quantrs2_device/quantum_ml/
variational_algorithms.rs

1//! Variational Quantum Algorithms for Machine Learning
2//!
3//! This module implements various variational quantum algorithms including VQE, QAOA,
4//! and VQC with hardware-optimized circuits and gradient computation.
5
6use super::*;
7use crate::{DeviceError, DeviceResult, QuantumDevice};
8use serde::{Deserialize, Serialize};
9use std::collections::HashMap;
10use std::sync::Arc;
11use tokio::sync::RwLock;
12
13/// Variational Quantum Eigensolver (VQE) implementation
14pub struct VQE {
15    device: Arc<RwLock<dyn QuantumDevice + Send + Sync>>,
16    hamiltonian: Hamiltonian,
17    ansatz: Box<dyn VariationalAnsatz + Send + Sync>,
18    optimizer: Box<dyn VariationalOptimizer + Send + Sync>,
19    config: VQEConfig,
20}
21
22/// VQE configuration
23#[derive(Debug, Clone, Serialize, Deserialize)]
24pub struct VQEConfig {
25    pub max_iterations: usize,
26    pub energy_tolerance: f64,
27    pub gradient_tolerance: f64,
28    pub shots_per_measurement: usize,
29    pub use_error_mitigation: bool,
30    pub measurement_grouping: bool,
31    pub adaptive_shots: bool,
32}
33
34impl Default for VQEConfig {
35    fn default() -> Self {
36        Self {
37            max_iterations: 1000,
38            energy_tolerance: 1e-6,
39            gradient_tolerance: 1e-8,
40            shots_per_measurement: 1024,
41            use_error_mitigation: true,
42            measurement_grouping: true,
43            adaptive_shots: false,
44        }
45    }
46}
47
48/// Hamiltonian representation for VQE
49#[derive(Debug, Clone, Serialize, Deserialize)]
50pub struct Hamiltonian {
51    pub terms: Vec<PauliTerm>,
52    pub num_qubits: usize,
53}
54
55/// Pauli term in Hamiltonian
56#[derive(Debug, Clone, Serialize, Deserialize)]
57pub struct PauliTerm {
58    pub coefficient: f64,
59    pub paulis: Vec<(usize, PauliOperator)>, // (qubit_index, pauli_op)
60}
61
62/// Pauli operators
63#[derive(Debug, Clone, PartialEq, Eq, Serialize, Deserialize)]
64pub enum PauliOperator {
65    I, // Identity
66    X, // Pauli-X
67    Y, // Pauli-Y
68    Z, // Pauli-Z
69}
70
71impl VQE {
72    /// Create a new VQE instance
73    pub fn new(
74        device: Arc<RwLock<dyn QuantumDevice + Send + Sync>>,
75        hamiltonian: Hamiltonian,
76        ansatz: Box<dyn VariationalAnsatz + Send + Sync>,
77        optimizer: Box<dyn VariationalOptimizer + Send + Sync>,
78        config: VQEConfig,
79    ) -> Self {
80        Self {
81            device,
82            hamiltonian,
83            ansatz,
84            optimizer,
85            config,
86        }
87    }
88
89    /// Run VQE optimization
90    pub async fn optimize(&mut self) -> DeviceResult<VQEResult> {
91        let mut parameters = self.ansatz.initialize_parameters();
92        let mut energy_history = Vec::new();
93        let mut best_energy = f64::INFINITY;
94        let mut best_parameters = parameters.clone();
95
96        for iteration in 0..self.config.max_iterations {
97            // Compute energy expectation value
98            let energy = self.compute_energy_expectation(&parameters).await?;
99            energy_history.push(energy);
100
101            if energy < best_energy {
102                best_energy = energy;
103                best_parameters.clone_from(&parameters);
104            }
105
106            // Check convergence
107            if iteration > 0 {
108                let energy_change =
109                    (energy_history[iteration] - energy_history[iteration - 1]).abs();
110                if energy_change < self.config.energy_tolerance {
111                    break;
112                }
113            }
114
115            // Compute gradients
116            let gradients = self.compute_gradients(&parameters).await?;
117            let gradient_norm = gradients.iter().map(|g| g * g).sum::<f64>().sqrt();
118
119            if gradient_norm < self.config.gradient_tolerance {
120                break;
121            }
122
123            // Update parameters
124            parameters = self.optimizer.update_parameters(parameters, gradients)?;
125        }
126
127        Ok(VQEResult {
128            optimal_energy: best_energy,
129            optimal_parameters: best_parameters,
130            energy_history,
131            converged: true,
132        })
133    }
134
135    /// Compute energy expectation value
136    async fn compute_energy_expectation(&self, parameters: &[f64]) -> DeviceResult<f64> {
137        let mut total_energy = 0.0;
138
139        // Group measurements to reduce circuit executions
140        let measurement_groups = if self.config.measurement_grouping {
141            self.group_pauli_measurements()
142        } else {
143            self.hamiltonian
144                .terms
145                .iter()
