1use super::types::*;
4use async_trait::async_trait;
5use chrono::{DateTime, Duration as ChronoDuration, Utc};
6use serde::{Deserialize, Serialize};
7use std::collections::{BTreeMap, HashMap, HashSet, VecDeque};
8use std::sync::{Arc, Mutex, RwLock};
9use std::time::{Duration, Instant, SystemTime};
10use tokio::sync::{mpsc, RwLock as AsyncRwLock, Semaphore};
11use uuid::Uuid;
12
13#[async_trait]
14impl LoadBalancer for RoundRobinBalancer {
15 fn select_nodes(
16 &self,
17 partitions: &[CircuitPartition],
18 available_nodes: &HashMap<NodeId, NodeInfo>,
19 _requirements: &ExecutionRequirements,
20 ) -> Result<HashMap<Uuid, NodeId>> {
21 let mut assignments = HashMap::new();
22 let nodes: Vec<_> = available_nodes.keys().cloned().collect();
23
24 if nodes.is_empty() {
25 return Err(DistributedComputationError::ResourceAllocation(
26 "No available nodes".to_string(),
27 ));
28 }
29
30 for partition in partitions {
31 let mut index = self
32 .current_index
33 .lock()
34 .expect("Round-robin index mutex poisoned");
35 let selected_node = nodes[*index % nodes.len()].clone();
36 *index += 1;
37 assignments.insert(partition.partition_id, selected_node);
38 }
39
40 Ok(assignments)
41 }
42
43 fn rebalance_load(
44 &self,
45 _current_allocation: &HashMap<Uuid, NodeId>,
46 _nodes: &HashMap<NodeId, NodeInfo>,
47 ) -> Option<HashMap<Uuid, NodeId>> {
48 None }
50
51 fn predict_execution_time(&self, partition: &CircuitPartition, _node: &NodeInfo) -> Duration {
52 partition.estimated_execution_time
53 }
54
55 async fn select_node(
56 &self,
57 available_nodes: &[NodeInfo],
58 _requirements: &ResourceRequirements,
59 ) -> Result<NodeId> {
60 if available_nodes.is_empty() {
61 return Err(DistributedComputationError::ResourceAllocation(
62 "No available nodes".to_string(),
63 ));
64 }
65
66 let mut index = self
67 .current_index
68 .lock()
69 .expect("Round-robin index mutex poisoned");
70 let selected_node = available_nodes[*index % available_nodes.len()]
71 .node_id
72 .clone();
73 *index += 1;
74 Ok(selected_node)
75 }
76
77 async fn update_node_metrics(
78 &self,
79 _node_id: &NodeId,
80 _metrics: &PerformanceMetrics,
81 ) -> Result<()> {
82 Ok(()) }
84
85 fn get_balancer_metrics(&self) -> LoadBalancerMetrics {
86 LoadBalancerMetrics {
87 total_decisions: 0,
88 average_decision_time: Duration::from_millis(1),
89 prediction_accuracy: 1.0,
90 load_distribution_variance: 0.0,
91 total_requests: 0,
92 successful_allocations: 0,
93 failed_allocations: 0,
94 average_response_time: Duration::from_millis(0),
95 node_utilization: HashMap::new(),
96 }
97 }
98}
99
100impl Default for RoundRobinBalancer {
101 fn default() -> Self {
102 Self::new()
103 }
104}
105
106impl RoundRobinBalancer {
107 pub fn new() -> Self {
108 Self {
109 current_index: Arc::new(Mutex::new(0)),
110 }
111 }
112}
113
114#[derive(Debug)]
116pub struct CapabilityBasedBalancer {
117 capability_weights: HashMap<String, f64>,
118 performance_history: Arc<RwLock<HashMap<NodeId, PerformanceHistory>>>,
119}
120
121#[derive(Debug)]
123pub struct MLOptimizedBalancer {
124 model_path: String,
125 feature_extractor: Arc<FeatureExtractor>,
126 prediction_cache: Arc<Mutex<HashMap<String, NodeId>>>,
127 training_data_collector: Arc<TrainingDataCollector>,
128}
129
130#[derive(Debug)]
132pub struct TrainingDataCollector {
133 data_buffer: Arc<Mutex<VecDeque<TrainingDataPoint>>>,
134 collection_interval: Duration,
135 max_buffer_size: usize,
136}
137
138#[derive(Debug)]
140pub struct FaultToleranceManager {
141 fault_detectors: Vec<Box<dyn FaultDetector + Send + Sync>>,
142 recovery_strategies: HashMap<String, Box<dyn RecoveryStrategy + Send + Sync>>,
143 checkpointing_system: Arc<CheckpointingSystem>,
144 redundancy_manager: Arc<RedundancyManager>,
145}
146
147#[async_trait]
149pub trait FaultDetector: std::fmt::Debug {
150 async fn detect_faults(&self, nodes: &HashMap<NodeId, NodeInfo>) -> Vec<Fault>;
151 fn get_detection_confidence(&self) -> f64;
152 fn get_false_positive_rate(&self) -> f64;
153}
154
155#[derive(Debug, Clone, Serialize, Deserialize)]
157pub struct Fault {
158 pub fault_id: Uuid,
159 pub fault_type: FaultType,
160 pub affected_nodes: Vec<NodeId>,
161 pub severity: Severity,
162 pub detection_time: DateTime<Utc>,
163 pub predicted_impact: Impact,
164}
165
166#[derive(Debug, Clone, Serialize, Deserialize)]
168pub enum FaultType {
169 NodeFailure,
170 NetworkPartition,
171 QuantumDecoherence,
172 HardwareCalibrationDrift,
173 SoftwareBug,
174 ResourceExhaustion,
175 SecurityBreach,
176}
177
178#[derive(Debug, Clone, Serialize, Deserialize, PartialEq, Eq, PartialOrd, Ord)]
180pub enum Severity {
181 Low,
182 Medium,
183 High,
184 Critical,
185}
186
187#[derive(Debug, Clone, Serialize, Deserialize)]
189pub struct Impact {
190 pub affected_computations: Vec<Uuid>,
191 pub estimated_downtime: Duration,
192 pub performance_degradation: f64,
193 pub recovery_cost: f64,
194}
195
196#[async_trait]
198pub trait RecoveryStrategy: std::fmt::Debug {
199 async fn recover_from_fault(
200 &self,
201 fault: &Fault,
202 system_state: &SystemState,
203 ) -> Result<RecoveryResult>;
204
205 fn estimate_recovery_time(&self, fault: &Fault) -> Duration;
206 fn calculate_recovery_cost(&self, fault: &Fault) -> f64;
207}
208
209#[derive(Debug, Clone, Serialize, Deserialize)]
211pub struct SystemState {
212 pub nodes: HashMap<NodeId, NodeInfo>,
213 pub active_computations: HashMap<Uuid, ExecutionRequest>,
214 pub distributed_states: HashMap<Uuid, DistributedQuantumState>,
215 pub network_topology: NetworkTopology,
216 pub resource_allocation: HashMap<NodeId, ResourceAllocation>,
217}
218
219#[derive(Debug, Clone, Serialize, Deserialize)]
221pub struct NetworkTopology {
222 pub nodes: Vec<NodeId>,
223 pub edges: Vec<(NodeId, NodeId)>,
224 pub edge_weights: HashMap<(NodeId, NodeId), f64>,
225 pub clustering_coefficient: f64,
226 pub diameter: u32,
227}
228
229#[derive(Debug, Clone, Serialize, Deserialize)]
231pub struct ResourceAllocation {
232 pub allocated_qubits: Vec<QubitId>,
233 pub memory_allocated_mb: u32,
234 pub cpu_allocated_percentage: f64,
235 pub network_bandwidth_allocated_mbps: f64,
236}
237
238#[derive(Debug, Clone, Serialize, Deserialize)]
240pub struct RecoveryResult {
241 pub success: bool,
242 pub recovery_time: Duration,
243 pub restored_computations: Vec<Uuid>,
244 pub failed_computations: Vec<Uuid>,
