quantrs2_device/photonic/
optimization.rs

1//! Photonic Quantum Computing Optimization
2//!
3//! This module implements optimization algorithms specifically designed for photonic
4//! quantum computing systems, including gate sequence optimization and resource allocation.
5
6use serde::{Deserialize, Serialize};
7use std::collections::HashMap;
8use std::time::Duration;
9use thiserror::Error;
10
11use super::continuous_variable::{Complex, GaussianState};
12use super::gate_based::{PhotonicCircuitImplementation, PhotonicGateImpl};
13use super::{PhotonicMode, PhotonicSystemType};
14use crate::DeviceResult;
15use scirs2_core::random::prelude::*;
16
17/// Photonic optimization errors
18#[derive(Error, Debug)]
19pub enum PhotonicOptimizationError {
20    #[error("Optimization failed: {0}")]
21    OptimizationFailed(String),
22    #[error("Invalid optimization parameters: {0}")]
23    InvalidParameters(String),
24    #[error("Resource constraints violated: {0}")]
25    ResourceConstraints(String),
26    #[error("Convergence failed: {0}")]
27    ConvergenceFailed(String),
28}
29
30/// Optimization objectives for photonic systems
31#[derive(Debug, Clone, PartialEq, Serialize, Deserialize)]
32pub enum PhotonicOptimizationObjective {
33    /// Minimize circuit depth
34    MinimizeDepth,
35    /// Maximize fidelity
36    MaximizeFidelity,
37    /// Minimize resource usage
38    MinimizeResources,
39    /// Minimize execution time
40    MinimizeTime,
41    /// Maximize success probability
42    MaximizeSuccessProbability,
43    /// Minimize photon loss
44    MinimizePhotonLoss,
45    /// Multi-objective optimization
46    MultiObjective {
47        objectives: Vec<Self>,
48        weights: Vec<f64>,
49    },
50}
51
52/// Photonic optimization algorithms
53#[derive(Debug, Clone, PartialEq, Serialize, Deserialize)]
54pub enum PhotonicOptimizationAlgorithm {
55    /// Gradient-based optimization
56    Gradient {
57        learning_rate: f64,
58        max_iterations: usize,
59    },
60    /// Genetic algorithm
61    Genetic {
62        population_size: usize,
63        generations: usize,
64    },
65    /// Simulated annealing
66    SimulatedAnnealing {
67        initial_temperature: f64,
68        cooling_rate: f64,
69    },
70    /// Particle swarm optimization
71    ParticleSwarm {
72        swarm_size: usize,
73        iterations: usize,
74    },
75    /// Quantum approximate optimization
76    QAOA { layers: usize },
77}
78
79/// Optimization configuration
80#[derive(Debug, Clone, Serialize, Deserialize)]
81pub struct PhotonicOptimizationConfig {
82    /// Primary objective
83    pub objective: PhotonicOptimizationObjective,
84    /// Optimization algorithm
85    pub algorithm: PhotonicOptimizationAlgorithm,
86    /// Convergence tolerance
87    pub tolerance: f64,
88    /// Maximum optimization time
89    pub max_time: Duration,
90    /// Resource constraints
91    pub constraints: PhotonicConstraints,
92}
93
94/// Resource constraints for photonic optimization
95#[derive(Debug, Clone, Serialize, Deserialize)]
96pub struct PhotonicConstraints {
97    /// Maximum number of modes
98    pub max_modes: Option<usize>,
99    /// Maximum circuit depth
100    pub max_depth: Option<usize>,
101    /// Maximum number of gates
102    pub max_gates: Option<usize>,
103    /// Maximum execution time
104    pub max_execution_time: Option<Duration>,
105    /// Minimum fidelity requirement
106    pub min_fidelity: Option<f64>,
107    /// Maximum photon loss rate
108    pub max_loss_rate: Option<f64>,
109}
110
111impl Default for PhotonicConstraints {
112    fn default() -> Self {
113        Self {
114            max_modes: Some(16),
115            max_depth: Some(100),
116            max_gates: Some(1000),
117            max_execution_time: Some(Duration::from_secs(10)),
118            min_fidelity: Some(0.95),
119            max_loss_rate: Some(0.1),
120        }
121    }
122}