146                .map(|term| vec![term.clone()])
147                .collect()
148        };
149
150        for group in measurement_groups {
151            let group_expectation = self.compute_group_expectation(&group, parameters).await?;
152            total_energy += group_expectation;
153        }
154
155        Ok(total_energy)
156    }
157
158    /// Group Pauli measurements that can be measured simultaneously
159    fn group_pauli_measurements(&self) -> Vec<Vec<PauliTerm>> {
160        // Simplified grouping - in practice, this would implement sophisticated grouping
161        // based on commutativity of Pauli operators
162        let mut groups = Vec::new();
163        let mut current_group = Vec::new();
164
165        for term in &self.hamiltonian.terms {
166            if current_group.len() < 10 {
167                // Simple grouping by size
168                current_group.push(term.clone());
169            } else {
170                groups.push(current_group);
171                current_group = vec![term.clone()];
172            }
173        }
174
175        if !current_group.is_empty() {
176            groups.push(current_group);
177        }
178
179        groups
180    }
181
182    /// Compute expectation value for a group of Pauli terms
183    async fn compute_group_expectation(
184        &self,
185        group: &[PauliTerm],
186        parameters: &[f64],
187    ) -> DeviceResult<f64> {
188        // Prepare quantum circuit with ansatz
189        let mut circuit = self.ansatz.build_circuit(parameters)?;
190
191        // Add measurement basis rotations for Pauli terms
192        for term in group {
193            for (qubit, pauli_op) in &term.paulis {
194                match pauli_op {
195                    PauliOperator::X => {
196                        // Add H gate before measurement
197                        circuit.add_h_gate(*qubit)?;
198                    }
199                    PauliOperator::Y => {
200                        // Add S† and H gates before measurement
201                        circuit.add_s_dagger_gate(*qubit)?;
202                        circuit.add_h_gate(*qubit)?;
203                    }
204                    PauliOperator::Z | PauliOperator::I => {
205                        // No rotation needed for Z measurement
206                    }
207                }
208            }
209        }
210
211        // Execute circuit and compute expectation
212        let shots = if self.config.adaptive_shots {
213            self.adaptive_shot_count(group)
214        } else {
215            self.config.shots_per_measurement
216        };
217
218        let device = self.device.read().await;
219        let result = Self::execute_circuit_helper(&*device, &circuit, shots).await?;
220
221        // Compute expectation value from measurement results
222        let mut expectation = 0.0;
223        for term in group {
224            let term_expectation = self.compute_term_expectation(term, &result)?;
225            expectation += term.coefficient * term_expectation;
226        }
227
228        Ok(expectation)
229    }
230
231    /// Compute expectation value for a single Pauli term
232    fn compute_term_expectation(
233        &self,
234        term: &PauliTerm,
235        circuit_result: &CircuitResult,
236    ) -> DeviceResult<f64> {
237        let mut expectation = 0.0;
238        let total_shots = circuit_result.shots as f64;
239
240        for (bitstring, count) in &circuit_result.counts {
241            let probability = *count as f64 / total_shots;
242            let parity = self.compute_pauli_parity(term, bitstring);
243            expectation += probability * parity;
244        }
245
246        Ok(expectation)
247    }
248
249    /// Compute parity for Pauli term measurement
250    fn compute_pauli_parity(&self, term: &PauliTerm, bitstring: &str) -> f64 {
251        let mut parity = 1.0;
252
253        for (qubit_idx, _pauli_op) in &term.paulis {
254            if let Some(bit_char) = bitstring.chars().nth(*qubit_idx) {
255                if bit_char == '1' {
256                    parity *= -1.0;
257                }
258            }
259        }
260
261        parity
262    }
263
264    /// Compute gradients using parameter shift rule
265    async fn compute_gradients(&self, parameters: &[f64]) -> DeviceResult<Vec<f64>> {
266        let mut gradients = vec![0.0; parameters.len()];
267        let shift = std::f64::consts::PI / 2.0;
268
269        for (i, &param) in parameters.iter().enumerate() {
270            let mut params_plus = parameters.to_vec();
271            let mut params_minus = parameters.to_vec();
272
273            params_plus[i] = param + shift;
274            params_minus[i] = param - shift;
275
276            let energy_plus = self.compute_energy_expectation(&params_plus).await?;
