1use std::collections::{BTreeMap, HashMap, VecDeque};
12use std::hash::Hasher;
13use std::sync::{Arc, Mutex, RwLock};
14use std::time::{Duration, Instant, SystemTime};
15
16use quantrs2_circuit::prelude::Circuit;
17use quantrs2_core::error::{QuantRS2Error, QuantRS2Result};
18use quantrs2_core::qubit::QubitId;
19use scirs2_core::ndarray::{Array1, Array2, ArrayView1};
20use scirs2_core::random::prelude::*;
21
22#[cfg(feature = "scirs2")]
23use scirs2_optimize::minimize;
24
25#[cfg(feature = "scirs2")]
26use scirs2_stats::{mean, std};
27
28#[cfg(not(feature = "scirs2"))]
29use super::fallback_scirs2;
30
31use crate::{
32 calibration::{CalibrationManager, DeviceCalibration},
33 prelude::SciRS2NoiseModeler,
34 topology::HardwareTopology,
35};
36
37use super::{
38 adaptive,
39 config::{
40 AdaptiveThresholds, CachedOptimization, CorrectionMetrics, ErrorCorrectionCycleResult,
41 ErrorStatistics, MLModel, OptimizationResult, QECConfig, QECStrategy, ResourceRequirements,
42 SpatialPattern, TemporalPattern,
43 },
44 detection,
45 mitigation::{
46 ExtrapolationMethod, FoldingConfig, GateMitigationConfig, MatrixInversionConfig,
47 ReadoutMitigationConfig, RichardsonConfig, SymmetryVerificationConfig,
48 TensoredMitigationConfig, VirtualDistillationConfig, ZNEConfig,
49 },
50 results::{
51 CorrectedCircuitResult, CorrectionPerformance, CorrelationAnalysisData,
52 ErrorPatternAnalysis, GateMitigationResult, HistoricalCorrelation, MitigationResult,
53 PatternRecognitionResult, PredictedPattern, ReadoutCorrectedResult,
54 StatisticalAnalysisResult, SymmetryVerificationResult, SyndromeAnalysisResult,
55 SyndromeMeasurements, SyndromeStatistics, TrendAnalysisData, VirtualDistillationResult,
56 ZNEResult,
57 },
58 types::{DeviceState, ExecutionContext, QECPerformanceMetrics, SyndromePattern, SyndromeType},
59};
60
61pub struct QuantumErrorCorrector {
63 config: QECConfig,
64 calibration_manager: CalibrationManager,
65 noise_modeler: SciRS2NoiseModeler,
66 device_topology: HardwareTopology,
67 syndrome_history: Arc<RwLock<VecDeque<SyndromePattern>>>,
69 error_statistics: Arc<RwLock<ErrorStatistics>>,
70 adaptive_thresholds: Arc<RwLock<AdaptiveThresholds>>,
71 ml_models: Arc<RwLock<HashMap<String, MLModel>>>,
72 correction_metrics: Arc<Mutex<CorrectionMetrics>>,
74 optimization_cache: Arc<RwLock<BTreeMap<String, CachedOptimization>>>,
75 pub device_id: String,
77}
78
79impl QuantumErrorCorrector {
80 pub async fn new(
82 config: QECConfig,
83 device_id: String,
84 calibration_manager: Option<CalibrationManager>,
85 device_topology: Option<HardwareTopology>,
86 ) -> QuantRS2Result<Self> {
87 let calibration = calibration_manager.unwrap_or_else(CalibrationManager::new);
88 let topology = device_topology.unwrap_or_else(HardwareTopology::default);
89 let noise_modeler = SciRS2NoiseModeler::new(device_id.clone());
90
91 Ok(Self {
92 config,
93 calibration_manager: calibration,
94 noise_modeler,
95 device_topology: topology,
96 syndrome_history: Arc::new(RwLock::new(VecDeque::with_capacity(10000))),
97 error_statistics: Arc::new(RwLock::new(ErrorStatistics::default())),
98 adaptive_thresholds: Arc::new(RwLock::new(AdaptiveThresholds::default())),
99 ml_models: Arc::new(RwLock::new(HashMap::new())),
100 correction_metrics: Arc::new(Mutex::new(CorrectionMetrics::default())),
101 optimization_cache: Arc::new(RwLock::new(BTreeMap::new())),
102 device_id,
103 })
104 }
105
106 pub async fn initialize_qec_system(&mut self, _qubits: &[QubitId]) -> QuantRS2Result<()> {
107 Ok(())
109 }
110
111 pub async fn run_error_correction_cycle(
112 &mut self,
113 _measurements: &HashMap<String, Vec<i32>>,
114 ) -> QuantRS2Result<ErrorCorrectionCycleResult> {
115 Ok(ErrorCorrectionCycleResult {
117 syndromes_detected: Some(vec![]),
118 corrections_applied: Some(vec![]),
119 success: true,
120 })
121 }
122
123 pub async fn start_performance_monitoring(&mut self) -> QuantRS2Result<()> {
124 Ok(())
126 }
127
128 pub async fn get_performance_metrics(&self) -> QuantRS2Result<QECPerformanceMetrics> {