123
124/// Optimization result
125#[derive(Debug, Clone, Serialize, Deserialize)]
126pub struct PhotonicOptimizationResult {
127    /// Optimized circuit implementation
128    pub optimized_circuit: PhotonicCircuitImplementation,
129    /// Final objective value
130    pub objective_value: f64,
131    /// Number of iterations performed
132    pub iterations: usize,
133    /// Optimization time
134    pub optimization_time: Duration,
135    /// Whether optimization converged
136    pub converged: bool,
137    /// Improvement metrics
138    pub improvement: OptimizationImprovement,
139}
140
141/// Metrics showing optimization improvement
142#[derive(Debug, Clone, Serialize, Deserialize)]
143pub struct OptimizationImprovement {
144    /// Fidelity improvement
145    pub fidelity_improvement: f64,
146    /// Depth reduction
147    pub depth_reduction: f64,
148    /// Resource savings
149    pub resource_savings: f64,
150    /// Time savings
151    pub time_savings: f64,
152}
153
154/// Photonic circuit optimizer
155pub struct PhotonicOptimizer {
156    /// Optimization configuration
157    pub config: PhotonicOptimizationConfig,
158    /// Optimization history
159    pub history: Vec<OptimizationStep>,
160    /// Current best solution
161    pub best_solution: Option<PhotonicCircuitImplementation>,
162}
163
164/// Single optimization step
165#[derive(Debug, Clone, Serialize, Deserialize)]
166pub struct OptimizationStep {
167    /// Step number
168    pub step: usize,
169    /// Objective value at this step
170    pub objective_value: f64,
171    /// Parameters at this step
172    pub parameters: Vec<f64>,
173    /// Time elapsed
174    pub elapsed_time: Duration,
175}
176
177impl PhotonicOptimizer {
178    pub const fn new(config: PhotonicOptimizationConfig) -> Self {
179        Self {
180            config,
181            history: Vec::new(),
182            best_solution: None,
183        }
184    }
185
186    /// Optimize a photonic circuit implementation
187    pub fn optimize(
188        &mut self,
189        initial_circuit: PhotonicCircuitImplementation,
190    ) -> Result<PhotonicOptimizationResult, PhotonicOptimizationError> {
191        let start_time = std::time::Instant::now();
192
193        // Validate constraints
194        self.validate_constraints(&initial_circuit)?;
195
196        // Initialize optimization
197        let mut current_circuit = initial_circuit.clone();
198        let mut best_objective = self.evaluate_objective(&current_circuit)?;
199        let mut iterations = 0;
200
201        // Main optimization loop
202        while start_time.elapsed() < self.config.max_time {
203            let improved_circuit = match &self.config.algorithm {
204                PhotonicOptimizationAlgorithm::Gradient {
205                    learning_rate,
206                    max_iterations,
207                } => {
208                    if iterations >= *max_iterations {
209                        break;
210                    }
211                    self.gradient_step(&current_circuit, *learning_rate)?
212                }
213                PhotonicOptimizationAlgorithm::Genetic {
214                    population_size,
215                    generations,
216                } => {
217                    if iterations >= *generations {
218                        break;
219                    }
220                    self.genetic_step(&current_circuit, *population_size)?
221                }
222                PhotonicOptimizationAlgorithm::SimulatedAnnealing {
223                    initial_temperature,
224                    cooling_rate,
225                } => {
226                    let temperature = initial_temperature * cooling_rate.powf(iterations as f64);
227                    if temperature < 1e-6 {
228                        break;
229                    }
230                    self.annealing_step(&current_circuit, temperature)?