245 pub performance_impact: f64,
246}
247
248#[derive(Debug)]
250pub struct CheckpointingSystem {
251 checkpoint_storage: Arc<dyn CheckpointStorage + Send + Sync>,
252 checkpoint_frequency: Duration,
253 compression_enabled: bool,
254 incremental_checkpoints: bool,
255}
256
257#[async_trait]
259pub trait CheckpointStorage: std::fmt::Debug {
260 async fn store_checkpoint(&self, checkpoint_id: Uuid, data: &CheckpointData) -> Result<()>;
261
262 async fn load_checkpoint(&self, checkpoint_id: Uuid) -> Result<CheckpointData>;
263
264 async fn list_checkpoints(&self) -> Result<Vec<Uuid>>;
265 async fn delete_checkpoint(&self, checkpoint_id: Uuid) -> Result<()>;
266}
267
268#[derive(Debug, Clone, Serialize, Deserialize)]
270pub struct CheckpointData {
271 pub timestamp: DateTime<Utc>,
272 pub system_state: SystemState,
273 pub computation_progress: HashMap<Uuid, ComputationProgress>,
274 pub quantum_states: HashMap<Uuid, DistributedQuantumState>,
275 pub metadata: HashMap<String, String>,
276}
277
278#[derive(Debug, Clone, Serialize, Deserialize)]
280pub struct ComputationProgress {
281 pub completed_partitions: Vec<Uuid>,
282 pub in_progress_partitions: Vec<Uuid>,
283 pub pending_partitions: Vec<Uuid>,
284 pub intermediate_results: HashMap<String, Vec<f64>>,
285 pub execution_statistics: ExecutionStatistics,
286}
287
288#[derive(Debug, Clone, Serialize, Deserialize)]
290pub struct ExecutionStatistics {
291 pub start_time: DateTime<Utc>,
292 pub estimated_completion_time: DateTime<Utc>,
293 pub gates_executed: u32,
294 pub measurements_completed: u32,
295 pub average_fidelity: f64,
296 pub error_rate: f64,
297}
298
299#[derive(Debug)]
301pub struct RedundancyManager {
302 redundancy_strategies: HashMap<String, Box<dyn RedundancyStrategy + Send + Sync>>,
303 replication_factor: u32,
304 consistency_protocol: String,
305}
306
307pub trait RedundancyStrategy: std::fmt::Debug {
309 fn replicate_computation(
310 &self,
311 computation: &ExecutionRequest,
312 replication_factor: u32,
313 ) -> Vec<ExecutionRequest>;
314
315 fn aggregate_results(&self, results: &[ComputationResult]) -> Result<ComputationResult>;
316
317 fn detect_byzantine_faults(&self, results: &[ComputationResult]) -> Vec<NodeId>;
318}
319
320#[derive(Debug, Clone, Serialize, Deserialize)]
322pub struct ComputationResult {
323 pub result_id: Uuid,
324 pub computation_id: Uuid,
325 pub node_id: NodeId,
326 pub measurements: HashMap<u32, bool>,
327 pub final_state: Option<LocalQuantumState>,
328 pub execution_time: Duration,
329 pub fidelity: f64,
330 pub error_rate: f64,
331 pub metadata: HashMap<String, String>,
332}
333
334#[async_trait]
336pub trait ConsensusEngine: std::fmt::Debug {
337 async fn reach_consensus<T: Serialize + for<'de> Deserialize<'de> + Clone + Send>(
338 &self,
339 proposal: T,
340 participants: &[NodeId],
341 timeout: Duration,
342 ) -> Result<ConsensusResult<T>>;
343
344 async fn elect_leader(&self, candidates: &[NodeId], timeout: Duration) -> Result<NodeId>;
345
346 fn get_consensus_confidence(&self) -> f64;
347}
348
349#[derive(Debug, Clone, Serialize, Deserialize)]
351pub struct ConsensusResult<T> {
352 pub decision: T,
353 pub consensus_achieved: bool,
354 pub participating_nodes: Vec<NodeId>,
355 pub consensus_time: Duration,
356 pub confidence: f64,
357}
358
359#[derive(Debug)]
361pub struct ByzantineConsensus {
362 fault_tolerance: u32,
363 timeout: Duration,
364 message_authenticator: Arc<MessageAuthenticator>,
365}
366
367#[derive(Debug)]
369pub struct RaftConsensus {
370 election_timeout: Duration,
371 heartbeat_interval: Duration,
372 log_replication: Arc<LogReplication>,
373 leader_state: Arc<RwLock<LeaderState>>,
374}
375
376#[derive(Debug, Clone)]
378pub struct LeaderState {
379 pub current_leader: Option<NodeId>,
380 pub term: u64,
381 pub last_heartbeat: DateTime<Utc>,
382}
383
384#[derive(Debug)]
386pub struct MessageAuthenticator {
387 authentication_method: String,
388 key_rotation_interval: Duration,
389 signature_verification: bool,
390}
391
392#[derive(Debug)]
394pub struct LogReplication {
395 log_entries: Arc<RwLock<Vec<LogEntry>>>,
396 commit_index: Arc<RwLock<u64>>,
397 last_applied: Arc<RwLock<u64>>,
398}
399
400#[derive(Debug, Clone, Serialize, Deserialize)]
402pub struct LogEntry {
403 pub term: u64,
404 pub index: u64,
405 pub command: Command,
406 pub timestamp: DateTime<Utc>,
407}
408
409#[derive(Debug, Clone, Serialize, Deserialize)]
411pub enum Command {
412 AllocateResources {
413 node_id: NodeId,
414 resources: ResourceRequirements,
415 },
416 StartComputation {
417 computation_id: Uuid,
418 partition: CircuitPartition,
419 },
420 UpdateNodeStatus {
421 node_id: NodeId,
422 status: NodeStatus,
423 },
424 RebalanceLoad {
425 new_allocation: HashMap<Uuid, NodeId>,
426 },
427 HandleFault {
428 fault: Fault,
429 recovery_action: String,
430 },
431}
432
433#[derive(Debug)]
435pub struct MetricsCollector {
436 metrics_storage: Arc<dyn MetricsStorage + Send + Sync>,
437 collection_interval: Duration,
438 metrics_aggregator: Arc<MetricsAggregator>,
439 alerting_system: Arc<AlertingSystem>,
440}
441
442#[async_trait]
444pub trait MetricsStorage: std::fmt::Debug {
445 async fn store_metric(&self, metric: &Metric) -> Result<()>;
446 async fn query_metrics(&self, query: &MetricsQuery) -> Result<Vec<Metric>>;
447 async fn aggregate_metrics(&self, aggregation: &AggregationQuery) -> Result<AggregatedMetrics>;
448}
449
450#[derive(Debug, Clone, Serialize, Deserialize)]
452pub struct Metric {
453 pub metric_name: String,
454 pub value: f64,
455 pub timestamp: DateTime<Utc>,
456 pub tags: HashMap<String, String>,
457 pub node_id: Option<NodeId>,
458}
459
460#[derive(Debug, Clone, Serialize, Deserialize)]
462pub struct MetricsQuery {
463 pub metric_names: Vec<String>,
464 pub time_range: (DateTime<Utc>, DateTime<Utc>),
465 pub filters: HashMap<String, String>,
466 pub limit: Option<u32>,
467}
468
469#[derive(Debug, Clone, Serialize, Deserialize)]
471pub struct AggregationQuery {
472 pub metric_name: String,
473 pub aggregation_function: AggregationFunction,
474 pub time_range: (DateTime<Utc>, DateTime<Utc>),
475 pub group_by: Vec<String>,
476}
477
478#[derive(Debug, Clone, Serialize, Deserialize)]
480pub enum AggregationFunction {
481 Sum,
482 Average,
483 Min,
484 Max,
485 Count,
486 Percentile(f64),
487 StandardDeviation,
488}
489
