1use std::collections::{HashMap, VecDeque};
8use std::sync::{Arc, Mutex, RwLock};
9use std::time::{Duration, Instant};
10
11use crate::job_scheduling::SchedulingParams;
12use crate::noise_modeling_scirs2::SciRS2NoiseConfig;
13use crate::prelude::BackendCapabilities;
14use crate::topology::HardwareTopology;
15
16use quantrs2_circuit::prelude::*;
17use quantrs2_core::{
18 error::{QuantRS2Error, QuantRS2Result},
19 gate::GateOp,
20 qubit::QubitId,
21};
22
23#[cfg(feature = "scirs2")]
25use scirs2_graph::{
26 betweenness_centrality, closeness_centrality, dijkstra_path, minimum_spanning_tree,
27 strongly_connected_components, Graph,
28};
29#[cfg(feature = "scirs2")]
30use scirs2_linalg::{
31 cholesky, det, eig, inv, matrix_norm, prelude::*, qr, svd, trace, LinalgError, LinalgResult,
32};
33#[cfg(feature = "scirs2")]
34use scirs2_optimize::{
35 differential_evolution,
36 least_squares,
37 minimize,
38 OptimizeResult, };
41#[cfg(feature = "scirs2")]
42use scirs2_stats::{
43 corrcoef,
44 distributions::{chi2, gamma, norm},
45 ks_2samp, mean, pearsonr, shapiro_wilk, spearmanr, std, ttest_1samp, ttest_ind, var,
46 Alternative, TTestResult,
47};
48
49#[cfg(not(feature = "scirs2"))]
51mod fallback_scirs2 {
52 use scirs2_core::ndarray::{Array1, Array2, ArrayView1, ArrayView2};
53
54 pub fn mean(_data: &ArrayView1<f64>) -> Result<f64, String> {
55 Ok(0.0)
56 }
57 pub fn std(_data: &ArrayView1<f64>, _ddof: i32) -> Result<f64, String> {
58 Ok(1.0)
59 }
60 pub fn pearsonr(
61 _x: &ArrayView1<f64>,
62 _y: &ArrayView1<f64>,
63 _alt: &str,
64 ) -> Result<(f64, f64), String> {
65 Ok((0.0, 0.5))
66 }
67 pub fn trace(_matrix: &ArrayView2<f64>) -> Result<f64, String> {
68 Ok(1.0)
69 }
70 pub fn inv(_matrix: &ArrayView2<f64>) -> Result<Array2<f64>, String> {
71 Ok(Array2::eye(2))
72 }
73
74 pub struct OptimizeResult {
75 pub x: Array1<f64>,
76 pub fun: f64,
77 pub success: bool,
78 pub nit: usize,
79 pub nfev: usize,
80 pub message: String,
81 }
82
83 pub fn minimize(
84 _func: fn(&Array1<f64>) -> f64,
85 _x0: &Array1<f64>,
86 _method: &str,
87 ) -> Result<OptimizeResult, String> {
88 Ok(OptimizeResult {
89 x: Array1::zeros(2),
90 fun: 0.0,
91 success: true,
92 nit: 0,
93 nfev: 0,
94 message: "Fallback optimization".to_string(),
95 })
96 }
97}
98
99#[cfg(not(feature = "scirs2"))]
100use fallback_scirs2::*;
101
102use scirs2_core::ndarray::{s, Array1, Array2, ArrayView1, ArrayView2};
103use scirs2_core::random::prelude::*;
104use scirs2_core::Complex64;
105use tokio::sync::{broadcast, mpsc};
106
107use crate::{
108 backend_traits::query_backend_capabilities,
109 benchmarking::{BenchmarkConfig, BenchmarkResult, HardwareBenchmarkSuite},
110 calibration::{CalibrationManager, DeviceCalibration},
111 compiler_passes::{CompilationResult, CompilerConfig, HardwareCompiler},
112 crosstalk::{CrosstalkAnalyzer, CrosstalkCharacterization, CrosstalkConfig},
113 dynamical_decoupling::{DynamicalDecouplingConfig, DynamicalDecouplingResult},
114 job_scheduling::{JobConfig, JobPriority, QuantumJob, QuantumJobScheduler},
115 noise_model::CalibrationNoiseModel,
117 noise_modeling_scirs2::SciRS2NoiseModeler,
118 process_tomography::{
119 SciRS2ProcessTomographer, SciRS2ProcessTomographyConfig, SciRS2ProcessTomographyResult,
120 },
121 qec::QECConfig,
122 translation::HardwareBackend,
123 vqa_support::{VQAConfig, VQAExecutor, VQAResult},
124 CircuitExecutor,
125 CircuitResult,
126 DeviceError,
127 DeviceResult,
128 QuantumDevice,
129};
130
131#[derive(Debug, Clone)]
133pub struct IntegratedDeviceConfig {
134 pub enable_adaptive_management: bool,
136 pub enable_ml_optimization: bool,
138 pub enable_realtime_monitoring: bool,
140 pub enable_predictive_analytics: bool,
142 pub orchestration_strategy: OrchestrationStrategy,
144 pub optimization_config: PerformanceOptimizationConfig,
146 pub resource_config: ResourceAllocationConfig,
148 pub analytics_config: AnalyticsConfig,
150 pub workflow_config: WorkflowConfig,
152}
153
154#[derive(Debug, Clone, PartialEq)]
156pub enum OrchestrationStrategy {
157 Conservative,
159 Aggressive,
161 Adaptive,
163 MLDriven,
165 Custom(HashMap<String, f64>),
167}
168
169#[derive(Debug, Clone)]
171pub struct PerformanceOptimizationConfig {
172 pub enable_continuous_optimization: bool,
174 pub optimization_interval: u64,
176 pub performance_targets: PerformanceTargets,
178 pub optimization_weights: HashMap<String, f64>,
180 pub enable_ab_testing: bool,
182 pub learning_rate: f64,
184}
185
186#[derive(Debug, Clone)]
188pub struct ResourceAllocationConfig {
189 pub max_concurrent_jobs: usize,
191 pub allocation_strategy: AllocationStrategy,
193 pub load_balancing: LoadBalancingConfig,
195 pub utilization_targets: UtilizationTargets,
197 pub cost_optimization: CostOptimizationConfig,
199}
200
201#[derive(Debug, Clone)]
203pub struct AnalyticsConfig {
204 pub enable_comprehensive_analytics: bool,
206 pub collection_interval: u64,
208 pub analytics_depth: AnalyticsDepth,
210 pub enable_predictive_modeling: bool,
212 pub retention_period_days: u32,
214 pub anomaly_detection: AnomalyDetectionConfig,
216}
217
218#[derive(Debug, Clone)]
220pub struct WorkflowConfig {
221 pub enable_complex_workflows: bool,
223 pub workflow_optimization: WorkflowOptimizationConfig,
225 pub pipeline_config: PipelineConfig,
227 pub error_handling: ErrorHandlingConfig,
229 pub workflow_templates: Vec<WorkflowTemplate>,
231}
232
233#[derive(Debug, Clone)]
235pub struct PerformanceTargets {
236 pub min_fidelity: f64,
237 pub max_error_rate: f64,
238 pub min_throughput: f64,
239 pub max_latency_ms: u64,
240 pub min_utilization: f64,
241}
242
243#[derive(Debug, Clone, PartialEq, Eq)]
244pub enum AllocationStrategy {
245 RoundRobin,
246 LoadBased,
247 PerformanceBased,
248 CostOptimized,
249 MLOptimized,
250}
251
252#[derive(Debug, Clone)]
253pub struct LoadBalancingConfig {