231                }
232                PhotonicOptimizationAlgorithm::ParticleSwarm {
233                    swarm_size,
234                    iterations: max_iter,
235                } => {
236                    if iterations >= *max_iter {
237                        break;
238                    }
239                    self.pso_step(&current_circuit, *swarm_size)?
240                }
241                PhotonicOptimizationAlgorithm::QAOA { layers } => {
242                    self.qaoa_step(&current_circuit, *layers)?
243                }
244            };
245
246            let objective = self.evaluate_objective(&improved_circuit)?;
247
248            // Record optimization step
249            self.history.push(OptimizationStep {
250                step: iterations,
251                objective_value: objective,
252                parameters: vec![], // Placeholder
253                elapsed_time: start_time.elapsed(),
254            });
255
256            // Check for improvement
257            if self.is_improvement(objective, best_objective) {
258                best_objective = objective;
259                current_circuit = improved_circuit;
260                self.best_solution = Some(current_circuit.clone());
261            }
262
263            // Check convergence
264            if self.check_convergence(&current_circuit)? {
265                break;
266            }
267
268            iterations += 1;
269        }
270
271        let final_circuit = self.best_solution.clone().unwrap_or(current_circuit);
272        let improvement = self.calculate_improvement(&initial_circuit, &final_circuit);
273
274        Ok(PhotonicOptimizationResult {
275            optimized_circuit: final_circuit,
276            objective_value: best_objective,
277            iterations,
278            optimization_time: start_time.elapsed(),
279            converged: self.check_convergence_simple(best_objective),
280            improvement,
281        })
282    }
283
284    /// Validate resource constraints
285    fn validate_constraints(
286        &self,
287        circuit: &PhotonicCircuitImplementation,
288    ) -> Result<(), PhotonicOptimizationError> {
289        let constraints = &self.config.constraints;
290
291        if let Some(max_gates) = constraints.max_gates {
292            if circuit.gates.len() > max_gates {
293                return Err(PhotonicOptimizationError::ResourceConstraints(format!(
294                    "Circuit has {} gates, max allowed {}",
295                    circuit.gates.len(),
296                    max_gates
297                )));
298            }
299        }
300
301        if let Some(min_fidelity) = constraints.min_fidelity {
302            if circuit.total_fidelity < min_fidelity {
303                return Err(PhotonicOptimizationError::ResourceConstraints(format!(
304                    "Circuit fidelity {} below minimum {}",
305                    circuit.total_fidelity, min_fidelity
306                )));
307            }
308        }
309
310        if let Some(max_time) = constraints.max_execution_time {
311            if circuit.estimated_execution_time > max_time {
312                return Err(PhotonicOptimizationError::ResourceConstraints(format!(
313                    "Execution time {:?} exceeds maximum {:?}",
314                    circuit.estimated_execution_time, max_time
315                )));
316            }
317        }
318
319        Ok(())
320    }
321
322    /// Evaluate optimization objective
323    fn evaluate_objective(
324        &self,
325        circuit: &PhotonicCircuitImplementation,
326    ) -> Result<f64, PhotonicOptimizationError> {
327        match &self.config.objective {
328            PhotonicOptimizationObjective::MinimizeDepth => {
329                // Circuit depth approximation
330                Ok(-(circuit.gates.len() as f64))
331            }
332            PhotonicOptimizationObjective::MaximizeFidelity => Ok(circuit.total_fidelity),
333            PhotonicOptimizationObjective::MinimizeResources => {
334                let resource_count = circuit.resource_requirements.waveplates
335                    + circuit.resource_requirements.beam_splitters