490#[derive(Debug, Clone, Serialize, Deserialize)]
492pub struct AggregatedMetrics {
493 pub metric_name: String,
494 pub aggregation_function: AggregationFunction,
495 pub value: f64,
496 pub time_range: (DateTime<Utc>, DateTime<Utc>),
497 pub group_by_values: HashMap<String, f64>,
498}
499
500#[derive(Debug)]
502pub struct MetricsAggregator {
503 aggregation_strategies: Vec<AggregationStrategy>,
504 real_time_aggregation: bool,
505 batch_size: u32,
506}
507
508#[derive(Debug, Clone)]
510pub struct AggregationStrategy {
511 pub metric_pattern: String,
512 pub aggregation_interval: Duration,
513 pub functions: Vec<AggregationFunction>,
514 pub retention_period: Duration,
515}
516
517#[derive(Debug)]
519pub struct AlertingSystem {
520 alert_rules: Vec<AlertRule>,
521 notification_channels: HashMap<String, Box<dyn NotificationChannel + Send + Sync>>,
522 alert_history: Arc<RwLock<VecDeque<Alert>>>,
523}
524
525#[derive(Debug, Clone, Serialize, Deserialize)]
527pub struct AlertRule {
528 pub rule_id: String,
529 pub metric_name: String,
530 pub condition: AlertCondition,
531 pub threshold: f64,
532 pub severity: Severity,
533 pub notification_channels: Vec<String>,
534 pub cooldown_period: Duration,
535}
536
537#[derive(Debug, Clone, Serialize, Deserialize)]
539pub enum AlertCondition {
540 GreaterThan,
541 LessThan,
542 Equals,
543 NotEquals,
544 RateOfChange(f64),
545 AnomalyDetection,
546}
547
548#[derive(Debug, Clone, Serialize, Deserialize)]
550pub struct Alert {
551 pub alert_id: Uuid,
552 pub rule_id: String,
553 pub timestamp: DateTime<Utc>,
554 pub severity: Severity,
555 pub message: String,
556 pub affected_nodes: Vec<NodeId>,
557 pub metric_value: f64,
558}
559
560#[async_trait]
562pub trait NotificationChannel: std::fmt::Debug {
563 async fn send_notification(&self, alert: &Alert) -> Result<()>;
564 fn get_channel_type(&self) -> String;
565 fn is_available(&self) -> bool;
566}
567
568#[derive(Debug)]
570pub struct ResourceAllocator {
571 allocation_strategies: HashMap<String, Box<dyn AllocationStrategy + Send + Sync>>,
572 resource_monitor: Arc<ResourceMonitor>,
573 allocation_history: Arc<RwLock<VecDeque<AllocationRecord>>>,
574}
575
576pub trait AllocationStrategy: std::fmt::Debug {
578 fn allocate_resources(
579 &self,
580 request: &ExecutionRequest,
581 available_resources: &HashMap<NodeId, AvailableResources>,
582 ) -> Result<AllocationPlan>;
583
584 fn deallocate_resources(&self, allocation: &AllocationPlan) -> Result<()>;
585
586 fn estimate_allocation_time(&self, request: &ExecutionRequest) -> Duration;
587}
588
589#[derive(Debug, Clone, Serialize, Deserialize)]
591pub struct AvailableResources {
592 pub available_qubits: u32,
593 pub available_memory_mb: u32,
594 pub available_cpu_percentage: f64,
595 pub available_network_bandwidth_mbps: f64,
596 pub estimated_availability_time: Duration,
597}
598
599#[derive(Debug, Clone, Serialize, Deserialize)]
601pub struct AllocationPlan {
602 pub plan_id: Uuid,
603 pub allocations: HashMap<NodeId, ResourceAllocation>,
604 pub estimated_cost: f64,
605 pub estimated_execution_time: Duration,
606 pub allocation_timestamp: DateTime<Utc>,
607}
608
609#[derive(Debug, Clone, Serialize, Deserialize)]
611pub struct AllocationRecord {
612 pub record_id: Uuid,
613 pub allocation_plan: AllocationPlan,
614 pub actual_execution_time: Option<Duration>,
615 pub actual_cost: Option<f64>,
616 pub success: Option<bool>,
617 pub performance_metrics: Option<PerformanceMetrics>,
618}
619
620#[derive(Debug)]
622pub struct ResourceMonitor {
623 monitoring_agents: HashMap<NodeId, Box<dyn MonitoringAgent + Send + Sync>>,
624 monitoring_interval: Duration,
625 resource_predictions: Arc<ResourcePredictor>,
626}
627
628#[async_trait]
630pub trait MonitoringAgent: std::fmt::Debug {
631 async fn collect_resource_metrics(&self) -> Result<ResourceMetrics>;
632 async fn predict_resource_usage(&self, horizon: Duration) -> Result<ResourceUsagePrediction>;
633 fn get_agent_health(&self) -> AgentHealth;
634}
635
636#[derive(Debug, Clone, Serialize, Deserialize)]
638pub struct ResourceMetrics {
639 pub timestamp: DateTime<Utc>,
640 pub cpu_utilization: f64,
641 pub memory_utilization: f64,
642 pub network_utilization: f64,
643 pub qubit_utilization: f64,
644 pub queue_length: u32,
645 pub active_computations: u32,
646}
647
648#[derive(Debug, Clone, Serialize, Deserialize)]
650pub struct ResourceUsagePrediction {
651 pub prediction_horizon: Duration,
652 pub predicted_cpu_usage: f64,
653 pub predicted_memory_usage: f64,
654 pub predicted_network_usage: f64,
655 pub predicted_qubit_usage: f64,
656 pub confidence_interval: (f64, f64),
657}
658
659#[derive(Debug, Clone, Serialize, Deserialize)]
661pub struct AgentHealth {
662 pub is_healthy: bool,
663 pub last_successful_collection: DateTime<Utc>,
664 pub error_rate: f64,
665 pub response_time: Duration,
666}
667
668#[derive(Debug)]
670pub struct ResourcePredictor {
671 prediction_models: HashMap<String, Box<dyn PredictionModel + Send + Sync>>,
672 training_scheduler: Arc<TrainingScheduler>,
673 model_evaluator: Arc<ModelEvaluator>,
674}
675
676#[async_trait]
678pub trait PredictionModel: std::fmt::Debug {
679 async fn predict(
680 &self,
681 features: &HashMap<String, f64>,
682 horizon: Duration,
683 ) -> Result<PredictionResult>;
684
685 async fn train(&mut self, training_data: &[TrainingDataPoint]) -> Result<TrainingResult>;
686
687 fn get_model_accuracy(&self) -> f64;
688}
689
690#[derive(Debug, Clone, Serialize, Deserialize)]
692pub struct PredictionResult {
693 pub predicted_value: f64,
694 pub confidence: f64,
695 pub prediction_interval: (f64, f64),
696 pub model_used: String,
697}
698
699#[derive(Debug, Clone, Serialize, Deserialize)]
701pub struct TrainingResult {
702 pub training_success: bool,
703 pub model_accuracy: f64,
704 pub training_time: Duration,
705 pub validation_metrics: HashMap<String, f64>,
706}
707
708#[derive(Debug)]
710pub struct TrainingScheduler {
711 training_schedule: HashMap<String, TrainingConfig>,
712 auto_retraining: bool,
713 performance_threshold: f64,
714}
715
716#[derive(Debug, Clone, Serialize, Deserialize)]
718pub struct TrainingConfig {
719 pub model_name: String,
720 pub training_frequency: Duration,
721 pub training_data_size: u32,
722 pub validation_split: f64,
723 pub hyperparameters: HashMap<String, f64>,
724}
725
726#[derive(Debug)]
728pub struct ModelEvaluator {
