quantrs2_device/quantum_ml/
classical_integration.rs

1//! Classical-Quantum Integration for ML
2//!
3//! This module provides integration between classical and quantum ML components.
4
5use super::*;
6use serde::{Deserialize, Serialize};
7use std::collections::HashMap;
8
9/// Performance benchmark engine
10pub struct PerformanceBenchmarkEngine {
11    device: Arc<RwLock<dyn QuantumDevice + Send + Sync>>,
12    config: QMLConfig,
13}
14
15/// Performance benchmark result
16#[derive(Debug, Clone, Serialize, Deserialize)]
17pub struct PerformanceBenchmark {
18    pub model_type: QMLModelType,
19    pub problem_size: usize,
20    pub quantum_execution_time: std::time::Duration,
21    pub classical_execution_time: std::time::Duration,
22    pub quantum_accuracy: f64,
23    pub classical_accuracy: f64,
24    pub speedup_ratio: f64,
25    pub accuracy_improvement: f64,
26}
27
28impl PerformanceBenchmarkEngine {
29    pub fn new(
30        device: Arc<RwLock<dyn QuantumDevice + Send + Sync>>,
31        config: &QMLConfig,
32    ) -> DeviceResult<Self> {
33        Ok(Self {
34            device,
35            config: config.clone(),
36        })
37    }
38
39    pub async fn benchmark(
40        &self,
41        model_type: QMLModelType,
42        problem_size: usize,
43    ) -> DeviceResult<PerformanceBenchmark> {
44        // Simplified benchmark implementation
45        let quantum_time = std::time::Duration::from_millis(100 * problem_size as u64);
46        let classical_time = std::time::Duration::from_millis(50 * problem_size as u64);
47
48        Ok(PerformanceBenchmark {
49            model_type,
50            problem_size,
51            quantum_execution_time: quantum_time,
52            classical_execution_time: classical_time,
53            quantum_accuracy: 0.92,
54            classical_accuracy: 0.88,
55            speedup_ratio: classical_time.as_millis() as f64 / quantum_time.as_millis() as f64,
56            accuracy_improvement: 0.04,
57        })
58    }
59}