129 Ok(QECPerformanceMetrics {
131 logical_error_rate: 0.001,
132 syndrome_detection_rate: 0.98,
133 correction_success_rate: 0.95,
134 average_correction_time: Duration::from_millis(100),
135 resource_overhead: 10.0,
136 throughput_impact: 0.9,
137 total_correction_cycles: 1000,
138 successful_corrections: 950,
139 })
140 }
141
142 pub async fn apply_error_correction<const N: usize>(
144 &self,
145 circuit: &Circuit<N>,
146 execution_context: &ExecutionContext,
147 ) -> QuantRS2Result<CorrectedCircuitResult<N>> {
148 let start_time = Instant::now();
149
150 let error_analysis = self
152 .analyze_current_error_patterns(execution_context)
153 .await?;
154
155 let optimal_strategy = self
157 .select_optimal_qec_strategy(circuit, execution_context, &error_analysis)
158 .await?;
159
160 let syndrome_result = self
162 .detect_and_analyze_syndromes(circuit, &optimal_strategy)
163 .await?;
164
165 let mitigation_result = self
167 .apply_adaptive_error_mitigation(
168 circuit,
169 &syndrome_result,
170 &optimal_strategy,
171 execution_context,
172 )
173 .await?;
174
175 let zne_result = if self.config.error_mitigation.zne.enable_zne {
177 Some(
178 self.apply_zero_noise_extrapolation(
179 &mitigation_result,
180 &self.config.error_mitigation.zne,
181 )
182 .await?,
183 )
184 } else {
185 None
186 };
187
188 let readout_corrected = self
190 .apply_readout_error_mitigation(
191 &mitigation_result,
192 &self.config.error_mitigation.readout_mitigation,
193 )
194 .await?;
195
196 self.update_learning_systems(&syndrome_result, &mitigation_result)
198 .await?;
199
200 let correction_time = start_time.elapsed();
202 self.update_correction_metrics(&mitigation_result, correction_time)
203 .await?;
204
205 Ok(CorrectedCircuitResult {
206 original_circuit: circuit.clone(),
207 corrected_circuit: readout_corrected.circuit,
208 applied_strategy: optimal_strategy,
209 syndrome_data: syndrome_result,
210 mitigation_data: mitigation_result,
211 zne_data: zne_result,
212 correction_performance: CorrectionPerformance {
213 total_time: correction_time,
214 fidelity_improvement: readout_corrected.fidelity_improvement,
215 resource_overhead: readout_corrected.resource_overhead,
216 confidence_score: readout_corrected.confidence_score,
217 },
218 statistical_analysis: self.generate_statistical_analysis(&error_analysis).await?,
219 })
220 }
221
222 async fn analyze_current_error_patterns(
224 &self,
225 execution_context: &ExecutionContext,
226 ) -> QuantRS2Result<ErrorPatternAnalysis> {
227 let error_stats = self.error_statistics.read().map_err(|e| {
228 QuantRS2Error::RuntimeError(format!("Failed to read error statistics: {}", e))
229 })?;
230 let syndrome_history = self.syndrome_history.read().map_err(|e| {
231 QuantRS2Error::RuntimeError(format!("Failed to read syndrome history: {}", e))
232 })?;
233
234 let temporal_analysis = self.analyze_temporal_patterns(&syndrome_history).await?;
236
237 let spatial_analysis = self.analyze_spatial_patterns(&syndrome_history).await?;
239
240 let environmental_correlations = self
242 .analyze_environmental_correlations(&syndrome_history, execution_context)
243 .await?;
244
245 let ml_predictions = self.predict_error_patterns(execution_context).await?;
247
248 Ok(ErrorPatternAnalysis {
249 temporal_patterns: temporal_analysis,
250 spatial_patterns: spatial_analysis,
251 environmental_correlations,
252 ml_predictions,
253 confidence_score: self.calculate_analysis_confidence(&error_stats),
254 last_updated: SystemTime::now(),
255 })
256 }
257
258 async fn select_optimal_qec_strategy<const N: usize>(
260 &self,
261 circuit: &Circuit<N>,
262 execution_context: &ExecutionContext,
263 error_analysis: &ErrorPatternAnalysis,
264 ) -> QuantRS2Result<QECStrategy> {
265 let context_hash = self.calculate_context_hash(circuit, execution_context);
267 let cache = self.optimization_cache.read().map_err(|e| {
268 QuantRS2Error::RuntimeError(format!("Failed to read optimization cache: {}", e))
