quantrs2_device/ml_optimization/
fallback_scirs2.rs1use scirs2_core::ndarray::{s, Array1, Array2};
7use std::collections::HashMap;
8
9#[derive(Debug, Clone)]
11pub struct OptimizeError {
12 pub message: String,
13}
14
15impl std::fmt::Display for OptimizeError {
16 fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
17 write!(f, "Optimization error: {}", self.message)
18 }
19}
20
21impl std::error::Error for OptimizeError {}
22
23pub type OptimizeResult<T> = Result<T, OptimizeError>;
25
26pub fn mean(data: &[f64]) -> f64 {
28 if data.is_empty() {
29 return 0.0;
30 }
31 data.iter().sum::<f64>() / data.len() as f64
32}
33
34pub fn std(data: &[f64]) -> f64 {
35 if data.len() < 2 {
36 return 0.0;
37 }
38 let m = mean(data);
39 let variance = data.iter().map(|x| (x - m).powi(2)).sum::<f64>() / (data.len() - 1) as f64;
40 variance.sqrt()
41}
42
43pub fn var(data: &[f64]) -> f64 {
44 if data.len() < 2 {
45 return 0.0;
46 }
47 let m = mean(data);
48 data.iter().map(|x| (x - m).powi(2)).sum::<f64>() / (data.len() - 1) as f64
49}
50
51pub fn corrcoef(x: &[f64], y: &[f64]) -> f64 {
52 pearsonr(x, y)
53}
54
55pub fn pearsonr(x: &[f64], y: &[f64]) -> f64 {
56 if x.len() != y.len() || x.len() < 2 {
57 return 0.0;
58 }
59
60 let mean_x = mean(x);
61 let mean_y = mean(y);
62
63 let numerator: f64 = x
64 .iter()
65 .zip(y.iter())
66 .map(|(xi, yi)| (xi - mean_x) * (yi - mean_y))
67 .sum();
68
69 let sum_sq_x: f64 = x.iter().map(|xi| (xi - mean_x).powi(2)).sum();
70 let sum_sq_y: f64 = y.iter().map(|yi| (yi - mean_y).powi(2)).sum();
71
72 let denominator = (sum_sq_x * sum_sq_y).sqrt();
73
74 if denominator == 0.0 {
75 0.0
76 } else {
77 numerator / denominator
78 }
79}
80
81pub fn spearmanr(x: &[f64], y: &[f64]) -> f64 {
82 pearsonr(x, y)
84}
85
86pub fn minimize<F>(
88 _objective: F,
89 _initial_guess: &[f64],
90 _bounds: Option<&[(f64, f64)]>,
91) -> OptimizeResult<MinimizeResult>
92where
93 F: Fn(&[f64]) -> f64,
94{
95 Ok(MinimizeResult {
97 x: _initial_guess.to_vec(),
98 fun: 0.0,
99 success: true,
100 message: "Fallback optimization".to_string(),
101 nit: 0,
102 nfev: 0,
103 })
104}
105
106#[derive(Debug, Clone)]
108pub struct MinimizeResult {
109 pub x: Vec<f64>,
110 pub fun: f64,
111 pub success: bool,
112 pub message: String,
113 pub nit: usize,
114 pub nfev: usize,
115}
116
117pub fn eig(matrix: &Array2<f64>) -> Result<(Array1<f64>, Array2<f64>), String> {
119 let n = matrix.nrows();
121 let eigenvalues = Array1::ones(n);
122 let eigenvectors = Array2::eye(n);
123 Ok((eigenvalues, eigenvectors))
124}
125
126pub fn svd(matrix: &Array2<f64>) -> Result<(Array2<f64>, Array1<f64>, Array2<f64>), String> {
127 let (m, n) = matrix.dim();
129 let u = Array2::eye(m);
130 let s = Array1::ones(n.min(m));
131 let vt = Array2::eye(n);
132 Ok((u, s, vt))
133}
134
135pub fn matrix_norm(matrix: &Array2<f64>) -> f64 {
136 matrix.iter().map(|x| x * x).sum::<f64>().sqrt()
138}
139
140#[derive(Debug, Clone)]
142pub struct TTestResult {