277            let energy_minus = self.compute_energy_expectation(&params_minus).await?;
278
279            gradients[i] = (energy_plus - energy_minus) / 2.0;
280        }
281
282        Ok(gradients)
283    }
284
285    fn adaptive_shot_count(&self, group: &[PauliTerm]) -> usize {
286        // Adaptive shot allocation based on term coefficients
287        let max_coeff = group
288            .iter()
289            .map(|term| term.coefficient.abs())
290            .fold(0.0, f64::max);
291
292        let base_shots = self.config.shots_per_measurement;
293        (base_shots as f64 * (1.0 + max_coeff)).min(10000.0) as usize
294    }
295
296    /// Execute a circuit on the quantum device (helper function to work around trait object limitations)
297    async fn execute_circuit_helper(
298        device: &(dyn QuantumDevice + Send + Sync),
299        circuit: &ParameterizedQuantumCircuit,
300        shots: usize,
301    ) -> DeviceResult<CircuitResult> {
302        // For now, return a mock result since we can't execute circuits directly
303        // In a real implementation, this would need proper circuit execution
304        let mut counts = std::collections::HashMap::new();
305        counts.insert("0".repeat(circuit.num_qubits()), shots / 2);
306        counts.insert("1".repeat(circuit.num_qubits()), shots / 2);
307
308        Ok(CircuitResult {
309            counts,
310            shots,
311            metadata: std::collections::HashMap::new(),
312        })
313    }
314}
315
316/// VQE optimization result
317#[derive(Debug, Clone, Serialize, Deserialize)]
318pub struct VQEResult {
319    pub optimal_energy: f64,
320    pub optimal_parameters: Vec<f64>,
321    pub energy_history: Vec<f64>,
322    pub converged: bool,
323}
324
325/// Variational ansatz trait
326pub trait VariationalAnsatz: Send + Sync {
327    fn initialize_parameters(&self) -> Vec<f64>;
328    fn build_circuit(&self, parameters: &[f64]) -> DeviceResult<ParameterizedQuantumCircuit>;
329    fn parameter_count(&self) -> usize;
330}
331
332/// Hardware-efficient ansatz
333pub struct HardwareEfficientAnsatz {
334    pub num_qubits: usize,
335    pub num_layers: usize,
336    pub entangling_gates: EntanglingGateType,
337}
338
339#[derive(Debug, Clone, PartialEq, Eq, Serialize, Deserialize)]
340pub enum EntanglingGateType {
341    CNOT,
342    CZ,
343    ISwap,
344    Linear,
345    Circular,
346    AllToAll,
347}
348
349impl VariationalAnsatz for HardwareEfficientAnsatz {
350    fn initialize_parameters(&self) -> Vec<f64> {
351        let param_count = self.parameter_count();
352        (0..param_count)
353            .map(|_| fastrand::f64() * 2.0 * std::f64::consts::PI)
354            .collect()
355    }
356
357    fn build_circuit(&self, parameters: &[f64]) -> DeviceResult<ParameterizedQuantumCircuit> {
358        if parameters.len() != self.parameter_count() {
359            return Err(DeviceError::InvalidInput(format!(
360                "Expected {} parameters, got {}",
361                self.parameter_count(),
362                parameters.len()
363            )));
364        }
365
366        let mut circuit = ParameterizedQuantumCircuit::new(self.num_qubits);
367        let mut param_idx = 0;
368
369        for layer in 0..self.num_layers {
370            // Parameterized rotation gates
371            for qubit in 0..self.num_qubits {
372                circuit.add_ry_gate(qubit, parameters[param_idx])?;
373                param_idx += 1;
374                circuit.add_rz_gate(qubit, parameters[param_idx])?;
375                param_idx += 1;
376            }
377
378            // Entangling gates
379            match self.entangling_gates {
380                EntanglingGateType::Linear => {
381                    for qubit in 0..self.num_qubits - 1 {
382                        circuit.add_cnot_gate(qubit, qubit + 1)?;
383                    }
384                }
385                EntanglingGateType::Circular => {
386                    for qubit in 0..self.num_qubits - 1 {
387                        circuit.add_cnot_gate(qubit, qubit + 1)?;
388                    }
389                    if self.num_qubits > 2 {
390                        circuit.add_cnot_gate(self.num_qubits - 1, 0)?;
391                    }
392                }
393                EntanglingGateType::AllToAll => {
394                    for i in 0..self.num_qubits {
395                        for j in i + 1..self.num_qubits {
396                            circuit.add_cnot_gate(i, j)?;
397                        }
398                    }
399                }
400                _ => {
401                    // Default to linear connectivity
402                    for qubit in 0..self.num_qubits - 1 {
403                        circuit.add_cnot_gate(qubit, qubit + 1)?;
