644        let mut checkpoints = self
1645            .checkpoints
1646            .write()
1647            .expect("Checkpoints RwLock poisoned");
1648        checkpoints.remove(&checkpoint_id);
1649        Ok(())
1650    }
1651}
1652
1653impl Default for RedundancyManager {
1654    fn default() -> Self {
1655        Self::new()
1656    }
1657}
1658
1659impl RedundancyManager {
1660    pub fn new() -> Self {
1661        Self {
1662            redundancy_strategies: HashMap::new(),
1663            replication_factor: 3,
1664            consistency_protocol: "eventual_consistency".to_string(),
1665        }
1666    }
1667}
1668
1669impl Default for RaftConsensus {
1670    fn default() -> Self {
1671        Self::new()
1672    }
1673}
1674
1675impl RaftConsensus {
1676    pub fn new() -> Self {
1677        Self {
1678            election_timeout: Duration::from_millis(500),
1679            heartbeat_interval: Duration::from_millis(100),
1680            log_replication: Arc::new(LogReplication::new()),
1681            leader_state: Arc::new(RwLock::new(LeaderState {
1682                current_leader: None,
1683                term: 0,
1684                last_heartbeat: Utc::now(),
1685            })),
1686        }
1687    }
1688}
1689
1690#[async_trait]
1691impl ConsensusEngine for RaftConsensus {
1692    async fn reach_consensus<T: Serialize + for<'de> Deserialize<'de> + Clone + Send>(
1693        &self,
1694        proposal: T,
1695        participants: &[NodeId],
1696        timeout: Duration,
1697    ) -> Result<ConsensusResult<T>> {
1698        Ok(ConsensusResult {
1699            decision: proposal,
1700            consensus_achieved: true,
1701            participating_nodes: participants.to_vec(),
1702            consensus_time: Duration::from_millis(50),
1703            confidence: 0.95,
1704        })
1705    }
1706
1707    async fn elect_leader(&self, candidates: &[NodeId], timeout: Duration) -> Result<NodeId> {
1708        candidates.first().cloned().ok_or_else(|| {
1709            DistributedComputationError::ConsensusFailure(
1710                "No candidates for leader election".to_string(),
1711            )
1712        })
1713    }
1714
1715    fn get_consensus_confidence(&self) -> f64 {
1716        0.95
1717    }
1718}
1719
1720impl Default for LogReplication {
1721    fn default() -> Self {
1722        Self::new()
1723    }
1724}
1725
1726impl LogReplication {
1727    pub fn new() -> Self {
1728        Self {
1729            log_entries: Arc::new(RwLock::new(vec![])),
1730            commit_index: Arc::new(RwLock::new(0)),
1731            last_applied: Arc::new(RwLock::new(0)),
1732        }
1733    }
1734}
1735
1736impl Default for MetricsCollector {
1737    fn default() -> Self {
1738        Self::new()
1739    }
1740}
1741
1742impl MetricsCollector {
1743    pub fn new() -> Self {
1744        Self {
1745            metrics_storage: Arc::new(InMemoryMetricsStorage::new()),
1746            collection_interval: Duration::from_secs(1),
1747            metrics_aggregator: Arc::new(MetricsAggregator::new()),
1748            alerting_system: Arc::new(AlertingSystem::new()),
1749        }
1750    }
1751}
1752
1753/// In-memory metrics storage for testing
1754#[derive(Debug)]
1755pub struct InMemoryMetricsStorage {
1756    metrics: Arc<RwLock<Vec<Metric>>>,
1757}
1758
1759impl Default for InMemoryMetricsStorage {
1760    fn default() -> Self {
1761        Self::new()
1762    }
1763}
1764
1765impl InMemoryMetricsStorage {
1766    pub fn new() -> Self {
1767        Self {
1768            metrics: Arc::new(RwLock::new(vec![])),
1769        }
1770    }
1771}
1772
1773#[async_trait]
1774impl MetricsStorage for InMemoryMetricsStorage {
1775    async fn store_metric(&self, metric: &Metric) -> Result<()> {
1776        let mut metrics = self.metrics.write().expect("Metrics RwLock poisoned");
1777        metrics.push(metric.clone());
1778        Ok(())
1779    }
1780
1781    async fn query_metrics(&self, query: &MetricsQuery) -> Result<Vec<Metric>> {
1782        let metrics = self.metrics.read().expect("Metrics RwLock poisoned");
1783        let filtered: Vec<Metric> = metrics
1784            .iter()
1785            .filter(|m| {
1786                query.metric_names.contains(&m.metric_name)
1787                    && m.timestamp >= query.time_range.0
1788                    && m.timestamp <= query.time_range.1
1789            })
1790            .cloned()
1791            .collect();
1792        Ok(filtered)
1793    }
1794
1795    async fn aggregate_metrics(&self, aggregation: &AggregationQuery) -> Result<AggregatedMetrics> {
1796        let metrics = self.metrics.read().expect("Metrics RwLock poisoned");
1797        let filtered: Vec<&Metric> = metrics
1798            .iter()
1799            .filter(|m| {
1800                m.metric_name == aggregation.metric_name
1801                    && m.timestamp >= aggregation.time_range.0
1802                    && m.timestamp <= aggregation.time_range.1
1803            })
1804            .collect();
1805
1806        let value = match aggregation.aggregation_function {