254 pub enable_load_balancing: bool,
255 pub balancing_algorithm: BalancingAlgorithm,
256 pub rebalancing_interval: u64,
257 pub load_threshold: f64,
258}
259
260#[derive(Debug, Clone, PartialEq, Eq)]
261pub enum BalancingAlgorithm {
262 WeightedRoundRobin,
263 LeastConnections,
264 ResourceBased,
265 PredictiveBased,
266}
267
268#[derive(Debug, Clone)]
269pub struct UtilizationTargets {
270 pub target_cpu_utilization: f64,
271 pub target_memory_utilization: f64,
272 pub target_network_utilization: f64,
273 pub target_quantum_utilization: f64,
274}
275
276#[derive(Debug, Clone)]
277pub struct CostOptimizationConfig {
278 pub enable_cost_optimization: bool,
279 pub cost_threshold: f64,
280 pub optimization_strategy: CostOptimizationStrategy,
281 pub budget_constraints: BudgetConstraints,
282}
283
284#[derive(Debug, Clone, PartialEq, Eq)]
285pub enum CostOptimizationStrategy {
286 MinimizeCost,
287 MaximizeValueForMoney,
288 BudgetConstrained,
289 Dynamic,
290}
291
292#[derive(Debug, Clone)]
293pub struct BudgetConstraints {
294 pub daily_budget: Option<f64>,
295 pub monthly_budget: Option<f64>,
296 pub per_job_limit: Option<f64>,
297}
298
299#[derive(Debug, Clone, PartialEq, Eq)]
300pub enum AnalyticsDepth {
301 Basic,
302 Intermediate,
303 Advanced,
304 Comprehensive,
305}
306
307#[derive(Debug, Clone)]
308pub struct AnomalyDetectionConfig {
309 pub enable_anomaly_detection: bool,
310 pub detection_algorithms: Vec<AnomalyDetectionAlgorithm>,
311 pub sensitivity_threshold: f64,
312 pub response_actions: Vec<AnomalyResponse>,
313}
314
315#[derive(Debug, Clone, PartialEq, Eq)]
316pub enum AnomalyDetectionAlgorithm {
317 StatisticalOutlier,
318 MachineLearning,
319 ThresholdBased,
320 TrendAnalysis,
321}
322
323#[derive(Debug, Clone, PartialEq, Eq)]
324pub enum AnomalyResponse {
325 Alert,
326 AutoCorrect,
327 Quarantine,
328 Escalate,
329}
330
331#[derive(Debug, Clone)]
332pub struct WorkflowOptimizationConfig {
333 pub enable_workflow_optimization: bool,
334 pub optimization_objectives: Vec<WorkflowObjective>,
335 pub parallelization_strategy: ParallelizationStrategy,
336 pub dependency_resolution: DependencyResolution,
337}
338
339#[derive(Debug, Clone, PartialEq, Eq)]
340pub enum WorkflowObjective {
341 MinimizeTime,
342 MinimizeCost,
343 MaximizeAccuracy,
344 MaximizeThroughput,
345 MinimizeResourceUsage,
346}
347
348#[derive(Debug, Clone, PartialEq, Eq)]
349pub enum ParallelizationStrategy {
350 Aggressive,
351 Conservative,
352 Adaptive,
353 DependencyAware,
354}
355
356#[derive(Debug, Clone, PartialEq, Eq)]
357pub enum DependencyResolution {
358 Strict,
359 Optimistic,
360 Lazy,
361 Predictive,
362}
363
364#[derive(Debug, Clone)]
365pub struct PipelineConfig {
366 pub max_pipeline_depth: usize,
367 pub pipeline_parallelism: usize,
368 pub buffer_sizes: HashMap<String, usize>,
369 pub timeout_configs: HashMap<String, Duration>,
370}
371
372#[derive(Debug, Clone)]
373pub struct ErrorHandlingConfig {
374 pub retry_strategies: HashMap<String, RetryStrategy>,
375 pub error_escalation: ErrorEscalationConfig,
376 pub recovery_strategies: Vec<RecoveryStrategy>,
377 pub error_prediction: ErrorPredictionConfig,
378}
379
380#[derive(Debug, Clone)]
381pub struct RetryStrategy {
382 pub max_retries: usize,
383 pub retry_delay: Duration,
384 pub backoff_strategy: BackoffStrategy,
385 pub retry_conditions: Vec<RetryCondition>,
386}
387
388#[derive(Debug, Clone, PartialEq, Eq)]
389pub enum BackoffStrategy {
390 Linear,
391 Exponential,
392 Random,
393 Adaptive,
394}
395
396#[derive(Debug, Clone, PartialEq, Eq)]
397pub enum RetryCondition {
398 TransientError,
399 ResourceUnavailable,
400 NetworkError,
401 TimeoutError,
402}
403
404#[derive(Debug, Clone)]
405pub struct ErrorEscalationConfig {
406 pub escalation_thresholds: HashMap<String, u32>,
407 pub escalation_actions: Vec<EscalationAction>,
408 pub notification_config: NotificationConfig,
409}
410
411#[derive(Debug, Clone, PartialEq, Eq)]
412pub enum EscalationAction {
413 Notify,
414 Fallback,
415 Quarantine,
416 Emergency,
417}
418
419#[derive(Debug, Clone)]
420pub struct NotificationConfig {
421 pub email_notifications: bool,
422 pub slack_notifications: bool,
423 pub sms_notifications: bool,
424 pub webhook_notifications: Vec<String>,
425}
426
427#[derive(Debug, Clone, PartialEq, Eq)]
428pub enum RecoveryStrategy {
429 Restart,
430 Fallback,
431 Degraded,
432 Manual,
433}
434
435#[derive(Debug, Clone)]
436pub struct ErrorPredictionConfig {
437 pub enable_error_prediction: bool,
438 pub prediction_algorithms: Vec<PredictionAlgorithm>,
439 pub prediction_horizon: Duration,
440 pub confidence_threshold: f64,
441}
442
443#[derive(Debug, Clone, PartialEq, Eq)]
444pub enum PredictionAlgorithm {
445 StatisticalModel,
446 MachineLearning,
447 HeuristicBased,
448 EnsembleMethod,
449}
450
451#[derive(Debug, Clone)]
452pub struct WorkflowTemplate {
453 pub name: String,
454 pub description: String,
455 pub steps: Vec<WorkflowStep>,
456 pub dependencies: HashMap<String, Vec<String>>,
457 pub resource_requirements: WorkflowResourceRequirements,
458}
459
460#[derive(Debug, Clone)]
461pub struct WorkflowStep {
462 pub id: String,
463 pub step_type: WorkflowStepType,
464 pub configuration: HashMap<String, String>,
465 pub timeout: Duration,
466 pub retry_config: Option<RetryStrategy>,
467}
468
469#[derive(Debug, Clone, PartialEq, Eq)]
470pub enum WorkflowStepType {
471 ProcessTomography,
472 VQAOptimization,
473 DynamicalDecoupling,
474 QubitMapping,
475 Benchmarking,
476 CrosstalkAnalysis,
477 NoiseModeling,
478 QuantumErrorCorrection,
479 CircuitCompilation,
480 Custom(String),
481}
482
483#[derive(Debug, Clone)]
484pub struct WorkflowResourceRequirements {
485 pub qubits_required: usize,
486 pub execution_time_estimate: Duration,
487 pub memory_requirements: usize,
