1use quantrs2_circuit::prelude::*;
6use quantrs2_core::{
7 error::{QuantRS2Error, QuantRS2Result},
8 gate::GateOp,
9 qubit::QubitId,
10};
11use scirs2_core::ndarray::{Array1, Array2, Array3, ArrayView1, ArrayView2};
12use scirs2_core::Complex64;
13use serde::{Deserialize, Serialize};
14use std::collections::{HashMap, VecDeque};
15use std::sync::{Arc, Mutex, RwLock};
16use std::time::{Duration, Instant, SystemTime};
17use tokio::sync::mpsc;
18
19use super::types::*;
21
22#[cfg(feature = "scirs2")]
23use scirs2_linalg::{det, eig, inv, matrix_norm, qr, svd};
24#[cfg(feature = "scirs2")]
25use scirs2_optimize::{differential_evolution, minimize, OptimizeResult};
26#[cfg(feature = "scirs2")]
27use scirs2_stats::{corrcoef, mean, pearsonr, spearmanr, std};
28#[cfg(not(feature = "scirs2"))]
29mod fallback_scirs2 {
30 use scirs2_core::ndarray::{Array1, Array2};
31 pub fn mean(_data: &Array1<f64>) -> Result<f64, String> {
32 Ok(0.0)
33 }
34 pub fn std(_data: &Array1<f64>, _ddof: i32) -> Result<f64, String> {
35 Ok(1.0)
36 }
37 pub struct OptimizeResult {
38 pub x: Array1<f64>,
39 pub fun: f64,
40 pub success: bool,
41 }
42 pub fn minimize(
43 _func: fn(&Array1<f64>) -> f64,
44 _x0: &Array1<f64>,
45 ) -> Result<OptimizeResult, String> {
46 Ok(OptimizeResult {
47 x: Array1::zeros(2),
48 fun: 0.0,
49 success: true,
50 })
51 }
52}
53use crate::{
54 backend_traits::{query_backend_capabilities, BackendCapabilities},
55 calibration::{CalibrationManager, DeviceCalibration},
56 circuit_integration::{ExecutionResult, UniversalCircuitInterface},
57 topology::HardwareTopology,
58 vqa_support::{VQAConfig, VQAExecutor, VQAResult},
59 DeviceError, DeviceResult,
60};
61#[cfg(not(feature = "scirs2"))]
62use fallback_scirs2::*;
63pub trait QMLOptimizer: Send + Sync {
65 fn compute_gradients(&self, model: &QMLModel, data: &QMLDataBatch)
67 -> DeviceResult<Array1<f64>>;
68 fn update_parameters(
70 &mut self,
71 model: &mut QMLModel,
72 gradients: &Array1<f64>,
73 ) -> DeviceResult<()>;
74 fn get_state(&self) -> OptimizerState;
76 fn set_state(&mut self, state: OptimizerState) -> DeviceResult<()>;
78}
79pub trait AnomalyDetector: Send + Sync {
81 fn detect(&self, data: &[(Instant, f64)]) -> Vec<DetectedAnomaly>;
83 fn update(&mut self, data: &[(Instant, f64)]);
85 fn threshold(&self) -> f64;
87 fn set_threshold(&mut self, threshold: f64);
89}
90pub trait NotificationChannel: Send + Sync {
92 fn send_notification(&self, alert: &ActiveAlert) -> DeviceResult<()>;
94 fn channel_type(&self) -> QMLAlertChannel;
96}
97pub trait QMLDataSource: Send + Sync {
99 fn load_data(&self, config: &HashMap<String, String>) -> DeviceResult<QMLDataset>;
101 fn info(&self) -> DataSourceInfo;
103}
104pub trait QMLDataProcessor: Send + Sync {
106 fn process(&self, data: &QMLDataset) -> DeviceResult<QMLDataset>;
108 fn info(&self) -> DataProcessorInfo;
110}
111pub trait FrameworkBridgeImpl: Send + Sync {
113 fn from_framework(&self, data: &[u8]) -> DeviceResult<QMLModel>;
115 fn to_framework(&self, model: &QMLModel) -> DeviceResult<Vec<u8>>;
117 fn execute(&self, model: &QMLModel, data: &QMLDataBatch) -> DeviceResult<Array1<f64>>;
119 fn info(&self) -> FrameworkInfo;
121}
122pub fn create_qml_integration_hub() -> DeviceResult<QuantumMLIntegrationHub> {
124 QuantumMLIntegrationHub::new(QMLIntegrationConfig::default())