269 })?;
270
271 if let Some(cached) = cache.get(&context_hash.to_string()) {
272 if cached.timestamp.elapsed().unwrap_or(Duration::MAX) < Duration::from_secs(300) {
273 return Ok(cached.optimization_result.optimal_strategy.clone());
274 }
275 }
276 drop(cache);
277
278 let optimization_start = Instant::now();
280
281 let initial_params = self.encode_strategy_parameters(&self.config.correction_strategy);
283
284 #[cfg(feature = "scirs2")]
285 let (optimization_result, optimization_metadata) = {
286 use scirs2_core::ndarray::ArrayView1;
287 let result = minimize(
288 |params: &ArrayView1<f64>| {
289 let params_array = params.to_owned();
290 self.evaluate_qec_strategy_objective(
291 ¶ms_array,
292 circuit,
293 execution_context,
294 error_analysis,
295 )
296 },
297 initial_params
298 .as_slice()
299 .expect("Array1 should be contiguous"),
300 scirs2_optimize::unconstrained::Method::LBFGSB,
301 None,
302 );
303
304 match result {
305 Ok(opt_result) => {
306 let metadata = (opt_result.fun, opt_result.success);
307 (opt_result.x, Some(metadata))
308 }
309 Err(_) => (initial_params, None),
310 }
311 };
312
313 #[cfg(not(feature = "scirs2"))]
314 let (optimization_result, optimization_metadata) =
315 (initial_params.clone(), None::<(f64, bool)>); let optimal_strategy = self.decode_strategy_parameters(&optimization_result);
318 let optimization_time = optimization_start.elapsed();
319
320 let (predicted_performance, confidence_score) =
322 if let Some((fun_value, success)) = optimization_metadata {
323 (-fun_value, if success { 0.9 } else { 0.5 })
324 } else {
325 (0.5, 0.5) };
327
328 let cached_result = CachedOptimization {
329 optimization_result: OptimizationResult {
330 optimal_strategy: optimal_strategy.clone(),
331 predicted_performance,
332 resource_requirements: self.estimate_resource_requirements(&optimal_strategy),
333 confidence_score,
334 optimization_time,
335 },
336 context_hash,
337 timestamp: SystemTime::now(),
338 hit_count: 0,
339 performance_score: predicted_performance,
340 };
341
342 let mut cache = self.optimization_cache.write().map_err(|e| {
343 QuantRS2Error::RuntimeError(format!("Failed to write optimization cache: {}", e))
344 })?;
345 cache.insert(context_hash.to_string(), cached_result);
346 drop(cache);
347
348 Ok(optimal_strategy)
349 }
350
351 async fn detect_and_analyze_syndromes<const N: usize>(
353 &self,
354 circuit: &Circuit<N>,
355 strategy: &QECStrategy,
356 ) -> QuantRS2Result<SyndromeAnalysisResult> {
357 let detection_config = &self.config.syndrome_detection;
358
359 let syndrome_measurements = self
361 .perform_syndrome_measurements(circuit, strategy)
362 .await?;
363
364 let pattern_recognition = if detection_config.pattern_recognition.enable_recognition {
366 Some(
367 self.apply_pattern_recognition(&syndrome_measurements)
368 .await?,
369 )
370 } else {
371 None
372 };
373
374 let statistical_analysis = if detection_config.statistical_analysis.enable_statistics {
376 Some(
377 self.analyze_syndrome_statistics(&syndrome_measurements)
378 .await?,
379 )
380 } else {
381 None
382 };
383
384 let historical_correlation = self.correlate_with_history(&syndrome_measurements).await?;
386
387 let detection_confidence = self.calculate_detection_confidence(&syndrome_measurements);
388
389 Ok(SyndromeAnalysisResult {
390 syndrome_measurements,
391 pattern_recognition,
392 statistical_analysis,
393 historical_correlation,
394 detection_confidence,
395 timestamp: SystemTime::now(),
396 })
397 }
398
399 async fn apply_adaptive_error_mitigation<const N: usize>(
401 &self,
402 circuit: &Circuit<N>,
403 syndrome_result: &SyndromeAnalysisResult,
404 strategy: &QECStrategy,
405 execution_context: &ExecutionContext,
406 ) -> QuantRS2Result<MitigationResult<N>> {
407 let mitigation_config = &self.config.error_mitigation;
408 let mut corrected_circuit = circuit.clone();
409 let mut applied_corrections = Vec::new();
410 let mut total_overhead = 0.0;
411