404                    }
405                }
406            }
407        }
408
409        Ok(circuit)
410    }
411
412    fn parameter_count(&self) -> usize {
413        2 * self.num_qubits * self.num_layers // RY + RZ for each qubit and layer
414    }
415}
416
417/// Quantum Approximate Optimization Algorithm (QAOA)
418pub struct QAOA {
419    device: Arc<RwLock<dyn QuantumDevice + Send + Sync>>,
420    problem: QAOAProblem,
421    num_layers: usize,
422    optimizer: Box<dyn VariationalOptimizer + Send + Sync>,
423    config: QAOAConfig,
424}
425
426/// QAOA configuration
427#[derive(Debug, Clone, Serialize, Deserialize)]
428pub struct QAOAConfig {
429    pub max_iterations: usize,
430    pub shots_per_evaluation: usize,
431    pub parameter_bounds: Option<(f64, f64)>,
432    pub use_warm_start: bool,
433    pub adaptive_layers: bool,
434}
435
436impl Default for QAOAConfig {
437    fn default() -> Self {
438        Self {
439            max_iterations: 500,
440            shots_per_evaluation: 2048,
441            parameter_bounds: Some((0.0, 2.0 * std::f64::consts::PI)),
442            use_warm_start: true,
443            adaptive_layers: false,
444        }
445    }
446}
447
448/// QAOA problem representation
449#[derive(Debug, Clone, Serialize, Deserialize)]
450pub struct QAOAProblem {
451    pub cost_hamiltonian: Hamiltonian,
452    pub mixer_hamiltonian: Hamiltonian,
453    pub num_qubits: usize,
454}
455
456impl QAOA {
457    pub fn new(
458        device: Arc<RwLock<dyn QuantumDevice + Send + Sync>>,
459        problem: QAOAProblem,
460        num_layers: usize,
461        optimizer: Box<dyn VariationalOptimizer + Send + Sync>,
462        config: QAOAConfig,
463    ) -> Self {
464        Self {
465            device,
466            problem,
467            num_layers,
468            optimizer,
469            config,
470        }
471    }
472
473    /// Optimize QAOA parameters
474    pub async fn optimize(&mut self) -> DeviceResult<QAOAResult> {
475        let mut parameters = self.initialize_parameters();
476        let mut cost_history = Vec::new();
477        let mut best_cost = f64::INFINITY;
478        let mut best_parameters = parameters.clone();
479
480        for iteration in 0..self.config.max_iterations {
481            let cost = self.evaluate_cost(&parameters).await?;
482            cost_history.push(cost);
483
484            if cost < best_cost {
485                best_cost = cost;
486                best_parameters.clone_from(&parameters);
487            }
488
489            // Compute gradients and update parameters
490            let gradients = self.compute_gradients(&parameters).await?;
491            parameters = self.optimizer.update_parameters(parameters, gradients)?;
492
493            // Apply parameter bounds if specified
494            if let Some((min_bound, max_bound)) = self.config.parameter_bounds {
495                for param in &mut parameters {
496                    *param = param.clamp(min_bound, max_bound);
497                }
498            }
499        }
500
501        // Get final state and solution
502        let final_state = self.prepare_qaoa_state(&best_parameters).await?;
503        let solution = self.extract_solution(&final_state).await?;
504
505        Ok(QAOAResult {
506            optimal_cost: best_cost,
507            optimal_parameters: best_parameters,
508            cost_history,
509            solution,
510            converged: true,
511        })
512    }
513
514    fn initialize_parameters(&self) -> Vec<f64> {
515        if self.config.use_warm_start {
516            // Initialize with heuristic values
517            let mut params = Vec::with_capacity(2 * self.num_layers);
518            for _ in 0..self.num_layers {
519                params.push(0.1); // Small gamma for cost Hamiltonian
520                params.push(0.1); // Small beta for mixer Hamiltonian
521            }
522            params
523        } else {
524            // Random initialization
525            (0..2 * self.num_layers)
526                .map(|_| fastrand::f64() * std::f64::consts::PI)
527                .collect()
528        }
529    }
530
531    async fn evaluate_cost(&self, parameters: &[f64]) -> DeviceResult<f64> {
532        let circuit = self.build_qaoa_circuit(parameters)?;
533
534        // Measure cost Hamiltonian expectation
535        let device = self.device.read().await;
536        let result =
537            Self::execute_circuit_helper(&*device, &circuit, self.config.shots_per_evaluation)
538                .await?;
539
540        self.compute_hamiltonian_expectation(&self.problem.cost_hamiltonian, &result)
541    }
542
543    fn build_qaoa_circuit(&self, parameters: &[f64]) -> DeviceResult<ParameterizedQuantumCircuit> {
544        let mut circuit = ParameterizedQuantumCircuit::new(self.problem.num_qubits);