125}
126pub fn create_high_performance_qml_config() -> QMLIntegrationConfig {
128 QMLIntegrationConfig {
129 enable_qnn: true,
130 enable_hybrid_training: true,
131 enable_autodiff: true,
132 enabled_frameworks: vec![
133 MLFramework::TensorFlow,
134 MLFramework::PyTorch,
135 MLFramework::PennyLane,
136 MLFramework::JAX,
137 ],
138 training_config: QMLTrainingConfig {
139 max_epochs: 500,
140 learning_rate: 0.001,
141 batch_size: 64,
142 early_stopping: EarlyStoppingConfig {
143 enabled: true,
144 patience: 20,
145 min_delta: 1e-6,
146 monitor_metric: "val_loss".to_string(),
147 mode: ImprovementMode::Minimize,
148 },
149 gradient_method: GradientMethod::Adjoint,
150 loss_function: LossFunction::MeanSquaredError,
151 regularization: RegularizationConfig {
152 l1_lambda: 0.001,
153 l2_lambda: 0.01,
154 dropout_rate: 0.2,
155 quantum_noise: 0.01,
156 parameter_constraints: ParameterConstraints {
157 min_value: Some(-std::f64::consts::PI),
158 max_value: Some(std::f64::consts::PI),
159 enforce_unitarity: true,
160 enforce_hermiticity: false,
161 custom_constraints: Vec::new(),
162 },
163 },
164 validation_config: ValidationConfig {
165 validation_split: 0.15,
166 cv_folds: Some(5),
167 validation_frequency: 1,
168 enable_test_evaluation: true,
169 },
170 },
171 optimization_config: QMLOptimizationConfig {
172 optimizer_type: OptimizerType::Adam,
173 optimizer_params: [
174 ("beta1".to_string(), 0.9),
175 ("beta2".to_string(), 0.999),
176 ("epsilon".to_string(), 1e-8),
177 ]
178 .iter()
179 .cloned()
180 .collect(),
181 enable_parameter_sharing: true,
182 circuit_optimization: CircuitOptimizationConfig {
183 enable_gate_fusion: true,
184 enable_compression: true,
185 max_depth: Some(100),
186 allowed_gates: None,
187 topology_aware: true,
188 },
189 hardware_aware: true,
190 multi_objective: MultiObjectiveConfig {
191 enabled: true,
192 objective_weights: [
193 ("accuracy".to_string(), 0.4),
194 ("speed".to_string(), 0.3),
195 ("resource_efficiency".to_string(), 0.2),
196 ("cost".to_string(), 0.1),
197 ]
198 .iter()
199 .cloned()
200 .collect(),
201 pareto_exploration: true,
202 constraint_handling: ConstraintHandling::Adaptive,
203 },
204 },
205 resource_config: QMLResourceConfig {
206 max_circuits_per_step: 5000,
207 memory_limit_mb: 32768,
208 parallel_config: ParallelExecutionConfig {
209 enable_parallel_circuits: true,
210 max_workers: 16,
211 batch_processing: BatchProcessingConfig {
212 dynamic_batch_size: true,
213 min_batch_size: 16,
214 max_batch_size: 512,
215 adaptation_strategy: BatchAdaptationStrategy::Performance,
216 },
217 load_balancing: crate::quantum_ml_integration::LoadBalancingStrategy::Performance,
218 },
219 caching_strategy: CachingStrategy::Adaptive,
220 resource_priorities: ResourcePriorities {
221 weights: [
222 ("quantum".to_string(), 0.5),
223 ("classical".to_string(), 0.25),
224 ("memory".to_string(), 0.15),
225 ("network".to_string(), 0.1),
226 ]
227 .iter()
228 .cloned()
229 .collect(),
230 dynamic_adjustment: true,
231 performance_reallocation: true,
232 },
233 },
234 monitoring_config: QMLMonitoringConfig {
235 enable_monitoring: true,
236 collection_frequency: Duration::from_secs(10),
237 performance_tracking: PerformanceTrackingConfig {
238 track_training_metrics: true,
239 track_inference_metrics: true,