488 pub network_bandwidth: Option<u64>,
489 pub cost_estimate: Option<f64>,
490}
491
492impl Default for IntegratedDeviceConfig {
493 fn default() -> Self {
494 Self {
495 enable_adaptive_management: true,
496 enable_ml_optimization: true,
497 enable_realtime_monitoring: true,
498 enable_predictive_analytics: true,
499 orchestration_strategy: OrchestrationStrategy::Adaptive,
500 optimization_config: PerformanceOptimizationConfig {
501 enable_continuous_optimization: true,
502 optimization_interval: 300, performance_targets: PerformanceTargets {
504 min_fidelity: 0.95,
505 max_error_rate: 0.01,
506 min_throughput: 10.0,
507 max_latency_ms: 1000,
508 min_utilization: 0.7,
509 },
510 optimization_weights: [
511 ("fidelity".to_string(), 0.4),
512 ("speed".to_string(), 0.3),
513 ("cost".to_string(), 0.2),
514 ("reliability".to_string(), 0.1),
515 ]
516 .iter()
517 .cloned()
518 .collect(),
519 enable_ab_testing: true,
520 learning_rate: 0.01,
521 },
522 resource_config: ResourceAllocationConfig {
523 max_concurrent_jobs: 10,
524 allocation_strategy: AllocationStrategy::PerformanceBased,
525 load_balancing: LoadBalancingConfig {
526 enable_load_balancing: true,
527 balancing_algorithm: BalancingAlgorithm::ResourceBased,
528 rebalancing_interval: 60,
529 load_threshold: 0.8,
530 },
531 utilization_targets: UtilizationTargets {
532 target_cpu_utilization: 0.75,
533 target_memory_utilization: 0.8,
534 target_network_utilization: 0.6,
535 target_quantum_utilization: 0.85,
536 },
537 cost_optimization: CostOptimizationConfig {
538 enable_cost_optimization: true,
539 cost_threshold: 1000.0,
540 optimization_strategy: CostOptimizationStrategy::MaximizeValueForMoney,
541 budget_constraints: BudgetConstraints {
542 daily_budget: Some(500.0),
543 monthly_budget: Some(10000.0),
544 per_job_limit: Some(100.0),
545 },
546 },
547 },
548 analytics_config: AnalyticsConfig {
549 enable_comprehensive_analytics: true,
550 collection_interval: 30,
551 analytics_depth: AnalyticsDepth::Advanced,
552 enable_predictive_modeling: true,
553 retention_period_days: 90,
554 anomaly_detection: AnomalyDetectionConfig {
555 enable_anomaly_detection: true,
556 detection_algorithms: vec![
557 AnomalyDetectionAlgorithm::StatisticalOutlier,
558 AnomalyDetectionAlgorithm::MachineLearning,
559 ],
560 sensitivity_threshold: 0.95,
561 response_actions: vec![AnomalyResponse::Alert, AnomalyResponse::AutoCorrect],
562 },
563 },
564 workflow_config: WorkflowConfig {
565 enable_complex_workflows: true,
566 workflow_optimization: WorkflowOptimizationConfig {
567 enable_workflow_optimization: true,
568 optimization_objectives: vec![
569 WorkflowObjective::MinimizeTime,
570 WorkflowObjective::MaximizeAccuracy,
571 ],
572 parallelization_strategy: ParallelizationStrategy::Adaptive,
573 dependency_resolution: DependencyResolution::Predictive,
574 },
575 pipeline_config: PipelineConfig {
576 max_pipeline_depth: 10,
577 pipeline_parallelism: 4,
578 buffer_sizes: [
579 ("default".to_string(), 1000),
580 ("high_priority".to_string(), 100),
581 ]
582 .iter()
583 .cloned()
584 .collect(),
585 timeout_configs: [
586 ("default".to_string(), Duration::from_secs(3600)),
587 ("fast".to_string(), Duration::from_secs(300)),
588 ]
589 .iter()
590 .cloned()
591 .collect(),
592 },
593 error_handling: ErrorHandlingConfig {
594 retry_strategies: HashMap::from([(
595 "default".to_string(),
596 RetryStrategy {
597 max_retries: 3,
598 retry_delay: Duration::from_secs(5),
599 backoff_strategy: BackoffStrategy::Exponential,
600 retry_conditions: vec![
601 RetryCondition::TransientError,
602 RetryCondition::NetworkError,
603 ],
604 },
605 )]),
606 error_escalation: ErrorEscalationConfig {
607 escalation_thresholds: [
608 ("error_rate".to_string(), 5),
609 ("timeout_rate".to_string(), 3),
610 ]
611 .iter()
612 .cloned()
613 .collect(),
614 escalation_actions: vec![
615 EscalationAction::Notify,
616 EscalationAction::Fallback,
617 ],
618 notification_config: NotificationConfig {
619 email_notifications: true,
620 slack_notifications: false,
621 sms_notifications: false,
622 webhook_notifications: Vec::new(),
623 },
624 },
625 recovery_strategies: vec![
626 RecoveryStrategy::Restart,
627 RecoveryStrategy::Fallback,
628 ],
629 error_prediction: ErrorPredictionConfig {
630 enable_error_prediction: true,
631 prediction_algorithms: vec![
632 PredictionAlgorithm::StatisticalModel,
633 PredictionAlgorithm::MachineLearning,
634 ],
635 prediction_horizon: Duration::from_secs(3600),
636 confidence_threshold: 0.8,
637 },
638 },
639 workflow_templates: Vec::new(),
640 },
641 }
642 }
643}
644
645#[derive(Debug, Clone)]
647pub struct IntegratedExecutionResult {
648 pub execution_id: String,
650 pub status: ExecutionStatus,
652 pub step_results: HashMap<String, StepResult>,
654 pub performance_analytics: PerformanceAnalytics,
656 pub resource_utilization: ResourceUtilization,
658 pub quality_metrics: QualityMetrics,
660 pub optimization_recommendations: Vec<OptimizationRecommendation>,
662 pub execution_metadata: ExecutionMetadata,
664}
665
666#[derive(Debug, Clone, PartialEq, Eq)]
668pub enum ExecutionStatus {
669 Pending,
670 Running,
671 Completed,
672 Failed,
673 Cancelled,
674 PartiallyCompleted,
675}
676
677#[derive(Debug, Clone)]
679pub struct StepResult {
680 pub step_id: String,
681 pub status: ExecutionStatus,
682 pub start_time: Instant,
683 pub end_time: Option<Instant>,
684 pub result_data: HashMap<String, String>,
685 pub error_message: Option<String>,
686 pub performance_metrics: StepPerformanceMetrics,
687}
688
689#[derive(Debug, Clone)]
691pub struct PerformanceAnalytics {
692 pub overall_fidelity: f64,
693 pub total_execution_time: Duration,
694 pub resource_efficiency: f64,
695 pub cost_efficiency: f64,
696 pub throughput: f64,
697 pub latency_distribution: Array1<f64>,
698 pub error_rate: f64,
699 pub trend_analysis: TrendAnalysis,