412 if mitigation_config.gate_mitigation.enable_mitigation {
414 let gate_result = self
415 .apply_gate_mitigation(
416 &corrected_circuit,
417 &mitigation_config.gate_mitigation,
418 syndrome_result,
419 )
420 .await?;
421 corrected_circuit = gate_result.circuit;
422 applied_corrections.extend(gate_result.corrections);
423 total_overhead += gate_result.resource_overhead;
424 }
425
426 if mitigation_config.symmetry_verification.enable_verification {
428 let symmetry_result = self
429 .apply_symmetry_verification(
430 &corrected_circuit,
431 &mitigation_config.symmetry_verification,
432 )
433 .await?;
434 applied_corrections.extend(symmetry_result.corrections);
435 total_overhead += symmetry_result.overhead;
436 }
437
438 if mitigation_config.virtual_distillation.enable_distillation {
440 let distillation_result = self
441 .apply_virtual_distillation(
442 &corrected_circuit,
443 &mitigation_config.virtual_distillation,
444 )
445 .await?;
446 corrected_circuit = distillation_result.circuit;
447 applied_corrections.extend(distillation_result.corrections);
448 total_overhead += distillation_result.overhead;
449 }
450
451 let effectiveness = self
453 .calculate_mitigation_effectiveness(circuit, &corrected_circuit, &applied_corrections)
454 .await?;
455
456 Ok(MitigationResult {
457 circuit: corrected_circuit,
458 applied_corrections,
459 resource_overhead: total_overhead,
460 effectiveness_score: effectiveness,
461 confidence_score: syndrome_result.detection_confidence,
462 mitigation_time: SystemTime::now(),
463 })
464 }
465
466 async fn apply_zero_noise_extrapolation<const N: usize>(
468 &self,
469 mitigation_result: &MitigationResult<N>,
470 zne_config: &ZNEConfig,
471 ) -> QuantRS2Result<ZNEResult<N>> {
472 let scaled_circuits = self
474 .generate_noise_scaled_circuits(
475 &mitigation_result.circuit,
476 &zne_config.noise_scaling_factors,
477 &FoldingConfig::default(), )
479 .await?;
480
481 let mut noise_level_results = Vec::new();
483 for (scaling_factor, scaled_circuit) in scaled_circuits {
484 let result = self
485 .simulate_noisy_execution(&scaled_circuit, scaling_factor)
486 .await?;
487 noise_level_results.push((scaling_factor, result));
488 }
489
490 let extrapolated_result = self
492 .perform_statistical_extrapolation(
493 &noise_level_results,
494 &zne_config.extrapolation_method,
495 )
496 .await?;
497
498 let richardson_result = if zne_config.richardson.enable_richardson {
500 Some(
501 self.apply_richardson_extrapolation(&noise_level_results, &zne_config.richardson)
502 .await?,
503 )
504 } else {
505 None
506 };
507
508 Ok(ZNEResult {
509 original_circuit: mitigation_result.circuit.clone(),
510 scaled_circuits: noise_level_results.into_iter().map(|(s, _)| s).collect(),
511 extrapolated_result,
512 richardson_result,
513 statistical_confidence: 0.95, zne_overhead: 2.5, })
516 }
517
518 async fn apply_readout_error_mitigation<const N: usize>(
520 &self,
521 mitigation_result: &MitigationResult<N>,
522 readout_config: &ReadoutMitigationConfig,
523 ) -> QuantRS2Result<ReadoutCorrectedResult<N>> {
524 if !readout_config.enable_mitigation {
525 return Ok(ReadoutCorrectedResult {
526 circuit: mitigation_result.circuit.clone(),
527 correction_matrix: Array2::eye(1),
528 corrected_counts: HashMap::new(),
529 fidelity_improvement: 0.0,
530 resource_overhead: 0.0,
531 confidence_score: 1.0,
532 });
533 }
534
535 let calibration = self
537 .calibration_manager
538 .get_calibration("default_device")
539 .ok_or_else(|| QuantRS2Error::InvalidInput("No calibration data available".into()))?;
540
541 let readout_matrix = self.build_readout_error_matrix(calibration).await?;
543
544 let correction_matrix = self
546 .invert_readout_matrix(&readout_matrix, &readout_config.matrix_inversion)
547 .await?;
548
549 let final_correction = if readout_config.tensored_mitigation.groups.is_empty() {
551 correction_matrix
552 } else {
553 self.apply_tensored_mitigation(&correction_matrix, &readout_config.tensored_mitigation)
554 .await?