240 track_circuit_metrics: true,
241 aggregation_window: Duration::from_secs(60),
242 enable_trend_analysis: true,
243 },
244 resource_monitoring: ResourceMonitoringConfig {
245 monitor_quantum_resources: true,
246 monitor_classical_resources: true,
247 monitor_memory: true,
248 monitor_network: true,
249 usage_thresholds: [
250 ("cpu".to_string(), 0.9),
251 ("memory".to_string(), 0.9),
252 ("quantum".to_string(), 0.95),
253 ]
254 .iter()
255 .cloned()
256 .collect(),
257 },
258 alert_config: AlertConfig {
259 enabled: true,
260 thresholds: [
261 ("error_rate".to_string(), 0.05),
262 ("resource_usage".to_string(), 0.95),
263 ("cost_spike".to_string(), 3.0),
264 ]
265 .iter()
266 .cloned()
267 .collect(),
268 channels: vec![QMLAlertChannel::Log, QMLAlertChannel::Email],
269 escalation: AlertEscalation {
270 enabled: true,
271 levels: vec![
272 EscalationLevel {
273 name: "Warning".to_string(),
274 threshold_multiplier: 1.0,
275 channels: vec![QMLAlertChannel::Log],
276 actions: vec![EscalationAction::Notify],
277 },
278 EscalationLevel {
279 name: "Critical".to_string(),
280 threshold_multiplier: 2.0,
281 channels: vec![QMLAlertChannel::Log, QMLAlertChannel::Email],
282 actions: vec![EscalationAction::Notify, EscalationAction::Throttle],
283 },
284 EscalationLevel {
285 name: "Emergency".to_string(),
286 threshold_multiplier: 5.0,
287 channels: vec![
288 QMLAlertChannel::Log,
289 QMLAlertChannel::Email,
290 QMLAlertChannel::SMS,
291 ],
292 actions: vec![EscalationAction::Notify, EscalationAction::Pause],
293 },
294 ],
295 timeouts: [
296 ("warning".to_string(), Duration::from_secs(180)),
297 ("critical".to_string(), Duration::from_secs(60)),
298 ("emergency".to_string(), Duration::from_secs(30)),
299 ]
300 .iter()
301 .cloned()
302 .collect(),
303 },
304 },
305 },
306 }
307}
308#[cfg(test)]
309mod tests {
310 use super::*;
311 #[test]
312 fn test_qml_config_default() {
313 let config = QMLIntegrationConfig::default();
314 assert!(config.enable_qnn);
315 assert!(config.enable_hybrid_training);
316 assert!(config.enable_autodiff);
317 assert!(!config.enabled_frameworks.is_empty());
318 }
319 #[test]
320 fn test_qml_hub_creation() {
321 let config = QMLIntegrationConfig::default();
322 let hub = QuantumMLIntegrationHub::new(config);
323 assert!(hub.is_ok());
324 }
325 #[test]
326 fn test_high_performance_config() {
327 let config = create_high_performance_qml_config();
328 assert_eq!(config.training_config.max_epochs, 500);
329 assert_eq!(config.resource_config.max_circuits_per_step, 5000);
330 assert!(config.optimization_config.multi_objective.enabled);
331 }
332 #[test]
333 fn test_training_priority_ordering() {
334 assert!(TrainingPriority::Low < TrainingPriority::Normal);
335 assert!(TrainingPriority::Normal < TrainingPriority::High);
336 assert!(TrainingPriority::High < TrainingPriority::Critical);
337 }
338 #[test]
339 fn test_qml_model_type_serialization() {
340 let model_type = QMLModelType::QuantumNeuralNetwork;
341 let serialized =
342 serde_json::to_string(&model_type).expect("QMLModelType serialization should succeed");
343 let deserialized: QMLModelType =
344 serde_json::from_str(&serialized).expect("QMLModelType deserialization should succeed");
345 assert_eq!(model_type, deserialized);
346 }
347 #[tokio::test]