729 evaluation_metrics: Vec<String>,
730 cross_validation_folds: u32,
731 benchmark_datasets: HashMap<String, Vec<TrainingDataPoint>>,
732}
733
734impl Default for DistributedComputationConfig {
736 fn default() -> Self {
737 Self {
738 max_partition_size: 50,
739 min_partition_size: 5,
740 load_balancing_strategy: LoadBalancingStrategy::CapabilityBased,
741 fault_tolerance_level: FaultToleranceLevel::Basic {
742 redundancy_factor: 2,
743 },
744 state_synchronization_interval: Duration::from_millis(100),
745 entanglement_distribution_protocol: EntanglementDistributionProtocol::Direct,
746 consensus_protocol: ConsensusProtocol::Raft {
747 election_timeout: Duration::from_millis(500),
748 heartbeat_interval: Duration::from_millis(100),
749 },
750 optimization_objectives: vec![
751 OptimizationObjective::MinimizeLatency { weight: 0.3 },
752 OptimizationObjective::MaximizeFidelity { weight: 0.4 },
753 OptimizationObjective::MinimizeResourceUsage { weight: 0.3 },
754 ],
755 }
756 }
757}
758
759impl DistributedQuantumOrchestrator {
761 pub fn new(config: DistributedComputationConfig) -> Self {
762 Self {
763 config,
764 nodes: Arc::new(RwLock::new(HashMap::new())),
765 circuit_partitioner: Arc::new(CircuitPartitioner::new()),
766 state_manager: Arc::new(DistributedStateManager::new()),
767 load_balancer: Arc::new(CapabilityBasedBalancer::new()),
768 _private: (),
769 }
770 }
771
772 pub async fn submit_computation(&self, _request: ExecutionRequest) -> Result<Uuid> {
773 Ok(Uuid::new_v4())
775 }
776
777 async fn process_execution_queue(&self) -> Result<()> {
778 Ok(())
780 }
781}
782
783impl DistributedQuantumOrchestrator {
785 async fn execute_distributed_computation(
786 &self,
787 request: ExecutionRequest,
788 ) -> Result<ComputationResult> {
789 let nodes = self.nodes.read().expect("Nodes RwLock poisoned").clone();
791 let partitions =
792 self.circuit_partitioner
793 .partition_circuit(&request.circuit, &nodes, &self.config)?;
794
795 Ok(ComputationResult {
798 result_id: request.request_id,
799 node_id: NodeId("simplified".to_string()),
800 final_state: None,
801 fidelity: 1.0,
802 error_rate: 0.0,
803 metadata: HashMap::new(),
804 computation_id: request.request_id,
805 measurements: HashMap::new(),
806 execution_time: Duration::from_millis(0),
807 })
808 }
809
810 async fn execute_partitions_parallel(
811 &self,
812 partitions: Vec<CircuitPartition>,
813 allocation_plan: AllocationPlan,
814 ) -> Result<Vec<ComputationResult>> {
815 let mut results = Vec::new();
817
818 for partition in partitions {
819 if let Some(allocated_node) = allocation_plan.allocations.keys().next() {
820 let result = self
821 .execute_partition_on_node(&partition, allocated_node)
822 .await?;
823 results.push(result);
824 }
825 }
826
827 Ok(results)
828 }
829
830 async fn execute_partition_on_node(
831 &self,
832 partition: &CircuitPartition,
833 node_id: &NodeId,
834 ) -> Result<ComputationResult> {
835 Ok(ComputationResult {
837 result_id: Uuid::new_v4(),
838 computation_id: partition.partition_id,
839 node_id: node_id.clone(),
840 measurements: HashMap::new(),
841 final_state: None,
842 execution_time: Duration::from_millis(100),
843 fidelity: 0.95,
844 error_rate: 0.01,
845 metadata: HashMap::new(),
846 })
847 }
848
849 fn aggregate_partition_results(
850 &self,
851 results: Vec<ComputationResult>,
852 ) -> Result<ComputationResult> {
853 if let Some(first_result) = results.first() {
855 Ok(first_result.clone())
856 } else {
857 Err(DistributedComputationError::StateSynchronization(
858 "No results to aggregate".to_string(),
859 ))
860 }
861 }
862
863 pub async fn register_node(&self, node_info: NodeInfo) -> Result<()> {
864 let mut nodes = self.nodes.write().expect("Nodes RwLock poisoned");
865 nodes.insert(node_info.node_id.clone(), node_info);
866 Ok(())
867 }
868
869 pub async fn unregister_node(&self, node_id: &NodeId) -> Result<()> {
870 let mut nodes = self.nodes.write().expect("Nodes RwLock poisoned");
871 nodes.remove(node_id);
872 Ok(())
873 }
874
875 pub async fn get_system_status(&self) -> SystemStatus {
876 let nodes = self.nodes.read().expect("Nodes RwLock poisoned");
877
878 SystemStatus {
879 total_nodes: nodes.len() as u32,
880 active_nodes: nodes
881 .values()
882 .filter(|n| matches!(n.status, NodeStatus::Active))
883 .count() as u32,
884 total_qubits: nodes.values().map(|n| n.capabilities.max_qubits).sum(),
885 active_computations: 0, system_health: 0.95, }
888 }
889}
890
891#[derive(Debug, Clone, Serialize, Deserialize)]
893pub struct SystemStatus {
894 pub total_nodes: u32,
895 pub active_nodes: u32,
896 pub total_qubits: u32,
897 pub active_computations: u32,
898 pub system_health: f64,
899}
900
901impl Default for CircuitPartitioner {
903 fn default() -> Self {
904 Self::new()
905 }
906}
907
908impl CircuitPartitioner {
909 pub fn new() -> Self {
910 Self {
911 partitioning_strategies: vec![
912 Box::new(GraphBasedPartitioning::new()),
913 Box::new(LoadBalancedPartitioning::new()),
914 ],
915 optimization_engine: Arc::new(PartitionOptimizer::new()),
916 }
917 }
918
919 pub fn partition_circuit(
920 &self,
921 circuit: &QuantumCircuit,
922 nodes: &HashMap<NodeId, NodeInfo>,
923 config: &DistributedComputationConfig,
924 ) -> Result<Vec<CircuitPartition>> {
925 if let Some(strategy) = self.partitioning_strategies.first() {
927 strategy.partition_circuit(circuit, nodes, config)
928 } else {
929 Err(DistributedComputationError::CircuitPartitioning(
930 "No partitioning strategies available".to_string(),
931 ))
932 }
933 }
934}
935
936impl Default for GraphBasedPartitioning {
937 fn default() -> Self {
938 Self::new()
939 }
940}
941
942impl GraphBasedPartitioning {
943 pub fn new() -> Self {
944 Self {
945 min_cut_algorithm: "Kernighan-Lin".to_string(),
946 load_balancing_weight: 0.3,
947 communication_weight: 0.7,
948 }
949 }
950}
951
952impl PartitioningStrategy for GraphBasedPartitioning {
953 fn partition_circuit(
954 &self,
955 circuit: &QuantumCircuit,
956 nodes: &HashMap<NodeId, NodeInfo>,
957 config: &DistributedComputationConfig,
958 ) -> Result<Vec<CircuitPartition>> {
959 let mut partitions = Vec::new();
961
962 if nodes.is_empty() {
963 return Err(DistributedComputationError::CircuitPartitioning(
964 "No nodes available for partitioning".to_string(),
965 ));
966 }
967
968 let gate_dependencies = self.build_gate_dependency_graph(&circuit.gates);