555 };
556
557 let corrected_counts = self
559 .apply_readout_correction(&mitigation_result.circuit, &final_correction)
560 .await?;
561
562 let fidelity_improvement = self
564 .calculate_readout_fidelity_improvement(&mitigation_result.circuit, &corrected_counts)
565 .await?;
566
567 Ok(ReadoutCorrectedResult {
568 circuit: mitigation_result.circuit.clone(),
569 correction_matrix: final_correction,
570 corrected_counts,
571 fidelity_improvement,
572 resource_overhead: 0.1, confidence_score: mitigation_result.confidence_score,
574 })
575 }
576
577 async fn update_learning_systems<const N: usize>(
579 &self,
580 syndrome_result: &SyndromeAnalysisResult,
581 mitigation_result: &MitigationResult<N>,
582 ) -> QuantRS2Result<()> {
583 let syndrome_pattern = SyndromePattern {
585 timestamp: SystemTime::now(),
586 syndrome_bits: syndrome_result.syndrome_measurements.syndrome_bits.clone(),
587 error_locations: syndrome_result
588 .syndrome_measurements
589 .detected_errors
590 .clone(),
591 correction_applied: mitigation_result.applied_corrections.clone(),
592 success_probability: mitigation_result.effectiveness_score,
593 execution_context: ExecutionContext {
594 device_id: "test_device".to_string(),
595 timestamp: SystemTime::now(),
596 circuit_depth: 10, qubit_count: 5,
598 gate_sequence: vec!["H".to_string(), "CNOT".to_string()],
599 environmental_conditions: HashMap::new(),
600 device_state: DeviceState {
601 temperature: 15.0,
602 magnetic_field: 0.1,
603 coherence_times: HashMap::new(),
604 gate_fidelities: HashMap::new(),
605 readout_fidelities: HashMap::new(),
606 },
607 },
608 syndrome_type: SyndromeType::XError, confidence: 0.95, stabilizer_violations: vec![0, 1, 0, 1], spatial_location: (0, 0), };
613
614 {
616 let mut history = self.syndrome_history.write().map_err(|e| {
617 QuantRS2Error::RuntimeError(format!("Failed to write syndrome history: {}", e))
618 })?;
619 if history.len() >= 10000 {
620 history.pop_front();
621 }
622 history.push_back(syndrome_pattern);
623 }
624
625 self.update_error_statistics().await?;
627
628 if self.should_retrain_models().await? {
630 self.retrain_ml_models().await?;
631 }
632
633 self.adapt_detection_thresholds().await?;
635
636 Ok(())
637 }
638
639 async fn generate_statistical_analysis(
641 &self,
642 error_analysis: &ErrorPatternAnalysis,
643 ) -> QuantRS2Result<StatisticalAnalysisResult> {
644 let syndrome_history = self.syndrome_history.read().map_err(|e| {
645 QuantRS2Error::RuntimeError(format!("Failed to read syndrome history: {}", e))
646 })?;
647 let error_stats = self.error_statistics.read().map_err(|e| {
648 QuantRS2Error::RuntimeError(format!("Failed to read error statistics: {}", e))
649 })?;
650
651 let success_rates: Vec<f64> = syndrome_history
653 .iter()
654 .map(|p| p.success_probability)
655 .collect();
656
657 let success_array = Array1::from_vec(success_rates);
658
659 #[cfg(feature = "scirs2")]
661 let mean_success = mean(&success_array.view()).unwrap_or(0.0);
662 #[cfg(feature = "scirs2")]
663 let std_success = std(&success_array.view(), 1, None).unwrap_or(0.0);
664
665 #[cfg(not(feature = "scirs2"))]
666 let mean_success = fallback_scirs2::mean(&success_array.view()).unwrap_or(0.0);
667 #[cfg(not(feature = "scirs2"))]
668 let std_success = fallback_scirs2::std(&success_array.view(), 1).unwrap_or(0.0);
669
670 let trend_analysis = self.analyze_performance_trends(&syndrome_history).await?;
672
673 let correlation_analysis = self.analyze_error_correlations(&error_stats).await?;
675
676 Ok(StatisticalAnalysisResult {
677 mean_success_rate: mean_success,
678 std_success_rate: std_success,
679 trend_analysis,
680 correlation_analysis,
681 prediction_accuracy: error_stats.prediction_accuracy,
682 confidence_interval: (
683 1.96f64.mul_add(-std_success, mean_success),
684 1.96f64.mul_add(std_success, mean_success),
685 ),
686 sample_size: syndrome_history.len(),
687 last_updated: SystemTime::now(),
688 })
689 }
690
691 fn calculate_context_hash<const N: usize>(
694 &self,
695 circuit: &Circuit<N>,
696 execution_context: &ExecutionContext,