336                    + circuit.resource_requirements.detectors;
337                Ok(-(resource_count as f64))
338            }
339            PhotonicOptimizationObjective::MinimizeTime => {
340                Ok(-(circuit.estimated_execution_time.as_secs_f64()))
341            }
342            PhotonicOptimizationObjective::MaximizeSuccessProbability => {
343                Ok(circuit.success_probability)
344            }
345            PhotonicOptimizationObjective::MinimizePhotonLoss => {
346                // Estimate photon loss from fidelity
347                Ok(circuit.total_fidelity)
348            }
349            PhotonicOptimizationObjective::MultiObjective {
350                objectives,
351                weights,
352            } => {
353                let mut total_objective = 0.0;
354                for (i, obj) in objectives.iter().enumerate() {
355                    if let Some(&weight) = weights.get(i) {
356                        let sub_config = PhotonicOptimizationConfig {
357                            objective: obj.clone(),
358                            ..self.config.clone()
359                        };
360                        let sub_optimizer = Self::new(sub_config);
361                        let sub_value = sub_optimizer.evaluate_objective(circuit)?;
362                        total_objective += weight * sub_value;
363                    }
364                }
365                Ok(total_objective)
366            }
367        }
368    }
369
370    /// Check if a value represents an improvement
371    fn is_improvement(&self, new_value: f64, current_best: f64) -> bool {
372        match &self.config.objective {
373            PhotonicOptimizationObjective::MinimizeDepth
374            | PhotonicOptimizationObjective::MinimizeResources
375            | PhotonicOptimizationObjective::MinimizeTime => new_value < current_best,
376            _ => new_value > current_best,
377        }
378    }
379
380    /// Gradient-based optimization step
381    fn gradient_step(
382        &self,
383        circuit: &PhotonicCircuitImplementation,
384        learning_rate: f64,
385    ) -> Result<PhotonicCircuitImplementation, PhotonicOptimizationError> {
386        // Simplified gradient step - in practice this would involve
387        // computing gradients with respect to gate parameters
388        let mut optimized = circuit.clone();
389
390        // Randomly perturb parameters (placeholder for gradient computation)
391        for gate in &mut optimized.gates {
392            if !gate.optical_elements.is_empty() {
393                // Small random perturbation
394                let perturbation = (thread_rng().gen::<f64>() - 0.5) * learning_rate * 0.1;
395                // Apply perturbation to gate parameters (simplified)
396                optimized.total_fidelity *= 1.0 + perturbation * 0.01;
397            }
398        }
399
400        Ok(optimized)
401    }
402
403    /// Genetic algorithm step
404    fn genetic_step(
405        &self,
406        circuit: &PhotonicCircuitImplementation,
407        population_size: usize,
408    ) -> Result<PhotonicCircuitImplementation, PhotonicOptimizationError> {
409        // Simplified genetic algorithm step
410        let mut best_circuit = circuit.clone();
411
412        for _ in 0..population_size {
413            let mut candidate = circuit.clone();
414
415            // Random mutation
416            if !candidate.gates.is_empty() {
417                let mutation_strength = 0.1;
418                candidate.total_fidelity *=
419                    (thread_rng().gen::<f64>() - 0.5).mul_add(mutation_strength, 1.0);
420                candidate.total_fidelity = candidate.total_fidelity.clamp(0.0, 1.0);
421            }
422
423            // Select better candidate
424            if self.evaluate_objective(&candidate)? > self.evaluate_objective(&best_circuit)? {
425                best_circuit = candidate;
426            }
427        }
428
429        Ok(best_circuit)
430    }
431
432    /// Simulated annealing step
433    fn annealing_step(
434        &self,
435        circuit: &PhotonicCircuitImplementation,
436        temperature: f64,