970
971 let gate_partitions =
973 self.min_cut_partition(&circuit.gates, &gate_dependencies, nodes.len());
974
975 let nodes_vec: Vec<_> = nodes.iter().collect();
976
977 for (partition_idx, gate_indices) in gate_partitions.iter().enumerate() {
978 let node_idx = partition_idx % nodes_vec.len();
979 let (node_id, node_info) = &nodes_vec[node_idx];
980
981 let partition_gates: Vec<_> = gate_indices
982 .iter()
983 .map(|&idx| circuit.gates[idx].clone())
984 .collect();
985
986 let mut qubits_used = std::collections::HashSet::new();
988 for gate in &partition_gates {
989 qubits_used.extend(&gate.target_qubits);
990 qubits_used.extend(&gate.control_qubits);
991 }
992
993 let qubits_needed = qubits_used.len() as u32;
994
995 if qubits_needed > node_info.capabilities.max_qubits {
997 return Err(DistributedComputationError::ResourceAllocation(format!(
998 "Node {} insufficient capacity: needs {} qubits, has {}",
999 node_id.0, qubits_needed, node_info.capabilities.max_qubits
1000 )));
1001 }
1002
1003 let communication_cost = self.calculate_inter_partition_communication(
1005 gate_indices,
1006 &gate_partitions,
1007 &circuit.gates,
1008 );
1009
1010 let estimated_time =
1011 self.estimate_partition_execution_time(&partition_gates, node_info);
1012 let gates_count = partition_gates.len() as u32;
1013 let memory_mb = self.estimate_memory_usage(&partition_gates);
1014 let entanglement_pairs_needed = self.count_entangling_operations(&partition_gates);
1015
1016 let partition = CircuitPartition {
1017 partition_id: Uuid::new_v4(),
1018 node_id: (*node_id).clone(),
1019 gates: partition_gates.clone(),
1020 dependencies: self.calculate_partition_dependencies(
1021 partition_idx,
1022 &gate_partitions,
1023 &gate_dependencies,
1024 ),
1025 input_qubits: qubits_used
1026 .iter()
1027 .map(|qubit_id| QubitId {
1028 node_id: (*node_id).clone(),
1029 local_id: qubit_id.local_id,
1030 global_id: Uuid::new_v4(),
1031 })
1032 .collect(),
1033 output_qubits: qubits_used
1034 .iter()
1035 .map(|qubit_id| QubitId {
1036 node_id: (*node_id).clone(),
1037 local_id: qubit_id.local_id,
1038 global_id: Uuid::new_v4(),
1039 })
1040 .collect(),
1041 classical_inputs: vec![],
1042 estimated_execution_time: estimated_time,
1043 resource_requirements: ResourceRequirements {
1044 qubits_needed,
1045 gates_count,
1046 memory_mb,
1047 execution_time_estimate: estimated_time,
1048 entanglement_pairs_needed,
1049 classical_communication_bits: communication_cost,
1050 },
1051 };
1052 partitions.push(partition);
1053 }
1054
1055 Ok(partitions)
1056 }
1057
1058 fn estimate_execution_time(&self, partition: &CircuitPartition, node: &NodeInfo) -> Duration {
1059 self.estimate_partition_execution_time(&partition.gates, node)
1060 }
1061
1062 fn calculate_communication_overhead(
1063 &self,
1064 partitions: &[CircuitPartition],
1065 nodes: &HashMap<NodeId, NodeInfo>,
1066 ) -> f64 {
1067 let mut total_overhead = 0.0;
1069
1070 for partition in partitions {
1071 total_overhead +=
1073 partition.resource_requirements.entanglement_pairs_needed as f64 * 0.5;
1074
1075 total_overhead +=
1077 partition.resource_requirements.classical_communication_bits as f64 * 0.01;
1078 }
1079
1080 total_overhead
1081 }
1082}
1083
1084impl GraphBasedPartitioning {
1085 fn build_gate_dependency_graph(&self, gates: &[QuantumGate]) -> Vec<Vec<usize>> {
1087 let mut dependencies = vec![Vec::new(); gates.len()];
1088
1089 for (i, gate) in gates.iter().enumerate() {
1090 for (j, other_gate) in gates.iter().enumerate().take(i) {
1091 let gate_qubits: std::collections::HashSet<_> = gate
1093 .target_qubits
1094 .iter()
1095 .chain(gate.control_qubits.iter())
1096 .collect();
1097 let other_qubits: std::collections::HashSet<_> = other_gate
1098 .target_qubits
1099 .iter()
1100 .chain(other_gate.control_qubits.iter())
1101 .collect();
1102
1103 if !gate_qubits.is_disjoint(&other_qubits) {
1104 dependencies[i].push(j);
1105 }
1106 }
1107 }
1108
1109 dependencies
1110 }
1111
1112 fn min_cut_partition(
1113 &self,
1114 gates: &[QuantumGate],
1115 _dependencies: &[Vec<usize>],
1116 num_partitions: usize,
1117 ) -> Vec<Vec<usize>> {
1118 let partition_size = gates.len() / num_partitions;
1120 let mut partitions = Vec::new();
1121
1122 for i in 0..num_partitions {
1123 let start = i * partition_size;
1124 let end = if i == num_partitions - 1 {
1125 gates.len()
1126 } else {
1127 (i + 1) * partition_size
1128 };
1129 let partition: Vec<usize> = (start..end).collect();
1130 partitions.push(partition);
1131 }
1132
1133 partitions
1134 }
1135
1136 fn calculate_inter_partition_communication(
1137 &self,
1138 partition_indices: &[usize],
1139 all_partitions: &[Vec<usize>],
1140 gates: &[QuantumGate],
1141 ) -> u32 {
1142 let mut communication_bits = 0;
1143
1144 for &gate_idx in partition_indices {
1145 let gate = &gates[gate_idx];
1146
1147 for other_partition in all_partitions {
1149 if other_partition != partition_indices {
1150 for &other_gate_idx in other_partition {
1151 if other_gate_idx < gate_idx {
1152 let other_gate = &gates[other_gate_idx];
1153
1154 let gate_qubits: std::collections::HashSet<_> = gate
1156 .target_qubits
1157 .iter()
1158 .chain(gate.control_qubits.iter())
1159 .collect();
1160 let other_qubits: std::collections::HashSet<_> = other_gate
1161 .target_qubits
1162 .iter()
1163 .chain(other_gate.control_qubits.iter())
1164 .collect();
1165
1166 if !gate_qubits.is_disjoint(&other_qubits) {
1167 communication_bits += 1; }
1169 }
1170 }
1171 }
1172 }
1173 }
1174
1175 communication_bits
1176 }
1177
1178 const fn calculate_partition_dependencies(
1179 &self,
1180 _partition_idx: usize,
1181 _all_partitions: &[Vec<usize>],
1182 _gate_dependencies: &[Vec<usize>],
1183 ) -> Vec<Uuid> {
1184 vec![]
1187 }
1188
1189 fn estimate_partition_execution_time(
1190 &self,
1191 gates: &[QuantumGate],
1192 node_info: &NodeInfo,
1193 ) -> Duration {
1194 let base_gate_time = Duration::from_nanos(100_000); let mut total_time = Duration::ZERO;
1196
1197 for gate in gates {
1198 let gate_fidelity = node_info
1199 .capabilities
1200 .gate_fidelities
1201 .get(&gate.gate_type)
1202 .unwrap_or(&0.95);
1203
1204 let adjusted_time =
1206 Duration::from_nanos((base_gate_time.as_nanos() as f64 / gate_fidelity) as u64);
1207 total_time += adjusted_time;
1208 }
1209
1210 if !node_info.capabilities.coherence_times.is_empty() {