348 async fn test_qml_hub_model_registration() {
349 let hub = create_qml_integration_hub()
350 .expect("QML integration hub creation should succeed with default config");
351 let model = QMLModel {
352 model_id: "test_model".to_string(),
353 model_type: QMLModelType::QuantumClassifier,
354 architecture: QMLArchitecture {
355 num_qubits: 4,
356 layers: Vec::new(),
357 measurement_strategy: MeasurementStrategy::Computational,
358 entanglement_pattern: EntanglementPattern::Linear,
359 classical_components: Vec::new(),
360 },
361 parameters: QMLParameters {
362 quantum_params: Array1::zeros(10),
363 classical_params: Array1::zeros(5),
364 parameter_bounds: Vec::new(),
365 trainable_mask: Array1::from_elem(15, true),
366 gradients: None,
367 parameter_history: VecDeque::new(),
368 },
369 training_state: QMLTrainingState {
370 current_epoch: 0,
371 training_loss: 1.0,
372 validation_loss: None,
373 learning_rate: 0.01,
374 optimizer_state: OptimizerState {
375 optimizer_type: OptimizerType::Adam,
376 momentum: None,
377 velocity: None,
378 second_moment: None,
379 accumulated_gradients: None,
380 step_count: 0,
381 },
382 training_history: TrainingHistory {
383 loss_history: Vec::new(),
384 val_loss_history: Vec::new(),
385 metric_history: HashMap::new(),
386 lr_history: Vec::new(),
387 gradient_norm_history: Vec::new(),
388 parameter_norm_history: Vec::new(),
389 },
390 early_stopping_state: EarlyStoppingState {
391 best_metric: f64::INFINITY,
392 patience_counter: 0,
393 best_parameters: None,
394 should_stop: false,
395 },
396 },
397 performance_metrics: QMLPerformanceMetrics {
398 training_metrics: HashMap::new(),
399 validation_metrics: HashMap::new(),
400 test_metrics: HashMap::new(),
401 circuit_metrics: CircuitExecutionMetrics {
402 avg_circuit_depth: 10.0,
403 total_gate_count: 100,
404 avg_execution_time: Duration::from_millis(100),
405 circuit_fidelity: 0.95,
406 shot_efficiency: 0.9,
407 },
408 resource_metrics: ResourceUtilizationMetrics {
409 quantum_usage: 0.8,
410 classical_usage: 0.6,
411 memory_usage: 0.4,
412 network_usage: 0.2,
413 cost_efficiency: 0.7,
414 },
415 convergence_metrics: ConvergenceMetrics {
416 convergence_rate: 0.1,
417 stability: 0.9,
418 plateau_detected: false,
419 oscillation: 0.1,
420 final_gradient_norm: 0.01,
421 },
422 },
423 metadata: QMLModelMetadata {
424 created_at: SystemTime::now(),
425 updated_at: SystemTime::now(),
426 version: "1.0.0".to_string(),
427 author: "test".to_string(),
428 description: "Test QML model".to_string(),
429 tags: vec!["test".to_string()],
430 framework: MLFramework::Custom("test".to_string()),
431 hardware_requirements: crate::quantum_ml_integration::types::HardwareRequirements {
432 min_qubits: 4,
433 required_gates: vec!["H".to_string(), "CNOT".to_string()],
434 connectivity_requirements: ConnectivityRequirements {
435 connectivity_graph: vec![(0, 1), (1, 2), (2, 3)],
436 min_connectivity: 2,
437 topology_constraints: vec![TopologyConstraint::Linear],
438 },
439 performance_requirements: PerformanceRequirements {
440 min_gate_fidelity: 0.95,
441 max_execution_time: Duration::from_secs(60),
442 min_coherence_time: Duration::from_micros(100),
443 max_error_rate: 0.01,
444 },
445 },
446 },
447 };
448 let result = hub.register_model(model);
449 assert!(result.is_ok());
450 }
451}