437    ) -> Result<PhotonicCircuitImplementation, PhotonicOptimizationError> {
438        let mut candidate = circuit.clone();
439
440        // Random perturbation
441        let perturbation_strength = temperature * 0.01;
442        candidate.total_fidelity *=
443            (thread_rng().gen::<f64>() - 0.5).mul_add(perturbation_strength, 1.0);
444        candidate.total_fidelity = candidate.total_fidelity.clamp(0.0, 1.0);
445
446        // Accept or reject based on temperature
447        let current_obj = self.evaluate_objective(circuit)?;
448        let candidate_obj = self.evaluate_objective(&candidate)?;
449
450        if self.is_improvement(candidate_obj, current_obj) {
451            Ok(candidate)
452        } else {
453            let acceptance_prob = (-(current_obj - candidate_obj) / temperature).exp();
454            if thread_rng().gen::<f64>() < acceptance_prob {
455                Ok(candidate)
456            } else {
457                Ok(circuit.clone())
458            }
459        }
460    }
461
462    /// Particle swarm optimization step
463    fn pso_step(
464        &self,
465        circuit: &PhotonicCircuitImplementation,
466        swarm_size: usize,
467    ) -> Result<PhotonicCircuitImplementation, PhotonicOptimizationError> {
468        // Simplified PSO step
469        let mut best_circuit = circuit.clone();
470
471        for _ in 0..swarm_size {
472            let mut particle = circuit.clone();
473
474            // Update particle position (simplified)
475            let velocity = 0.1 * (thread_rng().gen::<f64>() - 0.5);
476            particle.total_fidelity += velocity;
477            particle.total_fidelity = particle.total_fidelity.clamp(0.0, 1.0);
478
479            if self.evaluate_objective(&particle)? > self.evaluate_objective(&best_circuit)? {
480                best_circuit = particle;
481            }
482        }
483
484        Ok(best_circuit)
485    }
486
487    /// QAOA optimization step
488    fn qaoa_step(
489        &self,
490        circuit: &PhotonicCircuitImplementation,
491        layers: usize,
492    ) -> Result<PhotonicCircuitImplementation, PhotonicOptimizationError> {
493        // Simplified QAOA step - in practice this would involve
494        // quantum approximate optimization
495        let mut optimized = circuit.clone();
496
497        for _ in 0..layers {
498            // Apply variational parameters (simplified)
499            let gamma = thread_rng().gen::<f64>() * std::f64::consts::PI;
500            let beta = thread_rng().gen::<f64>() * std::f64::consts::PI;
501
502            // Update fidelity based on variational parameters
503            optimized.total_fidelity *= 0.01f64.mul_add((gamma + beta).cos(), 1.0);
504            optimized.total_fidelity = optimized.total_fidelity.clamp(0.0, 1.0);
505        }
506
507        Ok(optimized)
508    }
509
510    /// Check convergence
511    fn check_convergence(
512        &self,
513        circuit: &PhotonicCircuitImplementation,
514    ) -> Result<bool, PhotonicOptimizationError> {
515        if self.history.len() < 2 {
516            return Ok(false);
517        }
518
519        let recent_values: Vec<f64> = self
520            .history
521            .iter()
522            .rev()
523            .take(5)
524            .map(|step| step.objective_value)
525            .collect();
526
527        if recent_values.len() < 2 {
528            return Ok(false);
529        }
530
531        let max_val = recent_values
532            .iter()
533            .fold(f64::NEG_INFINITY, |a, &b| a.max(b));
534        let min_val = recent_values.iter().fold(f64::INFINITY, |a, &b| a.min(b));
535
536        Ok((max_val - min_val).abs() < self.config.tolerance)
537    }
538
539    /// Simple convergence check
540    fn check_convergence_simple(&self, objective_value: f64) -> bool {
541        match &self.config.objective {
542            PhotonicOptimizationObjective::MaximizeFidelity => objective_value > 0.99,
543            PhotonicOptimizationObjective::MaximizeSuccessProbability => objective_value > 0.95,
544            _ => false,
545        }
546    }
547
548    /// Calculate optimization improvement
549    fn calculate_improvement(
550        &self,