1212 let avg_coherence = node_info
1213 .capabilities
1214 .coherence_times
1215 .values()
1216 .map(|t| t.as_nanos())
1217 .sum::<u128>() as f64
1218 / node_info.capabilities.coherence_times.len() as f64;
1219
1220 if total_time.as_nanos() as f64 > avg_coherence * 0.5 {
1221 total_time = Duration::from_nanos((total_time.as_nanos() as f64 * 1.2) as u64);
1223 }
1224 }
1225
1226 total_time
1227 }
1228
1229 fn estimate_memory_usage(&self, gates: &[QuantumGate]) -> u32 {
1230 let max_qubit_id = gates
1231 .iter()
1232 .flat_map(|g| g.target_qubits.iter().chain(g.control_qubits.iter()))
1233 .map(|qubit_id| qubit_id.local_id)
1234 .max()
1235 .unwrap_or(0);
1236
1237 let state_vector_mb = (1u64 << (max_qubit_id + 1)) * 16 / (1024 * 1024);
1239
1240 let overhead_mb = gates.len() as u64 / 100; std::cmp::max(state_vector_mb + overhead_mb, 10) as u32 }
1245
1246 fn count_entangling_operations(&self, gates: &[QuantumGate]) -> u32 {
1247 gates
1248 .iter()
1249 .filter(|g| {
1250 !g.control_qubits.is_empty()
1251 || g.gate_type.contains("CX")
1252 || g.gate_type.contains("CNOT")
1253 || g.gate_type.contains("CZ")
1254 || g.gate_type.contains("Bell")
1255 })
1256 .count() as u32
1257 }
1258}
1259
1260impl Default for LoadBalancedPartitioning {
1261 fn default() -> Self {
1262 Self::new()
1263 }
1264}
1265
1266impl LoadBalancedPartitioning {
1267 pub fn new() -> Self {
1268 Self {
1269 load_threshold: 0.8,
1270 rebalancing_strategy: "min_max".to_string(),
1271 }
1272 }
1273}
1274
1275impl PartitioningStrategy for LoadBalancedPartitioning {
1276 fn partition_circuit(
1277 &self,
1278 circuit: &QuantumCircuit,
1279 nodes: &HashMap<NodeId, NodeInfo>,
1280 config: &DistributedComputationConfig,
1281 ) -> Result<Vec<CircuitPartition>> {
1282 let strategy = GraphBasedPartitioning::new();
1284 strategy.partition_circuit(circuit, nodes, config)
1285 }
1286
1287 fn estimate_execution_time(&self, partition: &CircuitPartition, node: &NodeInfo) -> Duration {
1288 Duration::from_millis(partition.gates.len() as u64 * 10)
1289 }
1290
1291 fn calculate_communication_overhead(
1292 &self,
1293 partitions: &[CircuitPartition],
1294 nodes: &HashMap<NodeId, NodeInfo>,
1295 ) -> f64 {
1296 partitions.len() as f64 * 0.1
1297 }
1298}
1299
1300impl Default for PartitionOptimizer {
1301 fn default() -> Self {
1302 Self::new()
1303 }
1304}
1305
1306impl PartitionOptimizer {
1307 pub fn new() -> Self {
1308 Self {
1309 objectives: vec![
1310 OptimizationObjective::MinimizeLatency { weight: 0.3 },
1311 OptimizationObjective::MaximizeThroughput { weight: 0.3 },
1312 OptimizationObjective::MinimizeResourceUsage { weight: 0.4 },
1313 ],
1314 solver: "genetic_algorithm".to_string(),
1315 timeout: Duration::from_secs(30),
1316 }
1317 }
1318}
1319
1320impl Default for DistributedStateManager {
1321 fn default() -> Self {
1322 Self::new()
1323 }
1324}
1325
1326impl DistributedStateManager {
1327 pub fn new() -> Self {
1328 Self {
1329 local_states: Arc::new(RwLock::new(HashMap::new())),
1330 entanglement_registry: Arc::new(RwLock::new(HashMap::new())),
1331 synchronization_protocol: Arc::new(BasicSynchronizationProtocol::new()),
1332 state_transfer_engine: Arc::new(StateTransferEngine::new()),
1333 consistency_checker: Arc::new(ConsistencyChecker::new()),
1334 }
1335 }
1336}
1337
1338#[derive(Debug)]
1340pub struct BasicSynchronizationProtocol;
1341
1342impl Default for BasicSynchronizationProtocol {
1343 fn default() -> Self {
1344 Self::new()
1345 }
1346}
1347
1348impl BasicSynchronizationProtocol {
1349 pub const fn new() -> Self {
1350 Self
1351 }
1352}
1353
1354#[async_trait]
1355impl StateSynchronizationProtocol for BasicSynchronizationProtocol {
1356 async fn synchronize_states(
1357 &self,
1358 nodes: &[NodeId],
1359 target_consistency: f64,
1360 ) -> Result<SynchronizationResult> {
1361 Ok(SynchronizationResult {
1362 success: true,
1363 consistency_level: target_consistency,
1364 synchronized_nodes: nodes.to_vec(),
1365 failed_nodes: vec![],
1366 synchronization_time: Duration::from_millis(50),
1367 })
1368 }
1369
1370 async fn detect_inconsistencies(
1371 &self,
1372 states: &HashMap<NodeId, LocalQuantumState>,
1373 ) -> Vec<Inconsistency> {
1374 vec![] }
1376
1377 async fn resolve_conflicts(&self, conflicts: &[StateConflict]) -> Result<Resolution> {
1378 Ok(Resolution {
1379 strategy: ResolutionStrategy::LastWriterWins,
1380 resolved_conflicts: conflicts.iter().map(|c| c.conflict_id).collect(),
1381 unresolved_conflicts: vec![],
1382 resolution_time: Duration::from_millis(10),
1383 })
1384 }
1385}
1386
1387impl Default for StateTransferEngine {
1388 fn default() -> Self {
1389 Self::new()
1390 }
1391}
1392
1393impl StateTransferEngine {
1394 pub fn new() -> Self {
1395 Self {
1396 transfer_protocols: HashMap::new(),
1397 compression_engine: Arc::new(QuantumStateCompressor::new()),
1398 encryption_engine: Arc::new(QuantumCryptography::new()),
1399 }
1400 }
1401}
1402
1403impl Default for QuantumStateCompressor {
1404 fn default() -> Self {
1405 Self::new()
1406 }
1407}
1408
1409impl QuantumStateCompressor {
1410 pub fn new() -> Self {
1411 Self {
1412 compression_algorithms: vec![
1413 "quantum_huffman".to_string(),
1414 "schmidt_decomposition".to_string(),
1415 ],
1416 compression_ratio_target: 0.5,
1417 fidelity_preservation_threshold: 0.99,
1418 }
1419 }
1420}
1421
1422impl Default for QuantumCryptography {
1423 fn default() -> Self {
1424 Self::new()
1425 }
1426}
1427
1428impl QuantumCryptography {
1429 pub fn new() -> Self {
1430 Self {
1431 encryption_protocols: vec![
1432 "quantum_key_distribution".to_string(),
1433 "post_quantum_crypto".to_string(),
1434 ],
1435 key_distribution_method: "BB84".to_string(),
1436 security_level: 256,
1437 }
1438 }
1439}
1440
1441impl Default for ConsistencyChecker {
1442 fn default() -> Self {
1443 Self::new()
1444 }
1445}
1446
1447impl ConsistencyChecker {
1448 pub fn new() -> Self {
1449 Self {
1450 consistency_protocols: vec![
1451 "eventual_consistency".to_string(),
1452 "strong_consistency".to_string(),
1453 ],
1454 verification_frequency: Duration::from_secs(1),
1455 automatic_correction: true,
1456 }
1457 }
1458}
1459
1460impl Default for CapabilityBasedBalancer {
1461 fn default() -> Self {
1462 Self::new()
1463 }
1464}
1465
1466impl CapabilityBasedBalancer {
1467 pub fn new() -> Self {
1468 let mut capability_weights = HashMap::new();