1807            AggregationFunction::Average => {
1808                let sum: f64 = filtered.iter().map(|m| m.value).sum();
1809                if filtered.is_empty() {
1810                    0.0
1811                } else {
1812                    sum / filtered.len() as f64
1813                }
1814            }
1815            AggregationFunction::Sum => filtered.iter().map(|m| m.value).sum(),
1816            AggregationFunction::Max => filtered
1817                .iter()
1818                .map(|m| m.value)
1819                .fold(f64::NEG_INFINITY, f64::max),
1820            AggregationFunction::Min => filtered
1821                .iter()
1822                .map(|m| m.value)
1823                .fold(f64::INFINITY, f64::min),
1824            AggregationFunction::Count => filtered.len() as f64,
1825            _ => 0.0, // Simplified for other functions
1826        };
1827
1828        Ok(AggregatedMetrics {
1829            metric_name: aggregation.metric_name.clone(),
1830            aggregation_function: aggregation.aggregation_function.clone(),
1831            value,
1832            time_range: aggregation.time_range,
1833            group_by_values: HashMap::new(),
1834        })
1835    }
1836}
1837
1838impl Default for MetricsAggregator {
1839    fn default() -> Self {
1840        Self::new()
1841    }
1842}
1843
1844impl MetricsAggregator {
1845    pub const fn new() -> Self {
1846        Self {
1847            aggregation_strategies: vec![],
1848            real_time_aggregation: true,
1849            batch_size: 1000,
1850        }
1851    }
1852}
1853
1854impl Default for AlertingSystem {
1855    fn default() -> Self {
1856        Self::new()
1857    }
1858}
1859
1860impl AlertingSystem {
1861    pub fn new() -> Self {
1862        Self {
1863            alert_rules: vec![],
1864            notification_channels: HashMap::new(),
1865            alert_history: Arc::new(RwLock::new(VecDeque::new())),
1866        }
1867    }
1868}
1869
1870impl Default for ResourceAllocator {
1871    fn default() -> Self {
1872        Self::new()
1873    }
1874}
1875
1876impl ResourceAllocator {
1877    pub fn new() -> Self {
1878        Self {
1879            allocation_strategies: HashMap::new(),
1880            resource_monitor: Arc::new(ResourceMonitor::new()),
1881            allocation_history: Arc::new(RwLock::new(VecDeque::new())),
1882        }
1883    }
1884
1885    fn allocate_resources_for_partitions(
1886        &self,
1887        partitions: &[CircuitPartition],
1888        nodes: &HashMap<NodeId, NodeInfo>,
1889    ) -> Result<AllocationPlan> {
1890        let mut allocations = HashMap::new();
1891
1892        for (node_id, node_info) in nodes {
1893            allocations.insert(
1894                node_id.clone(),
1895                ResourceAllocation {
1896                    allocated_qubits: vec![],
1897                    memory_allocated_mb: 100,
1898                    cpu_allocated_percentage: 50.0,
1899                    network_bandwidth_allocated_mbps: 100.0,
1900                },
1901            );
1902        }
1903
1904        Ok(AllocationPlan {
1905            plan_id: Uuid::new_v4(),
1906            allocations,
1907            estimated_cost: 100.0,
1908            estimated_execution_time: Duration::from_secs(10),
1909            allocation_timestamp: Utc::now(),
1910        })
1911    }
1912}
1913
1914impl Default for ResourceMonitor {
1915    fn default() -> Self {
1916        Self::new()
1917    }
1918}
1919
1920impl ResourceMonitor {
1921    pub fn new() -> Self {
1922        Self {
1923            monitoring_agents: HashMap::new(),
1924            monitoring_interval: Duration::from_secs(1),
1925            resource_predictions: Arc::new(ResourcePredictor::new()),
1926        }
1927    }
1928}
1929
1930impl Default for ResourcePredictor {
1931    fn default() -> Self {
1932        Self::new()
1933    }
1934}
1935
1936impl ResourcePredictor {
1937    pub fn new() -> Self {
1938        Self {
1939            prediction_models: HashMap::new(),
1940            training_scheduler: Arc::new(TrainingScheduler::new()),
1941            model_evaluator: Arc::new(ModelEvaluator::new()),
1942        }
1943    }
1944}
1945
1946impl Default for TrainingScheduler {
1947    fn default() -> Self {
1948        Self::new()
1949    }
1950}
1951
1952impl TrainingScheduler {
1953    pub fn new() -> Self {
1954        Self {
1955            training_schedule: HashMap::new(),
1956            auto_retraining: true,
1957            performance_threshold: 0.9,
1958        }
1959    }
1960}
1961
1962impl Default for ModelEvaluator {
1963    fn default() -> Self {
1964        Self::new()
1965    }
1966}
1967
1968impl ModelEvaluator {
1969    pub fn new() -> Self {
1970        Self {
1971            evaluation_metrics: vec![
1972                "accuracy".to_string(),
1973                "precision".to_string(),
1974                "recall".to_string(),
1975            ],
1976            cross_validation_folds: 5,
1977            benchmark_datasets: HashMap::new(),
1978        }
1979    }
1980}