143 pub statistic: f64,
144 pub pvalue: f64,
145}
146
147#[derive(Debug, Clone, Copy)]
148pub enum Alternative {
149 TwoSided,
150 Less,
151 Greater,
152}
153
154pub const fn ttest_1samp(data: &[f64], _popmean: f64) -> TTestResult {
155 TTestResult {
156 statistic: 0.0,
157 pvalue: 0.5,
158 }
159}
160
161pub const fn ttest_ind(data1: &[f64], data2: &[f64]) -> TTestResult {
162 TTestResult {
163 statistic: 0.0,
164 pvalue: 0.5,
165 }
166}
167
168pub const fn ks_2samp(data1: &[f64], data2: &[f64]) -> TTestResult {
169 TTestResult {
170 statistic: 0.0,
171 pvalue: 0.5,
172 }
173}
174
175pub const fn shapiro_wilk(data: &[f64]) -> TTestResult {
176 TTestResult {
177 statistic: 0.0,
178 pvalue: 0.5,
179 }
180}
181
182pub mod distributions {
184 use super::*;
185
186 pub struct Normal {
187 pub mean: f64,
188 pub std: f64,
189 }
190
191 impl Normal {
192 pub const fn new(mean: f64, std: f64) -> Self {
193 Self { mean, std }
194 }
195
196 pub fn pdf(&self, x: f64) -> f64 {
197 let z = (x - self.mean) / self.std;
198 (-0.5 * z * z).exp() / (self.std * (2.0 * std::f64::consts::PI).sqrt())
199 }
200
201 pub fn cdf(&self, x: f64) -> f64 {
202 0.5 * (1.0 + ((x - self.mean) / (self.std * 2.0_f64.sqrt())).tanh())
204 }
205 }
206
207 pub const fn norm(mean: f64, std: f64) -> Normal {
208 Normal::new(mean, std)
209 }
210
211 pub const fn gamma(_shape: f64, _scale: f64) -> Normal {
212 Normal::new(1.0, 1.0) }
214
215 pub const fn chi2(_df: f64) -> Normal {
216 Normal::new(1.0, 1.0) }
218
219 pub const fn beta(_a: f64, _b: f64) -> Normal {
220 Normal::new(0.5, 0.1) }
222
223 pub const fn uniform(_low: f64, _high: f64) -> Normal {
224 Normal::new(0.0, 1.0) }
226}
227
228#[derive(Debug, Clone)]
230pub struct Graph<N, E> {
231 nodes: Vec<N>,
232 edges: Vec<(usize, usize, E)>,
233}
234
235impl<N, E> Default for Graph<N, E> {
236 fn default() -> Self {
237 Self::new()
238 }
239}
240
241impl<N, E> Graph<N, E> {
242 pub const fn new() -> Self {
243 Self {
244 nodes: Vec::new(),
245 edges: Vec::new(),
246 }
247 }
248
249 pub fn add_node(&mut self, node: N) -> usize {
250 self.nodes.push(node);
251 self.nodes.len() - 1
252 }
253
254 pub fn add_edge(&mut self, a: usize, b: usize, edge: E) {
255 self.edges.push((a, b, edge));
256 }
257
258 pub fn nodes(&self) -> impl Iterator<Item = &N> {
259 self.nodes.iter()
260 }
261
262 pub fn node_count(&self) -> usize {
263 self.nodes.len()
264 }
265
266 pub fn edge_count(&self) -> usize {
267 self.edges.len()
268 }
269}
270
271pub const fn shortest_path<N, E>(
272 _graph: &Graph<N, E>,
273 _start: usize,
274 _end: usize,
275) -> Option<Vec<usize>> {
276 None }
278
279pub fn betweenness_centrality<N, E>(
280 _graph: &Graph<N, E>,
281 _normalized: bool,
282) -> HashMap<usize, f64> {
283 HashMap::new() }
285
286pub fn closeness_centrality<N, E>(_graph: &Graph<N, E>, _normalized: bool) -> HashMap<usize, f64> {
287 HashMap::new() }
289
290pub const fn minimum_spanning_tree<N, E>(_graph: &Graph<N, E>) -> Vec<(usize, usize)> {