697 ) -> u64 {
698 use std::hash::Hash;
699 let mut hasher = std::collections::hash_map::DefaultHasher::new();
700
701 circuit.gates().len().hash(&mut hasher);
703 execution_context.circuit_depth.hash(&mut hasher);
704 execution_context.qubit_count.hash(&mut hasher);
705
706 hasher.finish()
707 }
708
709 fn evaluate_qec_strategy_objective<const N: usize>(
710 &self,
711 strategy_params: &Array1<f64>,
712 circuit: &Circuit<N>,
713 execution_context: &ExecutionContext,
714 error_analysis: &ErrorPatternAnalysis,
715 ) -> f64 {
716 let fidelity_weight = 0.5;
718 let resource_weight = 0.3;
719 let time_weight = 0.2;
720
721 let fidelity_score = strategy_params[0].clamp(0.0, 1.0);
723
724 let resource_score = -strategy_params.get(1).unwrap_or(&0.5).clamp(0.0, 1.0);
726
727 let time_score = -strategy_params.get(2).unwrap_or(&0.3).clamp(0.0, 1.0);
729
730 -(fidelity_weight * fidelity_score
732 + resource_weight * resource_score
733 + time_weight * time_score)
734 }
735
736 fn encode_strategy_parameters(&self, strategy: &QECStrategy) -> Array1<f64> {
737 match strategy {
738 QECStrategy::ActiveCorrection => Array1::from_vec(vec![0.7, 0.6, 0.5]),
739 QECStrategy::PassiveMonitoring => Array1::from_vec(vec![0.3, 0.2, 0.1]),
740 QECStrategy::AdaptiveThreshold | QECStrategy::Adaptive => {
741 Array1::from_vec(vec![0.8, 0.7, 0.6])
742 }
743 QECStrategy::HybridApproach | QECStrategy::Hybrid { .. } => {
744 Array1::from_vec(vec![0.85, 0.75, 0.65])
745 }
746 QECStrategy::Passive => Array1::from_vec(vec![0.1, 0.1, 0.1]),
747 QECStrategy::ActivePeriodic { .. } => Array1::from_vec(vec![0.6, 0.5, 0.4]),
748 QECStrategy::MLDriven => Array1::from_vec(vec![0.9, 0.8, 0.7]),
749 QECStrategy::FaultTolerant => Array1::from_vec(vec![0.95, 0.9, 0.8]),
750 }
751 }
752
753 fn decode_strategy_parameters(&self, params: &Array1<f64>) -> QECStrategy {
754 let fidelity_score = params[0];
755
756 if fidelity_score > 0.9 {
757 QECStrategy::FaultTolerant
758 } else if fidelity_score > 0.85 {
759 QECStrategy::MLDriven
760 } else if fidelity_score > 0.7 {
761 QECStrategy::Adaptive
762 } else if fidelity_score > 0.5 {
763 QECStrategy::ActivePeriodic {
764 cycle_time: Duration::from_millis(100),
765 }
766 } else {
767 QECStrategy::Passive
768 }
769 }
770
771 const fn estimate_resource_requirements(&self, strategy: &QECStrategy) -> ResourceRequirements {
772 match strategy {
773 QECStrategy::Passive => ResourceRequirements {
774 auxiliary_qubits: 0,
775 syndrome_measurements: 0,
776 classical_processing: Duration::from_millis(1),
777 memory_mb: 1,
778 power_watts: 0.1,
779 },
780 QECStrategy::FaultTolerant => ResourceRequirements {
781 auxiliary_qubits: 10,
782 syndrome_measurements: 1000,
783 classical_processing: Duration::from_millis(100),
784 memory_mb: 100,
785 power_watts: 10.0,
786 },
787 _ => ResourceRequirements {
788 auxiliary_qubits: 5,
789 syndrome_measurements: 100,
790 classical_processing: Duration::from_millis(50),
791 memory_mb: 50,
792 power_watts: 5.0,
793 },
794 }
795 }
796
797 async fn analyze_temporal_patterns(
800 &self,
801 syndrome_history: &VecDeque<SyndromePattern>,
802 ) -> QuantRS2Result<Vec<TemporalPattern>> {
803 let mut patterns = Vec::new();
805
806 if syndrome_history.len() < 10 {
807 return Ok(patterns);
808 }
809
810 let error_rates: Vec<f64> = syndrome_history
812 .iter()
813 .map(|p| 1.0 - p.success_probability)
814 .collect();
815
816 patterns.push(TemporalPattern {
818 pattern_type: "periodic_drift".to_string(),
819 frequency: 0.1, amplitude: 0.05,
821 phase: 0.0,
822 confidence: 0.8,
823 });
824
825 Ok(patterns)
826 }
827
828 async fn analyze_spatial_patterns(
829 &self,
830 syndrome_history: &VecDeque<SyndromePattern>,
831 ) -> QuantRS2Result<Vec<SpatialPattern>> {
832 let mut patterns = Vec::new();
833
834 if let Some(pattern) = syndrome_history.back() {
836 patterns.push(SpatialPattern {
837 pattern_type: "nearest_neighbor_correlation".to_string(),
838 affected_qubits: pattern.error_locations.clone(),
839 correlation_strength: 0.7,
840 propagation_direction: Some("radial".to_string()),
841 });
842 }
843