545
546        // Initialize in |+⟩ state
547        for qubit in 0..self.problem.num_qubits {
548            circuit.add_h_gate(qubit)?;
549        }
550
551        // Apply QAOA layers
552        for layer in 0..self.num_layers {
553            let gamma = parameters[2 * layer];
554            let beta = parameters[2 * layer + 1];
555
556            // Cost Hamiltonian evolution
557            self.apply_hamiltonian_evolution(&mut circuit, &self.problem.cost_hamiltonian, gamma)?;
558
559            // Mixer Hamiltonian evolution
560            self.apply_hamiltonian_evolution(&mut circuit, &self.problem.mixer_hamiltonian, beta)?;
561        }
562
563        Ok(circuit)
564    }
565
566    fn apply_hamiltonian_evolution(
567        &self,
568        circuit: &mut ParameterizedQuantumCircuit,
569        hamiltonian: &Hamiltonian,
570        angle: f64,
571    ) -> DeviceResult<()> {
572        for term in &hamiltonian.terms {
573            let evolution_angle = term.coefficient * angle;
574
575            // Apply Pauli rotation for each term
576            match term.paulis.len() {
577                1 => {
578                    let (qubit, pauli_op) = &term.paulis[0];
579                    match pauli_op {
580                        PauliOperator::X => circuit.add_rx_gate(*qubit, evolution_angle)?,
581                        PauliOperator::Y => circuit.add_ry_gate(*qubit, evolution_angle)?,
582                        PauliOperator::Z => circuit.add_rz_gate(*qubit, evolution_angle)?,
583                        PauliOperator::I => {} // No operation for identity
584                    }
585                }
586                2 => {
587                    // Two-qubit Pauli rotation (simplified)
588                    let (q1, op1) = &term.paulis[0];
589                    let (q2, op2) = &term.paulis[1];
590
591                    // This is a simplified implementation
592                    // Full implementation would handle all Pauli combinations
593                    if op1 == &PauliOperator::Z && op2 == &PauliOperator::Z {
594                        circuit.add_cnot_gate(*q1, *q2)?;
595                        circuit.add_rz_gate(*q2, evolution_angle)?;
596                        circuit.add_cnot_gate(*q1, *q2)?;
597                    }
598                }
599                _ => {
600                    // Multi-qubit Pauli rotations (would need more sophisticated implementation)
601                    return Err(DeviceError::InvalidInput(
602                        "Multi-qubit Pauli rotations not yet fully implemented".to_string(),
603                    ));
604                }
605            }
606        }
607
608        Ok(())
609    }
610
611    async fn compute_gradients(&self, parameters: &[f64]) -> DeviceResult<Vec<f64>> {
612        let mut gradients = vec![0.0; parameters.len()];
613        let shift = std::f64::consts::PI / 2.0;
614
615        for (i, &param) in parameters.iter().enumerate() {
616            let mut params_plus = parameters.to_vec();
617            let mut params_minus = parameters.to_vec();
618
619            params_plus[i] = param + shift;
620            params_minus[i] = param - shift;
621
622            let cost_plus = self.evaluate_cost(&params_plus).await?;
623            let cost_minus = self.evaluate_cost(&params_minus).await?;
624
625            gradients[i] = (cost_plus - cost_minus) / 2.0;
626        }
627
628        Ok(gradients)
629    }
630
631    async fn prepare_qaoa_state(&self, parameters: &[f64]) -> DeviceResult<QuantumState> {
632        let circuit = self.build_qaoa_circuit(parameters)?;
633
634        // Execute circuit to get quantum state
635        let device = self.device.read().await;
636        let result = Self::execute_circuit_helper(&*device, &circuit, 10000).await?; // High shots for accurate state
637
638        // Convert measurement results to state representation
639        Ok(QuantumState::from_measurements(
640            &result.counts,
641            self.problem.num_qubits,
642        ))
643    }
644
645    async fn extract_solution(&self, state: &QuantumState) -> DeviceResult<QAOASolution> {
646        // Find most probable bitstring
647        let most_probable = state.get_most_probable_bitstring();
648        let probability = state.get_probability(&most_probable);
649
650        // Evaluate cost for this solution
651        let cost = self.evaluate_classical_cost(&most_probable);
652
653        Ok(QAOASolution {
654            bitstring: most_probable,
655            probability,
656            cost,
657            all_amplitudes: state.get_all_amplitudes(),
658        })
659    }
660
661    fn evaluate_classical_cost(&self, bitstring: &str) -> f64 {
662        let mut cost = 0.0;
663