700}
701
702#[derive(Debug, Clone)]
704pub struct ResourceUtilization {
705 pub cpu_utilization: f64,
706 pub memory_utilization: f64,
707 pub network_utilization: f64,
708 pub quantum_utilization: f64,
709 pub storage_utilization: f64,
710 pub cost_utilization: f64,
711 pub utilization_timeline: Vec<UtilizationSnapshot>,
712}
713
714#[derive(Debug, Clone)]
716pub struct QualityMetrics {
717 pub overall_quality_score: f64,
718 pub fidelity_metrics: FidelityMetrics,
719 pub reliability_metrics: ReliabilityMetrics,
720 pub accuracy_metrics: AccuracyMetrics,
721 pub consistency_metrics: ConsistencyMetrics,
722}
723
724#[derive(Debug, Clone)]
726pub struct OptimizationRecommendation {
727 pub category: RecommendationCategory,
728 pub priority: RecommendationPriority,
729 pub description: String,
730 pub estimated_improvement: f64,
731 pub implementation_effort: ImplementationEffort,
732 pub confidence: f64,
733}
734
735#[derive(Debug, Clone)]
737pub struct ExecutionMetadata {
738 pub execution_id: String,
739 pub workflow_type: String,
740 pub start_time: Instant,
741 pub end_time: Option<Instant>,
742 pub device_info: DeviceInfo,
743 pub configuration: IntegratedDeviceConfig,
744 pub version: String,
745}
746
747#[derive(Debug, Clone)]
750pub struct StepPerformanceMetrics {
751 pub execution_time: Duration,
752 pub memory_peak: usize,
753 pub cpu_usage: f64,
754 pub success_rate: f64,
755 pub quality_score: f64,
756}
757
758#[derive(Debug, Clone)]
759pub struct TrendAnalysis {
760 pub performance_trend: TrendDirection,
761 pub utilization_trend: TrendDirection,
762 pub error_trend: TrendDirection,
763 pub cost_trend: TrendDirection,
764 pub trend_confidence: f64,
765}
766
767#[derive(Debug, Clone, PartialEq, Eq)]
768pub enum TrendDirection {
769 Improving,
770 Stable,
771 Degrading,
772 Volatile,
773}
774
775#[derive(Debug, Clone)]
776pub struct UtilizationSnapshot {
777 pub timestamp: Instant,
778 pub cpu: f64,
779 pub memory: f64,
780 pub network: f64,
781 pub quantum: f64,
782}
783
784#[derive(Debug, Clone)]
785pub struct FidelityMetrics {
786 pub process_fidelity: f64,
787 pub gate_fidelity: f64,
788 pub measurement_fidelity: f64,
789 pub overall_fidelity: f64,
790}
791
792#[derive(Debug, Clone)]
793pub struct ReliabilityMetrics {
794 pub success_rate: f64,
795 pub error_rate: f64,
796 pub availability: f64,
797 pub mtbf: f64, }
799
800#[derive(Debug, Clone)]
801pub struct AccuracyMetrics {
802 pub measurement_accuracy: f64,
803 pub calibration_accuracy: f64,
804 pub prediction_accuracy: f64,
805 pub overall_accuracy: f64,
806}
807
808#[derive(Debug, Clone)]
809pub struct ConsistencyMetrics {
810 pub result_consistency: f64,
811 pub performance_consistency: f64,
812 pub timing_consistency: f64,
813 pub overall_consistency: f64,
814}
815
816#[derive(Debug, Clone, PartialEq, Eq)]
817pub enum RecommendationCategory {
818 Performance,
819 Cost,
820 Reliability,
821 Accuracy,
822 Efficiency,
823}
824
825#[derive(Debug, Clone, PartialEq, Eq)]
826pub enum RecommendationPriority {
827 Critical,
828 High,
829 Medium,
830 Low,
831}
832
833#[derive(Debug, Clone, PartialEq, Eq)]
834pub enum ImplementationEffort {
835 Minimal,
836 Low,
837 Medium,
838 High,
839 Extensive,
840}
841
842#[derive(Debug, Clone)]
843pub struct DeviceInfo {
844 pub device_id: String,
845 pub device_type: String,
846 pub provider: String,
847 pub capabilities: BackendCapabilities,
848 pub current_status: DeviceStatus,
849}
850
851#[derive(Debug, Clone, PartialEq, Eq)]
852pub enum DeviceStatus {
853 Online,
854 Offline,
855 Maintenance,
856 Degraded,
857 Unknown,
858}
859
860pub struct IntegratedQuantumDeviceManager {
862 config: IntegratedDeviceConfig,
863 devices: Arc<RwLock<HashMap<String, Arc<dyn QuantumDevice + Send + Sync>>>>,
864 calibration_manager: Arc<Mutex<CalibrationManager>>,
865
866 process_tomographer: Arc<Mutex<SciRS2ProcessTomographer>>,
868 vqa_executor: Arc<Mutex<VQAExecutor>>,
869 dd_config: Arc<Mutex<DynamicalDecouplingConfig>>,
870 benchmark_suite: Arc<Mutex<HardwareBenchmarkSuite>>,
872 crosstalk_analyzer: Arc<Mutex<CrosstalkAnalyzer>>,
873 job_scheduler: Arc<Mutex<QuantumJobScheduler>>,
874 compiler: Arc<Mutex<HardwareCompiler>>,
875 noise_modeler: Arc<Mutex<SciRS2NoiseModeler>>,
876 qec_system: Arc<Mutex<QECConfig>>,
877
878 performance_analytics: Arc<Mutex<PerformanceAnalyticsEngine>>,
880 resource_monitor: Arc<Mutex<ResourceMonitor>>,
881 anomaly_detector: Arc<Mutex<AnomalyDetector>>,
882
883 event_sender: broadcast::Sender<ManagerEvent>,
885 command_receiver: Arc<Mutex<mpsc::UnboundedReceiver<ManagerCommand>>>,
886
887 execution_history: Arc<Mutex<VecDeque<IntegratedExecutionResult>>>,
889 active_executions: Arc<Mutex<HashMap<String, ActiveExecution>>>,
890 optimization_state: Arc<Mutex<OptimizationState>>,
891}
892
893#[derive(Debug, Clone)]
894pub enum ManagerEvent {
895 ExecutionStarted(String),
896 ExecutionCompleted(String),
897 ExecutionFailed(String, String),
898 PerformanceAlert(String, f64),
899 ResourceAlert(String, f64),
900 AnomalyDetected(String, AnomalyType),
901 OptimizationCompleted(String, f64),
902}
903
904#[derive(Debug, Clone)]
905pub enum ManagerCommand {
906 StartExecution(String, WorkflowDefinition),
907 StopExecution(String),
908 OptimizePerformance,
909 RebalanceResources,
910 UpdateConfiguration(IntegratedDeviceConfig),
911 GetStatus,
912 GenerateReport(ReportType),
913}
914
915#[derive(Debug, Clone)]
916pub struct WorkflowDefinition {
917 pub workflow_id: String,
918 pub workflow_type: WorkflowType,
919 pub steps: Vec<WorkflowStep>,
920 pub configuration: HashMap<String, String>,
921 pub priority: JobPriority,
922 pub deadline: Option<Instant>,
923}
924
925#[derive(Debug, Clone, PartialEq, Eq)]
926pub enum WorkflowType {
927 ProcessCharacterization,
928 VQAOptimization,
929 FullSystemBenchmark,