291 Vec::new() }
293
294pub const fn strongly_connected_components<N, E>(_graph: &Graph<N, E>) -> Vec<Vec<usize>> {
295 Vec::new() }
297
298#[derive(Debug, Clone)]
300pub struct KMeansResult {
301 pub labels: Vec<usize>,
302 pub centers: Array2<f64>,
303 pub silhouette_score: f64,
304 pub inertia: f64,
305}
306
307#[derive(Debug, Clone)]
309pub struct KMeans {
310 pub n_clusters: usize,
311}
312
313impl KMeans {
314 pub const fn new(n_clusters: usize) -> Self {
315 Self { n_clusters }
316 }
317
318 pub fn fit(&mut self, data: &Array2<f64>) -> Result<KMeansResult, String> {
319 let n_points = data.nrows();
321 let n_features = data.ncols();
322
323 let labels: Vec<usize> = (0..n_points).map(|i| i % self.n_clusters).collect();
325
326 let centers = Array2::zeros((self.n_clusters, n_features));
328
329 Ok(KMeansResult {
330 labels,
331 centers,
332 silhouette_score: 0.5, inertia: 100.0, })
335 }
336
337 pub fn predict(&self, _data: &Array2<f64>) -> Result<Array1<usize>, String> {
338 let n_points = _data.nrows();
340 Ok(Array1::zeros(n_points))
341 }
342
343 pub fn fit_predict(&mut self, data: &Array2<f64>) -> Result<Array1<usize>, String> {
344 let result = self.fit(data)?;
345 Ok(Array1::from_vec(result.labels))
346 }
347}
348
349#[derive(Debug, Clone)]
351pub struct DBSCAN;
352
353impl Default for DBSCAN {
354 fn default() -> Self {
355 Self::new()
356 }
357}
358
359impl DBSCAN {
360 pub const fn new() -> Self {
361 Self
362 }
363 pub fn fit_predict(&mut self, _data: &Array2<f64>) -> Result<Array1<i32>, String> {
364 let n_points = _data.nrows();
365 Ok(Array1::zeros(n_points)) }
367}
368
369#[derive(Debug, Clone)]
370pub struct IsolationForest;
371
372impl Default for IsolationForest {
373 fn default() -> Self {
374 Self::new()
375 }
376}
377
378impl IsolationForest {
379 pub const fn new() -> Self {
380 Self
381 }
382 pub const fn fit(&mut self, _data: &Array2<f64>) -> Result<(), String> {
383 Ok(())
384 }
385 pub fn predict(&self, _data: &Array2<f64>) -> Result<Array1<i32>, String> {
386 let n_points = _data.nrows();
387 Ok(Array1::ones(n_points)) }
389 pub fn decision_function(&self, _data: &Array2<f64>) -> Result<Array1<f64>, String> {
390 let n_points = _data.nrows();
391 Ok(Array1::ones(n_points) * 0.5) }
393}
394
395pub fn train_test_split<T: Clone>(
396 data: &Array2<T>,
397 targets: &Array1<T>,
398 test_size: f64,
399) -> (Array2<T>, Array2<T>, Array1<T>, Array1<T>) {
400 let n = data.nrows();
401 let test_n = (n as f64 * test_size) as usize;
402 let train_n = n - test_n;
403
404 let x_train = data
406 .slice(scirs2_core::ndarray::s![0..train_n, ..])
407 .to_owned();
408 let x_test = data
409 .slice(scirs2_core::ndarray::s![train_n.., ..])
410 .to_owned();
411 let y_train = targets
412 .slice(scirs2_core::ndarray::s![0..train_n])
413 .to_owned();
414 let y_test = targets
415 .slice(scirs2_core::ndarray::s![train_n..])
416 .to_owned();
417
418 (x_train, x_test, y_train, y_test)
419}