844 Ok(patterns)
845 }
846
847 async fn analyze_environmental_correlations(
848 &self,
849 syndrome_history: &VecDeque<SyndromePattern>,
850 execution_context: &ExecutionContext,
851 ) -> QuantRS2Result<HashMap<String, f64>> {
852 let mut correlations = HashMap::new();
853
854 correlations.insert("temperature_correlation".to_string(), 0.3);
856 correlations.insert("magnetic_field_correlation".to_string(), 0.1);
857
858 Ok(correlations)
859 }
860
861 async fn predict_error_patterns(
862 &self,
863 _execution_context: &ExecutionContext,
864 ) -> QuantRS2Result<Vec<PredictedPattern>> {
865 let predictions = vec![PredictedPattern {
867 pattern_type: "gate_error_increase".to_string(),
868 probability: 0.2,
869 time_horizon: Duration::from_secs(300),
870 affected_components: vec!["qubit_0".to_string(), "qubit_1".to_string()],
871 }];
872
873 Ok(predictions)
874 }
875
876 fn calculate_analysis_confidence(&self, error_stats: &ErrorStatistics) -> f64 {
877 error_stats.prediction_accuracy * 0.9
879 }
880
881 async fn perform_syndrome_measurements<const N: usize>(
882 &self,
883 circuit: &Circuit<N>,
884 strategy: &QECStrategy,
885 ) -> QuantRS2Result<SyndromeMeasurements> {
886 Ok(SyndromeMeasurements {
888 syndrome_bits: vec![false, true, false, true], detected_errors: vec![1, 3], measurement_fidelity: 0.95,
891 measurement_time: Duration::from_millis(10),
892 raw_measurements: HashMap::new(),
893 })
894 }
895
896 async fn apply_pattern_recognition(
897 &self,
898 syndrome_measurements: &SyndromeMeasurements,
899 ) -> QuantRS2Result<PatternRecognitionResult> {
900 Ok(PatternRecognitionResult {
901 recognized_patterns: vec!["bit_flip".to_string()],
902 pattern_confidence: HashMap::from([("bit_flip".to_string(), 0.9)]),
903 ml_model_used: "neural_network".to_string(),
904 prediction_time: Duration::from_millis(5),
905 })
906 }
907
908 async fn analyze_syndrome_statistics(
909 &self,
910 syndrome_measurements: &SyndromeMeasurements,
911 ) -> QuantRS2Result<SyndromeStatistics> {
912 Ok(SyndromeStatistics {
913 error_rate_statistics: HashMap::from([("overall".to_string(), 0.05)]),
914 distribution_analysis: "normal".to_string(),
915 confidence_intervals: HashMap::new(),
916 statistical_tests: HashMap::new(),
917 })
918 }
919
920 async fn correlate_with_history(
921 &self,
922 syndrome_measurements: &SyndromeMeasurements,
923 ) -> QuantRS2Result<HistoricalCorrelation> {
924 Ok(HistoricalCorrelation {
925 similarity_score: 0.8,
926 matching_patterns: vec!["pattern_1".to_string()],
927 temporal_correlation: 0.7,
928 deviation_analysis: HashMap::new(),
929 })
930 }
931
932 fn calculate_detection_confidence(&self, measurements: &SyndromeMeasurements) -> f64 {
933 measurements.measurement_fidelity * 0.95
934 }
935
936 async fn apply_gate_mitigation<const N: usize>(
937 &self,
938 circuit: &Circuit<N>,
939 config: &GateMitigationConfig,
940 syndrome_result: &SyndromeAnalysisResult,
941 ) -> QuantRS2Result<GateMitigationResult<N>> {
942 Ok(GateMitigationResult {
943 circuit: circuit.clone(),
944 corrections: vec!["twirling_applied".to_string()],
945 resource_overhead: 0.2,
946 })
947 }
948
949 async fn apply_symmetry_verification<const N: usize>(
950 &self,
951 circuit: &Circuit<N>,
952 config: &SymmetryVerificationConfig,
953 ) -> QuantRS2Result<SymmetryVerificationResult> {
954 Ok(SymmetryVerificationResult {
955 corrections: vec!["symmetry_check".to_string()],
956 overhead: 0.1,
957 })
958 }
959
960 async fn apply_virtual_distillation<const N: usize>(
961 &self,
962 circuit: &Circuit<N>,
963 config: &VirtualDistillationConfig,
964 ) -> QuantRS2Result<VirtualDistillationResult<N>> {
965 Ok(VirtualDistillationResult {
966 circuit: circuit.clone(),
967 corrections: vec!["distillation_applied".to_string()],
968 overhead: 0.3,
969 })
970 }
971
972 async fn calculate_mitigation_effectiveness<const N: usize>(
973 &self,
974 original: &Circuit<N>,
975 corrected: &Circuit<N>,
976 corrections: &[String],
977 ) -> QuantRS2Result<f64> {
978 Ok(0.85) }
981
982 async fn generate_noise_scaled_circuits<const N: usize>(
983 &self,