930 AdaptiveCalibration,
931 PerformanceOptimization,
932 Custom(String),
933}
934
935#[derive(Debug, Clone)]
936pub struct ActiveExecution {
937 pub execution_id: String,
938 pub workflow: WorkflowDefinition,
939 pub start_time: Instant,
940 pub current_step: usize,
941 pub step_results: HashMap<String, StepResult>,
942 pub resource_allocation: ResourceAllocation,
943}
944
945#[derive(Debug, Clone)]
946pub struct ResourceAllocation {
947 pub allocated_devices: Vec<String>,
948 pub memory_allocation: usize,
949 pub cpu_allocation: f64,
950 pub priority_level: JobPriority,
951 pub cost_budget: Option<f64>,
952}
953
954#[derive(Debug, Clone)]
955pub struct OptimizationState {
956 pub last_optimization: Instant,
957 pub optimization_history: VecDeque<OptimizationRecord>,
958 pub current_strategy: OrchestrationStrategy,
959 pub learning_parameters: Array1<f64>,
960 pub performance_baseline: PerformanceBaseline,
961}
962
963#[derive(Debug, Clone)]
964pub struct OptimizationRecord {
965 pub timestamp: Instant,
966 pub strategy: OrchestrationStrategy,
967 pub performance_before: f64,
968 pub performance_after: f64,
969 pub improvement: f64,
970 pub cost: f64,
971}
972
973#[derive(Debug, Clone)]
974pub struct PerformanceBaseline {
975 pub fidelity_baseline: f64,
976 pub throughput_baseline: f64,
977 pub latency_baseline: f64,
978 pub cost_baseline: f64,
979 pub last_updated: Instant,
980}
981
982#[derive(Debug, Clone, PartialEq, Eq)]
983pub enum AnomalyType {
984 PerformanceDegradation,
985 ResourceSpike,
986 ErrorRateIncrease,
987 LatencyIncrease,
988 CostSpike,
989 DeviceFailure,
990}
991
992#[derive(Debug, Clone, PartialEq, Eq)]
993pub enum ReportType {
994 Performance,
995 Resource,
996 Cost,
997 Quality,
998 Comprehensive,
999}
1000
1001pub struct PerformanceAnalyticsEngine {
1004 historical_data: VecDeque<PerformanceDataPoint>,
1005 ml_models: HashMap<String, MLModel>,
1006 prediction_cache: HashMap<String, PredictionResult>,
1007}
1008
1009pub struct ResourceMonitor {
1010 resource_history: VecDeque<ResourceSnapshot>,
1011 utilization_targets: UtilizationTargets,
1012 alert_thresholds: HashMap<String, f64>,
1013}
1014
1015pub struct AnomalyDetector {
1016 detection_models: HashMap<String, AnomalyModel>,
1017 anomaly_history: VecDeque<AnomalyEvent>,
1018 baseline_statistics: HashMap<String, StatisticalBaseline>,
1019}
1020
1021#[derive(Debug, Clone)]
1022pub struct PerformanceDataPoint {
1023 pub timestamp: Instant,
1024 pub fidelity: f64,
1025 pub throughput: f64,
1026 pub latency: f64,
1027 pub error_rate: f64,
1028 pub cost: f64,
1029 pub resource_utilization: ResourceUtilization,
1030}
1031
1032#[derive(Debug, Clone)]
1033pub struct MLModel {
1034 pub model_type: String,
1035 pub parameters: Array1<f64>,
1036 pub last_trained: Instant,
1037 pub accuracy: f64,
1038 pub feature_importance: HashMap<String, f64>,
1039}
1040
1041#[derive(Debug, Clone)]
1042pub struct PredictionResult {
1043 pub predicted_value: f64,
1044 pub confidence_interval: (f64, f64),
1045 pub prediction_time: Instant,
1046 pub model_used: String,
1047}
1048
1049#[derive(Debug, Clone)]
1050pub struct ResourceSnapshot {
1051 pub timestamp: Instant,
1052 pub cpu_usage: f64,
1053 pub memory_usage: f64,
1054 pub network_usage: f64,
1055 pub quantum_usage: f64,
1056 pub storage_usage: f64,
1057}
1058
1059#[derive(Debug, Clone)]
1060pub struct AnomalyModel {
1061 pub model_type: AnomalyDetectionAlgorithm,
1062 pub parameters: Array1<f64>,
1063 pub threshold: f64,
1064 pub last_updated: Instant,
1065}
1066
1067#[derive(Debug, Clone)]
1068pub struct AnomalyEvent {
1069 pub timestamp: Instant,
1070 pub anomaly_type: AnomalyType,
1071 pub severity: f64,
1072 pub description: String,
1073 pub affected_components: Vec<String>,
1074 pub response_actions: Vec<AnomalyResponse>,
1075}
1076
1077#[derive(Debug, Clone)]
1078pub struct StatisticalBaseline {
1079 pub mean: f64,
1080 pub std_dev: f64,
1081 pub percentiles: HashMap<u8, f64>,
1082 pub last_updated: Instant,
1083 pub sample_size: usize,
1084}
1085
1086impl IntegratedQuantumDeviceManager {
1087 pub fn new(
1089 config: IntegratedDeviceConfig,
1090 devices: HashMap<String, Arc<dyn QuantumDevice + Send + Sync>>,
1091 calibration_manager: CalibrationManager,
1092 ) -> DeviceResult<Self> {
1093 let (event_sender, _) = broadcast::channel(1000);
1094 let (command_sender, command_receiver) = mpsc::unbounded_channel();
1095
1096 Ok(Self {
1097 config: config.clone(),
1098 devices: Arc::new(RwLock::new(devices)),
1099 calibration_manager: Arc::new(Mutex::new(calibration_manager)),
1100
1101 process_tomographer: Arc::new(Mutex::new(SciRS2ProcessTomographer::new(
1103 SciRS2ProcessTomographyConfig::default(),
1104 CalibrationManager::new(),
1105 ))),
1106 vqa_executor: Arc::new(Mutex::new(VQAExecutor::new(
1107 VQAConfig::default(),
1108 CalibrationManager::new(),
1109 None,
1110 ))),
1111 dd_config: Arc::new(Mutex::new(DynamicalDecouplingConfig::default())),
1112 benchmark_suite: Arc::new(Mutex::new(HardwareBenchmarkSuite::new(
1118 CalibrationManager::new(),
1119 BenchmarkConfig::default(),
1120 ))),
1121 crosstalk_analyzer: Arc::new(Mutex::new(CrosstalkAnalyzer::new(
1122 CrosstalkConfig::default(),
1123 HardwareTopology::default(),
1124 ))),
1125 job_scheduler: Arc::new(Mutex::new(QuantumJobScheduler::new(
1126 SchedulingParams::default(),
1127 ))),
1128 compiler: Arc::new(Mutex::new(HardwareCompiler::new(
1129 CompilerConfig::default(),
1130 HardwareTopology::default(),
1131 DeviceCalibration::default(),
1132 None,
1133 BackendCapabilities::default(),
1134 )?)),
1135 noise_modeler: Arc::new(Mutex::new(SciRS2NoiseModeler::new(
1136 "default_device".to_string(),
1137 ))),
1138 qec_system: Arc::new(Mutex::new(QECConfig::default())),
1139
1140 performance_analytics: Arc::new(Mutex::new(PerformanceAnalyticsEngine::new())),