1469 capability_weights.insert("qubit_count".to_string(), 0.3);
1470 capability_weights.insert("gate_fidelity".to_string(), 0.4);
1471 capability_weights.insert("connectivity".to_string(), 0.3);
1472
1473 Self {
1474 capability_weights,
1475 performance_history: Arc::new(RwLock::new(HashMap::new())),
1476 }
1477 }
1478}
1479
1480#[async_trait]
1481impl LoadBalancer for CapabilityBasedBalancer {
1482 fn select_nodes(
1483 &self,
1484 partitions: &[CircuitPartition],
1485 available_nodes: &HashMap<NodeId, NodeInfo>,
1486 requirements: &ExecutionRequirements,
1487 ) -> Result<HashMap<Uuid, NodeId>> {
1488 let mut allocation = HashMap::new();
1489
1490 for partition in partitions {
1491 if let Some((node_id, _)) = available_nodes.iter().next() {
1492 allocation.insert(partition.partition_id, node_id.clone());
1493 }
1494 }
1495
1496 Ok(allocation)
1497 }
1498
1499 fn rebalance_load(
1500 &self,
1501 current_allocation: &HashMap<Uuid, NodeId>,
1502 nodes: &HashMap<NodeId, NodeInfo>,
1503 ) -> Option<HashMap<Uuid, NodeId>> {
1504 None }
1506
1507 fn predict_execution_time(&self, partition: &CircuitPartition, node: &NodeInfo) -> Duration {
1508 Duration::from_millis(partition.gates.len() as u64 * 10)
1509 }
1510
1511 async fn select_node(
1512 &self,
1513 available_nodes: &[NodeInfo],
1514 requirements: &ResourceRequirements,
1515 ) -> Result<NodeId> {
1516 available_nodes
1518 .iter()
1519 .find(|node| {
1520 node.capabilities.max_qubits >= requirements.qubits_needed
1521 && node
1522 .capabilities
1523 .gate_fidelities
1524 .values()
1525 .all(|&fidelity| fidelity >= 0.999) })
1527 .map(|node| node.node_id.clone())
1528 .ok_or_else(|| {
1529 DistributedComputationError::NodeSelectionFailed(
1530 "No suitable node found".to_string(),
1531 )
1532 })
1533 }
1534
1535 async fn update_node_metrics(
1536 &self,
1537 node_id: &NodeId,
1538 metrics: &PerformanceMetrics,
1539 ) -> Result<()> {
1540 Ok(())
1543 }
1544
1545 fn get_balancer_metrics(&self) -> LoadBalancerMetrics {
1546 LoadBalancerMetrics {
1547 total_decisions: 0,
1548 average_decision_time: Duration::from_millis(1),
1549 prediction_accuracy: 1.0,
1550 load_distribution_variance: 0.0,
1551 total_requests: 0,
1552 successful_allocations: 0,
1553 failed_allocations: 0,
1554 average_response_time: Duration::from_millis(0),
1555 node_utilization: HashMap::new(),
1556 }
1557 }
1558}
1559
1560impl Default for FaultToleranceManager {
1561 fn default() -> Self {
1562 Self::new()
1563 }
1564}
1565
1566impl FaultToleranceManager {
1567 pub fn new() -> Self {
1568 Self {
1569 fault_detectors: vec![],
1570 recovery_strategies: HashMap::new(),
1571 checkpointing_system: Arc::new(CheckpointingSystem::new()),
1572 redundancy_manager: Arc::new(RedundancyManager::new()),
1573 }
1574 }
1575}
1576
1577impl Default for CheckpointingSystem {
1578 fn default() -> Self {
1579 Self::new()
1580 }
1581}
1582
1583impl CheckpointingSystem {
1584 pub fn new() -> Self {
1585 Self {
1586 checkpoint_storage: Arc::new(InMemoryCheckpointStorage::new()),
1587 checkpoint_frequency: Duration::from_secs(60),
1588 compression_enabled: true,
1589 incremental_checkpoints: true,
1590 }
1591 }
1592}
1593
1594#[derive(Debug)]
1596pub struct InMemoryCheckpointStorage {
1597 checkpoints: Arc<RwLock<HashMap<Uuid, CheckpointData>>>,
1598}
1599
1600impl Default for InMemoryCheckpointStorage {
1601 fn default() -> Self {
1602 Self::new()
1603 }
1604}
1605
1606impl InMemoryCheckpointStorage {
1607 pub fn new() -> Self {
1608 Self {
1609 checkpoints: Arc::new(RwLock::new(HashMap::new())),
1610 }
1611 }
1612}
1613
1614#[async_trait]
1615impl CheckpointStorage for InMemoryCheckpointStorage {
1616 async fn store_checkpoint(&self, checkpoint_id: Uuid, data: &CheckpointData) -> Result<()> {
1617 let mut checkpoints = self
1618 .checkpoints
1619 .write()
1620 .expect("Checkpoints RwLock poisoned");
1621 checkpoints.insert(checkpoint_id, data.clone());
1622 Ok(())
1623 }
1624
1625 async fn load_checkpoint(&self, checkpoint_id: Uuid) -> Result<CheckpointData> {
1626 let checkpoints = self
1627 .checkpoints
1628 .read()
1629 .expect("Checkpoints RwLock poisoned");
1630 checkpoints.get(&checkpoint_id).cloned().ok_or_else(|| {
1631 DistributedComputationError::ResourceAllocation("Checkpoint not found".to_string())
1632 })
1633 }
1634
1635 async fn list_checkpoints(&self) -> Result<Vec<Uuid>> {
1636 let checkpoints = self
1637 .checkpoints
1638 .read()
1639 .expect("Checkpoints RwLock poisoned");
1640 Ok(checkpoints.keys().copied().collect())
1641 }
1642
1643 async fn delete_checkpoint(&self, checkpoint_id: Uuid) -> Result<()> {
1644 let mut checkpoints = self
1645 .checkpoints
1646 .write()
1647 .expect("Checkpoints RwLock poisoned");
1648 checkpoints.remove(&checkpoint_id);
1649 Ok(())
1650 }
1651}
1652
1653impl Default for RedundancyManager {
1654 fn default() -> Self {
1655 Self::new()
1656 }
1657}
1658
1659impl RedundancyManager {
1660 pub fn new() -> Self {
1661 Self {
1662 redundancy_strategies: HashMap::new(),
1663 replication_factor: 3,
1664 consistency_protocol: "eventual_consistency".to_string(),
1665 }
1666 }
1667}
1668
1669impl Default for RaftConsensus {
1670 fn default() -> Self {
1671 Self::new()
1672 }
1673}
1674
1675impl RaftConsensus {
1676 pub fn new() -> Self {
1677 Self {
1678 election_timeout: Duration::from_millis(500),
1679 heartbeat_interval: Duration::from_millis(100),
1680 log_replication: Arc::new(LogReplication::new()),
1681 leader_state: Arc::new(RwLock::new(LeaderState {
1682 current_leader: None,
1683 term: 0,
1684 last_heartbeat: Utc::now(),
1685 })),
1686 }
1687 }
1688}
1689
1690#[async_trait]
1691impl ConsensusEngine for RaftConsensus {
1692 async fn reach_consensus<T: Serialize + for<'de> Deserialize<'de> + Clone + Send>(
1693 &self,
1694 proposal: T,
1695 participants: &[NodeId],
1696 timeout: Duration,
1697 ) -> Result<ConsensusResult<T>> {
1698 Ok(ConsensusResult {
1699 decision: proposal,
1700 consensus_achieved: true,
1701 participating_nodes: participants.to_vec(),
1702 consensus_time: Duration::from_millis(50),
1703 confidence: 0.95,
1704 })
1705 }
1706
1707 async fn elect_leader(&self, candidates: &[NodeId], timeout: Duration) -> Result<NodeId> {
1708 candidates.first().cloned().ok_or_else(|| {
1709 DistributedComputationError::ConsensusFailure(
1710 "No candidates for leader election".to_string(),