664        for term in &self.problem.cost_hamiltonian.terms {
665            let mut term_value = term.coefficient;
666
667            for (qubit_idx, pauli_op) in &term.paulis {
668                if let Some(bit_char) = bitstring.chars().nth(*qubit_idx) {
669                    let bit_value = if bit_char == '1' { 1.0 } else { -1.0 };
670
671                    match pauli_op {
672                        PauliOperator::Z => term_value *= bit_value,
673                        PauliOperator::I | _ => {
674                            // Identity doesn't change value; X and Y terms would need quantum evaluation
675                        }
676                    }
677                }
678            }
679
680            cost += term_value;
681        }
682
683        cost
684    }
685
686    fn compute_hamiltonian_expectation(
687        &self,
688        hamiltonian: &Hamiltonian,
689        result: &CircuitResult,
690    ) -> DeviceResult<f64> {
691        let mut expectation = 0.0;
692        let total_shots = result.shots as f64;
693
694        for (bitstring, count) in &result.counts {
695            let probability = *count as f64 / total_shots;
696            let energy = self.evaluate_classical_cost(bitstring);
697            expectation += probability * energy;
698        }
699
700        Ok(expectation)
701    }
702
703    /// Execute a circuit on the quantum device (helper function to work around trait object limitations)
704    async fn execute_circuit_helper(
705        device: &(dyn QuantumDevice + Send + Sync),
706        circuit: &ParameterizedQuantumCircuit,
707        shots: usize,
708    ) -> DeviceResult<CircuitResult> {
709        // For now, return a mock result since we can't execute circuits directly
710        // In a real implementation, this would need proper circuit execution
711        let mut counts = std::collections::HashMap::new();
712        counts.insert("0".repeat(circuit.num_qubits()), shots / 2);
713        counts.insert("1".repeat(circuit.num_qubits()), shots / 2);
714
715        Ok(CircuitResult {
716            counts,
717            shots,
718            metadata: std::collections::HashMap::new(),
719        })
720    }
721}
722
723/// QAOA optimization result
724#[derive(Debug, Clone, Serialize, Deserialize)]
725pub struct QAOAResult {
726    pub optimal_cost: f64,
727    pub optimal_parameters: Vec<f64>,
728    pub cost_history: Vec<f64>,
729    pub solution: QAOASolution,
730    pub converged: bool,
731}
732
733/// QAOA solution representation
734#[derive(Debug, Clone, Serialize, Deserialize)]
735pub struct QAOASolution {
736    pub bitstring: String,
737    pub probability: f64,
738    pub cost: f64,
739    pub all_amplitudes: HashMap<String, f64>,
740}
741
742/// Quantum state representation
743#[derive(Debug, Clone)]
744pub struct QuantumState {
745    amplitudes: HashMap<String, f64>,
746    num_qubits: usize,
747}
748
749impl QuantumState {
750    pub fn from_measurements(counts: &HashMap<String, usize>, num_qubits: usize) -> Self {
751        let total_shots: usize = counts.values().sum();
752        let mut amplitudes = HashMap::new();
753
754        for (bitstring, count) in counts {
755            let probability = *count as f64 / total_shots as f64;
756            amplitudes.insert(bitstring.clone(), probability.sqrt());
757        }
758
759        Self {
760            amplitudes,
761            num_qubits,
762        }
763    }
764
765    pub fn get_most_probable_bitstring(&self) -> String {
766        self.amplitudes
767            .iter()
768            .max_by(|a, b| {
769                (a.1 * a.1)
770                    .partial_cmp(&(b.1 * b.1))
771                    .unwrap_or(std::cmp::Ordering::Equal)
772            })
773            .map_or_else(
774                || "0".repeat(self.num_qubits),
775                |(bitstring, _)| bitstring.clone(),
776            )
777    }
778
779    pub fn get_probability(&self, bitstring: &str) -> f64 {
780        self.amplitudes.get(bitstring).map_or(0.0, |amp| amp * amp)
781    }
782
783    pub fn get_all_amplitudes(&self) -> HashMap<String, f64> {
784        self.amplitudes.clone()
785    }
786}
787
788/// Trait for variational optimizers
789pub trait VariationalOptimizer: Send + Sync {
790    fn update_parameters(
791        &mut self,
792        parameters: Vec<f64>,
793        gradients: Vec<f64>,
794    ) -> DeviceResult<Vec<f64>>;
795    fn reset(&mut self);
796}
797
798/// Adam optimizer implementation
799pub struct AdamOptimizer {
800    learning_rate: f64,
801    beta1: f64,
802    beta2: f64,
803    epsilon: f64,
804    m: Vec<f64>, // First moment
805    v: Vec<f64>, // Second moment
806    t: usize,    // Time step
807}
808
809impl AdamOptimizer {
810    pub const fn new(learning_rate: f64) -> Self {
811        Self {
812            learning_rate,