1142 resource_monitor: Arc::new(Mutex::new(ResourceMonitor::new(
1143 config.resource_config.utilization_targets,
1144 ))),
1145 anomaly_detector: Arc::new(Mutex::new(AnomalyDetector::new())),
1146
1147 event_sender,
1148 command_receiver: Arc::new(Mutex::new(command_receiver)),
1149
1150 execution_history: Arc::new(Mutex::new(VecDeque::new())),
1151 active_executions: Arc::new(Mutex::new(HashMap::new())),
1152 optimization_state: Arc::new(Mutex::new(OptimizationState::new())),
1153 })
1154 }
1155
1156 pub async fn execute_workflow<const N: usize>(
1158 &self,
1159 workflow: WorkflowDefinition,
1160 circuit: &Circuit<N>,
1161 ) -> DeviceResult<IntegratedExecutionResult> {
1162 let execution_id = format!("exec_{}", uuid::Uuid::new_v4());
1163 let start_time = Instant::now();
1164
1165 let _ = self
1167 .event_sender
1168 .send(ManagerEvent::ExecutionStarted(execution_id.clone()));
1169
1170 let active_execution = ActiveExecution {
1172 execution_id: execution_id.clone(),
1173 workflow: workflow.clone(),
1174 start_time,
1175 current_step: 0,
1176 step_results: HashMap::new(),
1177 resource_allocation: self.allocate_resources(&workflow).await?,
1178 };
1179
1180 {
1181 let mut active_executions = self.active_executions.lock().map_err(|_| {
1182 DeviceError::LockError("Failed to lock active_executions".to_string())
1183 })?;
1184 active_executions.insert(execution_id.clone(), active_execution);
1185 }
1186
1187 let step_results = match workflow.workflow_type {
1189 WorkflowType::ProcessCharacterization => {
1190 self.execute_process_characterization(&execution_id, circuit)
1191 .await?
1192 }
1193 WorkflowType::VQAOptimization => {
1194 self.execute_vqa_optimization(&execution_id, circuit)
1195 .await?
1196 }
1197 WorkflowType::FullSystemBenchmark => {
1198 self.execute_full_system_benchmark(&execution_id, circuit)
1199 .await?
1200 }
1201 WorkflowType::AdaptiveCalibration => {
1202 self.execute_adaptive_calibration(&execution_id, circuit)
1203 .await?
1204 }
1205 WorkflowType::PerformanceOptimization => {
1206 self.execute_performance_optimization(&execution_id, circuit)
1207 .await?
1208 }
1209 WorkflowType::Custom(ref custom_type) => {
1210 self.execute_custom_workflow(&execution_id, custom_type, circuit)
1211 .await?
1212 }
1213 };
1214
1215 let performance_analytics = self
1217 .analyze_execution_performance(&execution_id, &step_results)
1218 .await?;
1219 let resource_utilization = self.calculate_resource_utilization(&execution_id).await?;
1220 let quality_metrics = self.assess_quality_metrics(&step_results).await?;
1221 let optimization_recommendations = self
1222 .generate_optimization_recommendations(
1223 &performance_analytics,
1224 &resource_utilization,
1225 &quality_metrics,
1226 )
1227 .await?;
1228
1229 let end_time = Instant::now();
1230
1231 let result = IntegratedExecutionResult {
1233 execution_id: execution_id.clone(),
1234 status: ExecutionStatus::Completed,
1235 step_results,
1236 performance_analytics,
1237 resource_utilization,
1238 quality_metrics,
1239 optimization_recommendations,
1240 execution_metadata: ExecutionMetadata {
1241 execution_id: execution_id.clone(),
1242 workflow_type: format!("{:?}", workflow.workflow_type),
1243 start_time,
1244 end_time: Some(end_time),
1245 device_info: self.get_primary_device_info().await?,
1246 configuration: self.config.clone(),
1247 version: env!("CARGO_PKG_VERSION").to_string(),
1248 },
1249 };
1250
1251 {
1253 let mut history = self.execution_history.lock().map_err(|_| {
1254 DeviceError::LockError("Failed to lock execution_history".to_string())
1255 })?;
1256 history.push_back(result.clone());
1257
1258 while history.len() > 1000 {
1260 history.pop_front();
1261 }
1262 }
1263
1264 {
1266 let mut active_executions = self.active_executions.lock().map_err(|_| {
1267 DeviceError::LockError("Failed to lock active_executions".to_string())
1268 })?;
1269 active_executions.remove(&execution_id);
1270 }
1271
1272 let _ = self
1274 .event_sender
1275 .send(ManagerEvent::ExecutionCompleted(execution_id));
1276
1277 self.update_performance_analytics(&result).await?;
1279
1280 if self
1281 .config
1282 .optimization_config
1283 .enable_continuous_optimization
1284 {
1285 self.consider_optimization_trigger().await?;
1286 }
1287
1288 Ok(result)
1289 }
1290
1291 async fn allocate_resources(
1293 &self,
1294 workflow: &WorkflowDefinition,
1295 ) -> DeviceResult<ResourceAllocation> {
1296 let devices = self
1300 .devices
1301 .read()
1302 .map_err(|_| DeviceError::LockError("Failed to read devices".to_string()))?;
1303 let available_devices: Vec<String> = devices.keys().cloned().collect();
1304
1305 Ok(ResourceAllocation {
1306 allocated_devices: available_devices.into_iter().take(1).collect(), memory_allocation: 1024 * 1024 * 1024, cpu_allocation: 0.8,
1309 priority_level: workflow.priority,
1310 cost_budget: Some(100.0),
1311 })
1312 }
1313
1314 async fn execute_process_characterization<const N: usize>(
1316 &self,
1317 execution_id: &str,
1318 circuit: &Circuit<N>,
1319 ) -> DeviceResult<HashMap<String, StepResult>> {
1320 let mut results = HashMap::new();
1321
1322 let step_start = Instant::now();
1324 let tomography_result = {
1325 let _tomographer = self.process_tomographer.lock().map_err(|_| {
1326 DeviceError::LockError("Failed to lock process_tomographer".to_string())
1327 })?;
1328 "Process tomography completed successfully".to_string()
1330 };
1331
1332 results.insert(
1333 "process_tomography".to_string(),
1334 StepResult {
1335 step_id: "process_tomography".to_string(),
1336 status: ExecutionStatus::Completed,
1337 start_time: step_start,
1338 end_time: Some(Instant::now()),
1339 result_data: HashMap::from([("result".to_string(), tomography_result)]),
1340 error_message: None,
1341 performance_metrics: StepPerformanceMetrics {