1711 )
1712 })
1713 }
1714
1715 fn get_consensus_confidence(&self) -> f64 {
1716 0.95
1717 }
1718}
1719
1720impl Default for LogReplication {
1721 fn default() -> Self {
1722 Self::new()
1723 }
1724}
1725
1726impl LogReplication {
1727 pub fn new() -> Self {
1728 Self {
1729 log_entries: Arc::new(RwLock::new(vec![])),
1730 commit_index: Arc::new(RwLock::new(0)),
1731 last_applied: Arc::new(RwLock::new(0)),
1732 }
1733 }
1734}
1735
1736impl Default for MetricsCollector {
1737 fn default() -> Self {
1738 Self::new()
1739 }
1740}
1741
1742impl MetricsCollector {
1743 pub fn new() -> Self {
1744 Self {
1745 metrics_storage: Arc::new(InMemoryMetricsStorage::new()),
1746 collection_interval: Duration::from_secs(1),
1747 metrics_aggregator: Arc::new(MetricsAggregator::new()),
1748 alerting_system: Arc::new(AlertingSystem::new()),
1749 }
1750 }
1751}
1752
1753#[derive(Debug)]
1755pub struct InMemoryMetricsStorage {
1756 metrics: Arc<RwLock<Vec<Metric>>>,
1757}
1758
1759impl Default for InMemoryMetricsStorage {
1760 fn default() -> Self {
1761 Self::new()
1762 }
1763}
1764
1765impl InMemoryMetricsStorage {
1766 pub fn new() -> Self {
1767 Self {
1768 metrics: Arc::new(RwLock::new(vec![])),
1769 }
1770 }
1771}
1772
1773#[async_trait]
1774impl MetricsStorage for InMemoryMetricsStorage {
1775 async fn store_metric(&self, metric: &Metric) -> Result<()> {
1776 let mut metrics = self.metrics.write().expect("Metrics RwLock poisoned");
1777 metrics.push(metric.clone());
1778 Ok(())
1779 }
1780
1781 async fn query_metrics(&self, query: &MetricsQuery) -> Result<Vec<Metric>> {
1782 let metrics = self.metrics.read().expect("Metrics RwLock poisoned");
1783 let filtered: Vec<Metric> = metrics
1784 .iter()
1785 .filter(|m| {
1786 query.metric_names.contains(&m.metric_name)
1787 && m.timestamp >= query.time_range.0
1788 && m.timestamp <= query.time_range.1
1789 })
1790 .cloned()
1791 .collect();
1792 Ok(filtered)
1793 }
1794
1795 async fn aggregate_metrics(&self, aggregation: &AggregationQuery) -> Result<AggregatedMetrics> {
1796 let metrics = self.metrics.read().expect("Metrics RwLock poisoned");
1797 let filtered: Vec<&Metric> = metrics
1798 .iter()
1799 .filter(|m| {
1800 m.metric_name == aggregation.metric_name
1801 && m.timestamp >= aggregation.time_range.0
1802 && m.timestamp <= aggregation.time_range.1
1803 })
1804 .collect();
1805
1806 let value = match aggregation.aggregation_function {
1807 AggregationFunction::Average => {
1808 let sum: f64 = filtered.iter().map(|m| m.value).sum();
1809 if filtered.is_empty() {
1810 0.0
1811 } else {
1812 sum / filtered.len() as f64
1813 }
1814 }
1815 AggregationFunction::Sum => filtered.iter().map(|m| m.value).sum(),
1816 AggregationFunction::Max => filtered
1817 .iter()
1818 .map(|m| m.value)
1819 .fold(f64::NEG_INFINITY, f64::max),
1820 AggregationFunction::Min => filtered
1821 .iter()
1822 .map(|m| m.value)
1823 .fold(f64::INFINITY, f64::min),
1824 AggregationFunction::Count => filtered.len() as f64,
1825 _ => 0.0, };
1827
1828 Ok(AggregatedMetrics {
1829 metric_name: aggregation.metric_name.clone(),
1830 aggregation_function: aggregation.aggregation_function.clone(),
1831 value,
1832 time_range: aggregation.time_range,
1833 group_by_values: HashMap::new(),
1834 })
1835 }
1836}
1837
1838impl Default for MetricsAggregator {
1839 fn default() -> Self {
1840 Self::new()
1841 }
1842}
1843
1844impl MetricsAggregator {
1845 pub const fn new() -> Self {
1846 Self {
1847 aggregation_strategies: vec![],
1848 real_time_aggregation: true,
1849 batch_size: 1000,
1850 }
1851 }
1852}
1853
1854impl Default for AlertingSystem {
1855 fn default() -> Self {
1856 Self::new()
1857 }
1858}
1859
1860impl AlertingSystem {
1861 pub fn new() -> Self {
1862 Self {
1863 alert_rules: vec![],
1864 notification_channels: HashMap::new(),
1865 alert_history: Arc::new(RwLock::new(VecDeque::new())),
1866 }
1867 }
1868}
1869
1870impl Default for ResourceAllocator {
1871 fn default() -> Self {
1872 Self::new()
1873 }
1874}
1875
1876impl ResourceAllocator {
1877 pub fn new() -> Self {
1878 Self {
1879 allocation_strategies: HashMap::new(),
1880 resource_monitor: Arc::new(ResourceMonitor::new()),
1881 allocation_history: Arc::new(RwLock::new(VecDeque::new())),
1882 }
1883 }
1884
1885 fn allocate_resources_for_partitions(
1886 &self,
1887 partitions: &[CircuitPartition],
1888 nodes: &HashMap<NodeId, NodeInfo>,
1889 ) -> Result<AllocationPlan> {
1890 let mut allocations = HashMap::new();
1891
1892 for (node_id, node_info) in nodes {
1893 allocations.insert(
1894 node_id.clone(),
1895 ResourceAllocation {
1896 allocated_qubits: vec![],
1897 memory_allocated_mb: 100,
1898 cpu_allocated_percentage: 50.0,
1899 network_bandwidth_allocated_mbps: 100.0,
1900 },
1901 );
1902 }
1903
1904 Ok(AllocationPlan {
1905 plan_id: Uuid::new_v4(),
1906 allocations,
1907 estimated_cost: 100.0,
1908 estimated_execution_time: Duration::from_secs(10),
1909 allocation_timestamp: Utc::now(),
1910 })
1911 }
1912}
1913
1914impl Default for ResourceMonitor {
1915 fn default() -> Self {
1916 Self::new()
1917 }
1918}
1919
1920impl ResourceMonitor {
1921 pub fn new() -> Self {
1922 Self {
1923 monitoring_agents: HashMap::new(),
1924 monitoring_interval: Duration::from_secs(1),
1925 resource_predictions: Arc::new(ResourcePredictor::new()),
1926 }
1927 }
1928}
1929
1930impl Default for ResourcePredictor {
1931 fn default() -> Self {
1932 Self::new()
1933 }
1934}
1935
1936impl ResourcePredictor {
1937 pub fn new() -> Self {
1938 Self {
1939 prediction_models: HashMap::new(),
1940 training_scheduler: Arc::new(TrainingScheduler::new()),
1941 model_evaluator: Arc::new(ModelEvaluator::new()),
1942 }
1943 }
1944}
1945
1946impl Default for TrainingScheduler {
1947 fn default() -> Self {
1948 Self::new()
1949 }
1950}
1951
1952impl TrainingScheduler {
1953 pub fn new() -> Self {
1954 Self {
1955 training_schedule: HashMap::new(),
1956 auto_retraining: true,
1957 performance_threshold: 0.9,
1958 }
1959 }
1960}
1961
1962impl Default for ModelEvaluator {
1963 fn default() -> Self {
1964 Self::new()
1965 }
1966}
1967
1968impl ModelEvaluator {
1969 pub fn new() -> Self {
1970 Self {
1971 evaluation_metrics: vec![
1972 "accuracy".to_string(),
1973 "precision".to_string(),
1974 "recall".to_string(),
1975 ],
1976 cross_validation_folds: 5,
1977 benchmark_datasets: HashMap::new(),
1978 }
1979 }
1980}