813            beta1: 0.9,
814            beta2: 0.999,
815            epsilon: 1e-8,
816            m: Vec::new(),
817            v: Vec::new(),
818            t: 0,
819        }
820    }
821}
822
823impl VariationalOptimizer for AdamOptimizer {
824    fn update_parameters(
825        &mut self,
826        parameters: Vec<f64>,
827        gradients: Vec<f64>,
828    ) -> DeviceResult<Vec<f64>> {
829        if self.m.is_empty() {
830            self.m = vec![0.0; parameters.len()];
831            self.v = vec![0.0; parameters.len()];
832        }
833
834        self.t += 1;
835        let mut updated_params = parameters;
836
837        for i in 0..updated_params.len() {
838            // Update biased first moment estimate
839            self.m[i] = self
840                .beta1
841                .mul_add(self.m[i], (1.0 - self.beta1) * gradients[i]);
842
843            // Update biased second raw moment estimate
844            self.v[i] = self
845                .beta2
846                .mul_add(self.v[i], (1.0 - self.beta2) * gradients[i] * gradients[i]);
847
848            // Compute bias-corrected first moment estimate
849            let m_hat = self.m[i] / (1.0 - self.beta1.powi(self.t as i32));
850
851            // Compute bias-corrected second raw moment estimate
852            let v_hat = self.v[i] / (1.0 - self.beta2.powi(self.t as i32));
853
854            // Update parameters
855            updated_params[i] -= self.learning_rate * m_hat / (v_hat.sqrt() + self.epsilon);
856        }
857
858        Ok(updated_params)
859    }
860
861    fn reset(&mut self) {
862        self.m.clear();
863        self.v.clear();
864        self.t = 0;
865    }
866}
867
868/// Placeholder for parameterized quantum circuit
869#[derive(Debug, Clone)]
870pub struct ParameterizedQuantumCircuit {
871    num_qubits: usize,
872    gates: Vec<QuantumGate>,
873}
874
875#[derive(Debug, Clone)]
876pub enum QuantumGate {
877    H(usize),
878    X(usize),
879    Y(usize),
880    Z(usize),
881    RX(usize, f64),
882    RY(usize, f64),
883    RZ(usize, f64),
884    CNOT(usize, usize),
885    CZ(usize, usize),
886    SDagger(usize),
887}
888
889impl ParameterizedQuantumCircuit {
890    pub const fn new(num_qubits: usize) -> Self {
891        Self {
892            num_qubits,
893            gates: Vec::new(),
894        }
895    }
896
897    pub const fn num_qubits(&self) -> usize {
898        self.num_qubits
899    }
900
901    pub fn add_h_gate(&mut self, qubit: usize) -> DeviceResult<()> {
902        if qubit >= self.num_qubits {
903            return Err(DeviceError::InvalidInput(format!(
904                "Qubit {qubit} out of range"
905            )));
906        }
907        self.gates.push(QuantumGate::H(qubit));
908        Ok(())
909    }
910
911    pub fn add_rx_gate(&mut self, qubit: usize, angle: f64) -> DeviceResult<()> {
912        if qubit >= self.num_qubits {
913            return Err(DeviceError::InvalidInput(format!(
914                "Qubit {qubit} out of range"
915            )));
916        }
917        self.gates.push(QuantumGate::RX(qubit, angle));
918        Ok(())
919    }
920
921    pub fn add_ry_gate(&mut self, qubit: usize, angle: f64) -> DeviceResult<()> {
922        if qubit >= self.num_qubits {
923            return Err(DeviceError::InvalidInput(format!(
924                "Qubit {qubit} out of range"
925            )));
926        }
927        self.gates.push(QuantumGate::RY(qubit, angle));
928        Ok(())
929    }
930
931    pub fn add_rz_gate(&mut self, qubit: usize, angle: f64) -> DeviceResult<()> {
932        if qubit >= self.num_qubits {
933            return Err(DeviceError::InvalidInput(format!(
934                "Qubit {qubit} out of range"
935            )));
936        }
937        self.gates.push(QuantumGate::RZ(qubit, angle));
938        Ok(())
939    }
940
941    pub fn add_cnot_gate(&mut self, control: usize, target: usize) -> DeviceResult<()> {
942        if control >= self.num_qubits || target >= self.num_qubits {
943            return Err(DeviceError::InvalidInput(
944                "Qubit index out of range".to_string(),
945            ));
946        }
947        self.gates.push(QuantumGate::CNOT(control, target));
948        Ok(())
949    }
950
951    pub fn add_s_dagger_gate(&mut self, qubit: usize) -> DeviceResult<()> {
952        if qubit >= self.num_qubits {
953            return Err(DeviceError::InvalidInput(format!(
954                "Qubit {qubit} out of range"
955            )));
956        }
957        self.gates.push(QuantumGate::SDagger(qubit));
958        Ok(())
959    }
960
961    pub fn add_x_gate(&mut self, qubit: usize) -> DeviceResult<()> {
962        if qubit >= self.num_qubits {
963            return Err(DeviceError::InvalidInput(format!(
964                "Qubit {qubit} out of range"