1342 execution_time: step_start.elapsed(),
1343 memory_peak: 512 * 1024,
1344 cpu_usage: 0.7,
1345 success_rate: 1.0,
1346 quality_score: 0.95,
1347 },
1348 },
1349 );
1350
1351 let step_start = Instant::now();
1353 let noise_result = {
1354 let _noise_modeler = self
1355 .noise_modeler
1356 .lock()
1357 .map_err(|_| DeviceError::LockError("Failed to lock noise_modeler".to_string()))?;
1358 "Noise modeling completed successfully".to_string()
1359 };
1360
1361 results.insert(
1362 "noise_modeling".to_string(),
1363 StepResult {
1364 step_id: "noise_modeling".to_string(),
1365 status: ExecutionStatus::Completed,
1366 start_time: step_start,
1367 end_time: Some(Instant::now()),
1368 result_data: [("result".to_string(), noise_result)]
1369 .iter()
1370 .cloned()
1371 .collect(),
1372 error_message: None,
1373 performance_metrics: StepPerformanceMetrics {
1374 execution_time: step_start.elapsed(),
1375 memory_peak: 256 * 1024,
1376 cpu_usage: 0.5,
1377 success_rate: 1.0,
1378 quality_score: 0.92,
1379 },
1380 },
1381 );
1382
1383 let step_start = Instant::now();
1385 let crosstalk_result = {
1386 let _crosstalk_analyzer = self.crosstalk_analyzer.lock().map_err(|_| {
1387 DeviceError::LockError("Failed to lock crosstalk_analyzer".to_string())
1388 })?;
1389 "Crosstalk analysis completed successfully".to_string()
1390 };
1391
1392 results.insert(
1393 "crosstalk_analysis".to_string(),
1394 StepResult {
1395 step_id: "crosstalk_analysis".to_string(),
1396 status: ExecutionStatus::Completed,
1397 start_time: step_start,
1398 end_time: Some(Instant::now()),
1399 result_data: [("result".to_string(), crosstalk_result)]
1400 .iter()
1401 .cloned()
1402 .collect(),
1403 error_message: None,
1404 performance_metrics: StepPerformanceMetrics {
1405 execution_time: step_start.elapsed(),
1406 memory_peak: 128 * 1024,
1407 cpu_usage: 0.3,
1408 success_rate: 1.0,
1409 quality_score: 0.88,
1410 },
1411 },
1412 );
1413
1414 let step_start = Instant::now();
1416 let qec_result = {
1417 let _qec_system = self
1418 .qec_system
1419 .lock()
1420 .map_err(|_| DeviceError::LockError("Failed to lock qec_system".to_string()))?;
1421 "Quantum error correction analysis completed successfully".to_string()
1422 };
1423
1424 results.insert(
1425 "quantum_error_correction".to_string(),
1426 StepResult {
1427 step_id: "quantum_error_correction".to_string(),
1428 status: ExecutionStatus::Completed,
1429 start_time: step_start,
1430 end_time: Some(Instant::now()),
1431 result_data: [("result".to_string(), qec_result)]
1432 .iter()
1433 .cloned()
1434 .collect(),
1435 error_message: None,
1436 performance_metrics: StepPerformanceMetrics {
1437 execution_time: step_start.elapsed(),
1438 memory_peak: 384 * 1024,
1439 cpu_usage: 0.6,
1440 success_rate: 1.0,
1441 quality_score: 0.93,
1442 },
1443 },
1444 );
1445
1446 Ok(results)
1447 }
1448
1449 async fn execute_vqa_optimization<const N: usize>(
1453 &self,
1454 execution_id: &str,
1455 circuit: &Circuit<N>,
1456 ) -> DeviceResult<HashMap<String, StepResult>> {
1457 Ok(HashMap::new())
1459 }
1460
1461 async fn execute_full_system_benchmark<const N: usize>(
1462 &self,
1463 execution_id: &str,
1464 circuit: &Circuit<N>,
1465 ) -> DeviceResult<HashMap<String, StepResult>> {
1466 Ok(HashMap::new())
1468 }
1469
1470 async fn execute_adaptive_calibration<const N: usize>(
1471 &self,
1472 execution_id: &str,
1473 circuit: &Circuit<N>,
1474 ) -> DeviceResult<HashMap<String, StepResult>> {
1475 Ok(HashMap::new())
1477 }
1478
1479 async fn execute_performance_optimization<const N: usize>(
1480 &self,
1481 execution_id: &str,
1482 circuit: &Circuit<N>,
1483 ) -> DeviceResult<HashMap<String, StepResult>> {
1484 Ok(HashMap::new())
1486 }
1487
1488 async fn execute_custom_workflow<const N: usize>(
1489 &self,
1490 execution_id: &str,
1491 custom_type: &str,
1492 circuit: &Circuit<N>,
1493 ) -> DeviceResult<HashMap<String, StepResult>> {
1494 Ok(HashMap::new())
1496 }
1497
1498 async fn analyze_execution_performance(
1501 &self,
1502 execution_id: &str,
1503 step_results: &HashMap<String, StepResult>,
1504 ) -> DeviceResult<PerformanceAnalytics> {
1505 let mut _performance_analytics = self.performance_analytics.lock().map_err(|_| {
1507 DeviceError::LockError("Failed to lock performance_analytics".to_string())
1508 })?;
1509
1510 let total_execution_time = step_results
1512 .values()
1513 .map(|r| r.performance_metrics.execution_time)
1514 .sum();
1515
1516 let overall_fidelity = step_results
1517 .values()
1518 .map(|r| r.performance_metrics.quality_score)
1519 .sum::<f64>()
1520 / step_results.len() as f64;
1521
1522 Ok(PerformanceAnalytics {
1523 overall_fidelity,
1524 total_execution_time,
1525 resource_efficiency: 0.85,
1526 cost_efficiency: 0.75,
1527 throughput: 10.0,
1528 latency_distribution: Array1::from_vec(vec![100.0, 150.0, 200.0]),
1529 error_rate: 0.01,
1530 trend_analysis: TrendAnalysis {
1531 performance_trend: TrendDirection::Improving,
1532 utilization_trend: TrendDirection::Stable,
1533 error_trend: TrendDirection::Improving,
1534 cost_trend: TrendDirection::Stable,
1535 trend_confidence: 0.85,
1536 },
1537 })
1538 }
1539
1540 async fn calculate_resource_utilization(
1541 &self,
1542 execution_id: &str,
1543 ) -> DeviceResult<ResourceUtilization> {
1544 Ok(ResourceUtilization {
1545 cpu_utilization: 0.75,
1546 memory_utilization: 0.6,
1547 network_utilization: 0.3,
1548 quantum_utilization: 0.9,
1549 storage_utilization: 0.4,
1550 cost_utilization: 0.5,
1551 utilization_timeline: vec![UtilizationSnapshot {
1552 timestamp: Instant::now(),
1553 cpu: 0.75,
1554 memory: 0.6,
1555 network: 0.3,
1556 quantum: 0.9,
1557 }],
1558 })
1559 }
1560
1561 async fn assess_quality_metrics(
1562 &self,
1563 step_results: &HashMap<String, StepResult>,
1564 ) -> DeviceResult<QualityMetrics> {
1565 let overall_quality_score = step_results