551        initial: &PhotonicCircuitImplementation,
552        final_circuit: &PhotonicCircuitImplementation,
553    ) -> OptimizationImprovement {
554        let fidelity_improvement = final_circuit.total_fidelity - initial.total_fidelity;
555        let depth_reduction = (initial.gates.len() as f64 - final_circuit.gates.len() as f64)
556            / initial.gates.len() as f64;
557
558        let initial_resources = initial.resource_requirements.waveplates
559            + initial.resource_requirements.beam_splitters
560            + initial.resource_requirements.detectors;
561        let final_resources = final_circuit.resource_requirements.waveplates
562            + final_circuit.resource_requirements.beam_splitters
563            + final_circuit.resource_requirements.detectors;
564
565        let resource_savings =
566            (initial_resources as f64 - final_resources as f64) / initial_resources as f64;
567
568        let time_savings = (initial.estimated_execution_time.as_secs_f64()
569            - final_circuit.estimated_execution_time.as_secs_f64())
570            / initial.estimated_execution_time.as_secs_f64();
571
572        OptimizationImprovement {
573            fidelity_improvement,
574            depth_reduction,
575            resource_savings,
576            time_savings,
577        }
578    }
579}
580
581#[cfg(test)]
582mod tests {
583    use super::*;
584    use crate::photonic::gate_based::{PhotonicGateImpl, PhotonicResourceRequirements};
585
586    fn create_test_circuit() -> PhotonicCircuitImplementation {
587        PhotonicCircuitImplementation {
588            gates: vec![],
589            resource_requirements: PhotonicResourceRequirements::default(),
590            success_probability: 0.9,
591            total_fidelity: 0.95,
592            estimated_execution_time: Duration::from_millis(100),
593        }
594    }
595
596    #[test]
597    fn test_optimizer_creation() {
598        let config = PhotonicOptimizationConfig {
599            objective: PhotonicOptimizationObjective::MaximizeFidelity,
600            algorithm: PhotonicOptimizationAlgorithm::Gradient {
601                learning_rate: 0.01,
602                max_iterations: 100,
603            },
604            tolerance: 1e-6,
605            max_time: Duration::from_secs(60),
606            constraints: PhotonicConstraints::default(),
607        };
608
609        let optimizer = PhotonicOptimizer::new(config);
610        assert_eq!(optimizer.history.len(), 0);
611    }
612
613    #[test]
614    fn test_objective_evaluation() {
615        let config = PhotonicOptimizationConfig {
616            objective: PhotonicOptimizationObjective::MaximizeFidelity,
617            algorithm: PhotonicOptimizationAlgorithm::Gradient {
618                learning_rate: 0.01,
619                max_iterations: 100,
620            },
621            tolerance: 1e-6,
622            max_time: Duration::from_secs(60),
623            constraints: PhotonicConstraints::default(),
624        };
625
626        let optimizer = PhotonicOptimizer::new(config);
627        let circuit = create_test_circuit();
628
629        let objective = optimizer
630            .evaluate_objective(&circuit)
631            .expect("Objective evaluation should succeed");
632        assert_eq!(objective, 0.95); // Should equal circuit fidelity
633    }
634
635    #[test]
636    fn test_constraint_validation() {
637        let mut constraints = PhotonicConstraints::default();
638        constraints.min_fidelity = Some(0.99);
639
640        let config = PhotonicOptimizationConfig {
641            objective: PhotonicOptimizationObjective::MaximizeFidelity,
642            algorithm: PhotonicOptimizationAlgorithm::Gradient {
643                learning_rate: 0.01,
644                max_iterations: 100,
645            },
646            tolerance: 1e-6,
647            max_time: Duration::from_secs(60),
648            constraints,
649        };
650
651        let optimizer = PhotonicOptimizer::new(config);
652        let circuit = create_test_circuit(); // Has fidelity 0.95 < 0.99
653
654        let result = optimizer.validate_constraints(&circuit);
655        assert!(result.is_err());
656    }
657}