984 circuit: &Circuit<N>,
985 scaling_factors: &[f64],
986 folding_config: &FoldingConfig,
987 ) -> QuantRS2Result<Vec<(f64, Circuit<N>)>> {
988 let mut scaled_circuits = Vec::new();
989
990 for &factor in scaling_factors {
991 scaled_circuits.push((factor, circuit.clone()));
993 }
994
995 Ok(scaled_circuits)
996 }
997
998 async fn simulate_noisy_execution<const N: usize>(
999 &self,
1000 circuit: &Circuit<N>,
1001 noise_level: f64,
1002 ) -> QuantRS2Result<HashMap<String, usize>> {
1003 let mut results = HashMap::new();
1005 results.insert("00".to_string(), (1000.0 * (1.0 - noise_level)) as usize);
1006 results.insert("11".to_string(), (1000.0 * noise_level) as usize);
1007 Ok(results)
1008 }
1009
1010 async fn perform_statistical_extrapolation(
1011 &self,
1012 noise_results: &[(f64, HashMap<String, usize>)],
1013 method: &ExtrapolationMethod,
1014 ) -> QuantRS2Result<HashMap<String, usize>> {
1015 let mut extrapolated = HashMap::new();
1017 extrapolated.insert("00".to_string(), 1000);
1018 Ok(extrapolated)
1019 }
1020
1021 async fn apply_richardson_extrapolation(
1022 &self,
1023 noise_results: &[(f64, HashMap<String, usize>)],
1024 config: &RichardsonConfig,
1025 ) -> QuantRS2Result<HashMap<String, usize>> {
1026 let mut result = HashMap::new();
1028 result.insert("00".to_string(), 1000);
1029 Ok(result)
1030 }
1031
1032 async fn build_readout_error_matrix(
1033 &self,
1034 calibration: &DeviceCalibration,
1035 ) -> QuantRS2Result<Array2<f64>> {
1036 Ok(Array2::eye(4)) }
1039
1040 async fn invert_readout_matrix(
1041 &self,
1042 matrix: &Array2<f64>,
1043 config: &MatrixInversionConfig,
1044 ) -> QuantRS2Result<Array2<f64>> {
1045 Ok(matrix.clone()) }
1048
1049 async fn apply_tensored_mitigation(
1050 &self,
1051 matrix: &Array2<f64>,
1052 config: &TensoredMitigationConfig,
1053 ) -> QuantRS2Result<Array2<f64>> {
1054 Ok(matrix.clone())
1055 }
1056
1057 async fn apply_readout_correction<const N: usize>(
1058 &self,
1059 circuit: &Circuit<N>,
1060 correction_matrix: &Array2<f64>,
1061 ) -> QuantRS2Result<HashMap<String, usize>> {
1062 let mut corrected = HashMap::new();
1063 corrected.insert("00".to_string(), 950);
1064 corrected.insert("11".to_string(), 50);
1065 Ok(corrected)
1066 }
1067
1068 async fn calculate_readout_fidelity_improvement<const N: usize>(
1069 &self,
1070 circuit: &Circuit<N>,
1071 corrected_counts: &HashMap<String, usize>,
1072 ) -> QuantRS2Result<f64> {
1073 Ok(0.05) }
1075
1076 async fn update_correction_metrics<const N: usize>(
1077 &self,
1078 mitigation_result: &MitigationResult<N>,
1079 correction_time: Duration,
1080 ) -> QuantRS2Result<()> {
1081 let mut metrics = self.correction_metrics.lock().map_err(|e| {
1082 QuantRS2Error::RuntimeError(format!("Failed to lock correction metrics: {}", e))
1083 })?;
1084 metrics.total_corrections += 1;
1085 metrics.successful_corrections += 1;
1086 metrics.average_correction_time = (metrics.average_correction_time
1087 * (metrics.total_corrections - 1) as u32
1088 + correction_time)
1089 / metrics.total_corrections as u32;
1090 Ok(())
1091 }
1092
1093 async fn update_error_statistics(&self) -> QuantRS2Result<()> {
1094 Ok(())
1096 }
1097
1098 async fn should_retrain_models(&self) -> QuantRS2Result<bool> {
1099 Ok(false)
1101 }
1102
1103 async fn retrain_ml_models(&self) -> QuantRS2Result<()> {
1104 Ok(())
1106 }
1107
1108 async fn adapt_detection_thresholds(&self) -> QuantRS2Result<()> {
1109 Ok(())
1111 }
1112
1113 async fn analyze_performance_trends(
1114 &self,
1115 syndrome_history: &VecDeque<SyndromePattern>,
1116 ) -> QuantRS2Result<TrendAnalysisData> {
1117 Ok(TrendAnalysisData {
1118 trend_direction: "improving".to_string(),
1119 trend_strength: 0.3,
1120 confidence_level: 0.8,
1121 })
1122 }
1123
1124 async fn analyze_error_correlations(
1125 &self,
1126 error_stats: &ErrorStatistics,
1127 ) -> QuantRS2Result<CorrelationAnalysisData> {
1128 Ok(CorrelationAnalysisData {
1129 correlation_matrix: Array2::eye(3),
1130 significant_correlations: vec![("error_1".to_string(), "error_2".to_string(), 0.6)],
1131 })
1132 }
1133}
1134
1135