965            )));
966        }
967        self.gates.push(QuantumGate::X(qubit));
968        Ok(())
969    }
970}
971
972/// Create a VQE instance for molecular simulation
973pub fn create_molecular_vqe(
974    device: Arc<RwLock<dyn QuantumDevice + Send + Sync>>,
975    molecule: MolecularHamiltonian,
976) -> DeviceResult<VQE> {
977    let hamiltonian = molecule.to_hamiltonian();
978    let ansatz = HardwareEfficientAnsatz {
979        num_qubits: hamiltonian.num_qubits,
980        num_layers: 3,
981        entangling_gates: EntanglingGateType::Linear,
982    };
983
984    let optimizer = Box::new(AdamOptimizer::new(0.01));
985    let config = VQEConfig::default();
986
987    Ok(VQE::new(
988        device,
989        hamiltonian,
990        Box::new(ansatz),
991        optimizer,
992        config,
993    ))
994}
995
996/// Molecular Hamiltonian representation
997#[derive(Debug, Clone, Serialize, Deserialize)]
998pub struct MolecularHamiltonian {
999    pub one_body_integrals: Vec<Vec<f64>>,
1000    pub two_body_integrals: Vec<Vec<Vec<Vec<f64>>>>,
1001    pub nuclear_repulsion: f64,
1002    pub num_orbitals: usize,
1003}
1004
1005impl MolecularHamiltonian {
1006    pub fn to_hamiltonian(&self) -> Hamiltonian {
1007        let mut terms = Vec::new();
1008
1009        // One-body terms
1010        for i in 0..self.num_orbitals {
1011            for j in 0..self.num_orbitals {
1012                if self.one_body_integrals[i][j].abs() > 1e-12 {
1013                    // Create Pauli terms for fermionic operators
1014                    // This is simplified - full implementation would use Jordan-Wigner transformation
1015                    terms.push(PauliTerm {
1016                        coefficient: self.one_body_integrals[i][j],
1017                        paulis: vec![(i, PauliOperator::Z), (j, PauliOperator::Z)],
1018                    });
1019                }
1020            }
1021        }
1022
1023        // Add nuclear repulsion as constant term
1024        terms.push(PauliTerm {
1025            coefficient: self.nuclear_repulsion,
1026            paulis: vec![], // Identity term
1027        });
1028
1029        Hamiltonian {
1030            terms,
1031            num_qubits: self.num_orbitals,
1032        }
1033    }
1034}
1035
1036#[cfg(test)]
1037mod tests {
1038    use super::*;
1039
1040    #[test]
1041    fn test_hamiltonian_creation() {
1042        let hamiltonian = Hamiltonian {
1043            terms: vec![
1044                PauliTerm {
1045                    coefficient: 1.0,
1046                    paulis: vec![(0, PauliOperator::Z)],
1047                },
1048                PauliTerm {
1049                    coefficient: 0.5,
1050                    paulis: vec![(0, PauliOperator::Z), (1, PauliOperator::Z)],
1051                },
1052            ],
1053            num_qubits: 2,
1054        };
1055
1056        assert_eq!(hamiltonian.terms.len(), 2);
1057        assert_eq!(hamiltonian.num_qubits, 2);
1058    }
1059
1060    #[test]
1061    fn test_hardware_efficient_ansatz() {
1062        let ansatz = HardwareEfficientAnsatz {
1063            num_qubits: 4,
1064            num_layers: 2,
1065            entangling_gates: EntanglingGateType::Linear,
1066        };
1067
1068        assert_eq!(ansatz.parameter_count(), 16); // 2 * 4 * 2
1069
1070        let params = ansatz.initialize_parameters();
1071        assert_eq!(params.len(), 16);
1072    }
1073
1074    #[test]
1075    fn test_adam_optimizer() {
1076        let mut optimizer = AdamOptimizer::new(0.01);
1077        let params = vec![1.0, 2.0, 3.0];
1078        let gradients = vec![0.1, -0.2, 0.05];
1079
1080        let updated = optimizer
1081            .update_parameters(params.clone(), gradients)
1082            .expect("Adam optimizer update should succeed");
1083        assert_eq!(updated.len(), 3);
1084
1085        // Parameters should be updated (not equal to original)
1086        assert_ne!(updated[0], params[0]);
1087        assert_ne!(updated[1], params[1]);
1088        assert_ne!(updated[2], params[2]);
1089    }
1090
1091    #[test]
1092    fn test_quantum_state() {
1093        let mut counts = HashMap::new();
1094        counts.insert("00".to_string(), 500);
1095        counts.insert("11".to_string(), 500);
1096
1097        let state = QuantumState::from_measurements(&counts, 2);
1098        let most_probable = state.get_most_probable_bitstring();
1099
1100        // Either "00" or "11" should be most probable (they're equal)
1101        assert!(most_probable == "00" || most_probable == "11");
1102
1103        let prob_00 = state.get_probability("00");
1104        let prob_11 = state.get_probability("11");
1105
1106        assert!((prob_00 - 0.5).abs() < 0.01);
1107        assert!((prob_11 - 0.5).abs() < 0.01);
1108    }
1109}