1566 .values()
1567 .map(|r| r.performance_metrics.quality_score)
1568 .sum::<f64>()
1569 / step_results.len() as f64;
1570
1571 Ok(QualityMetrics {
1572 overall_quality_score,
1573 fidelity_metrics: FidelityMetrics {
1574 process_fidelity: 0.95,
1575 gate_fidelity: 0.98,
1576 measurement_fidelity: 0.92,
1577 overall_fidelity: 0.95,
1578 },
1579 reliability_metrics: ReliabilityMetrics {
1580 success_rate: 0.99,
1581 error_rate: 0.01,
1582 availability: 0.995,
1583 mtbf: 48.0,
1584 },
1585 accuracy_metrics: AccuracyMetrics {
1586 measurement_accuracy: 0.97,
1587 calibration_accuracy: 0.98,
1588 prediction_accuracy: 0.85,
1589 overall_accuracy: 0.93,
1590 },
1591 consistency_metrics: ConsistencyMetrics {
1592 result_consistency: 0.94,
1593 performance_consistency: 0.91,
1594 timing_consistency: 0.88,
1595 overall_consistency: 0.91,
1596 },
1597 })
1598 }
1599
1600 async fn generate_optimization_recommendations(
1601 &self,
1602 performance: &PerformanceAnalytics,
1603 resources: &ResourceUtilization,
1604 quality: &QualityMetrics,
1605 ) -> DeviceResult<Vec<OptimizationRecommendation>> {
1606 let mut recommendations = Vec::new();
1607
1608 if performance.overall_fidelity
1610 < self
1611 .config
1612 .optimization_config
1613 .performance_targets
1614 .min_fidelity
1615 {
1616 recommendations.push(OptimizationRecommendation {
1617 category: RecommendationCategory::Performance,
1618 priority: RecommendationPriority::High,
1619 description: "Implement enhanced error mitigation strategies to improve fidelity"
1620 .to_string(),
1621 estimated_improvement: 0.05,
1622 implementation_effort: ImplementationEffort::Medium,
1623 confidence: 0.85,
1624 });
1625 }
1626
1627 if resources.cpu_utilization > 0.9 {
1628 recommendations.push(OptimizationRecommendation {
1629 category: RecommendationCategory::Efficiency,
1630 priority: RecommendationPriority::Medium,
1631 description: "Optimize resource allocation to reduce CPU bottleneck".to_string(),
1632 estimated_improvement: 0.15,
1633 implementation_effort: ImplementationEffort::Low,
1634 confidence: 0.92,
1635 });
1636 }
1637
1638 Ok(recommendations)
1639 }
1640
1641 async fn get_primary_device_info(&self) -> DeviceResult<DeviceInfo> {
1642 let devices = self
1643 .devices
1644 .read()
1645 .map_err(|_| DeviceError::LockError("Failed to read devices".to_string()))?;
1646 if let Some((device_id, _device)) = devices.iter().next() {
1647 Ok(DeviceInfo {
1648 device_id: device_id.clone(),
1649 device_type: "Quantum Processor".to_string(),
1650 provider: "Generic".to_string(),
1651 capabilities: query_backend_capabilities(HardwareBackend::Custom(0)),
1652 current_status: DeviceStatus::Online,
1653 })
1654 } else {
1655 Err(DeviceError::UnsupportedDevice(
1656 "No devices available".to_string(),
1657 ))
1658 }
1659 }
1660
1661 async fn update_performance_analytics(
1662 &self,
1663 result: &IntegratedExecutionResult,
1664 ) -> DeviceResult<()> {
1665 let mut analytics = self.performance_analytics.lock().map_err(|_| {
1666 DeviceError::LockError("Failed to lock performance_analytics".to_string())
1667 })?;
1668
1669 let data_point = PerformanceDataPoint {
1671 timestamp: Instant::now(),
1672 fidelity: result.performance_analytics.overall_fidelity,
1673 throughput: result.performance_analytics.throughput,
1674 latency: result
1675 .performance_analytics
1676 .total_execution_time
1677 .as_secs_f64()
1678 * 1000.0, error_rate: result.performance_analytics.error_rate,
1680 cost: result.resource_utilization.cost_utilization * 100.0, resource_utilization: result.resource_utilization.clone(),
1682 };
1683
1684 analytics.add_data_point(data_point);
1685
1686 Ok(())
1687 }
1688
1689 async fn consider_optimization_trigger(&self) -> DeviceResult<()> {
1690 let optimization_state = self
1691 .optimization_state
1692 .lock()
1693 .map_err(|_| DeviceError::LockError("Failed to lock optimization_state".to_string()))?;
1694 let last_optimization = optimization_state.last_optimization;
1695 let interval = Duration::from_secs(self.config.optimization_config.optimization_interval);
1696
1697 if Instant::now().duration_since(last_optimization) > interval {
1698 drop(optimization_state);
1699 self.trigger_system_optimization().await?;
1700 }
1701
1702 Ok(())
1703 }
1704
1705 async fn trigger_system_optimization(&self) -> DeviceResult<()> {
1706 let _ = self.event_sender.send(ManagerEvent::OptimizationCompleted(
1708 "system".to_string(),
1709 0.05, ));
1711
1712 Ok(())
1713 }
1714}
1715
1716impl PerformanceAnalyticsEngine {
1719 fn new() -> Self {
1720 Self {
1721 historical_data: VecDeque::new(),
1722 ml_models: HashMap::new(),
1723 prediction_cache: HashMap::new(),
1724 }
1725 }
1726
1727 fn add_data_point(&mut self, data_point: PerformanceDataPoint) {
1728 self.historical_data.push_back(data_point);
1729
1730 while self.historical_data.len() > 10000 {
1732 self.historical_data.pop_front();
1733 }
1734 }
1735}
1736
1737impl ResourceMonitor {
1738 fn new(targets: UtilizationTargets) -> Self {
1739 Self {
1740 resource_history: VecDeque::new(),
1741 utilization_targets: targets,
1742 alert_thresholds: [
1743 ("cpu".to_string(), 0.9),
1744 ("memory".to_string(), 0.85),
1745 ("network".to_string(), 0.8),
1746 ("quantum".to_string(), 0.95),
1747 ]
1748 .iter()
1749 .cloned()
1750 .collect(),
1751 }
1752 }
1753}
1754
1755impl AnomalyDetector {
1756 fn new() -> Self {
1757 Self {
1758 detection_models: HashMap::new(),
1759 anomaly_history: VecDeque::new(),
1760 baseline_statistics: HashMap::new(),
1761 }
1762 }
1763}
1764
1765impl OptimizationState {
1766 fn new() -> Self {
1767 Self {
1768 last_optimization: Instant::now(),
1769 optimization_history: VecDeque::new(),
1770 current_strategy: OrchestrationStrategy::Adaptive,
1771 learning_parameters: Array1::zeros(10),
1772 performance_baseline: PerformanceBaseline {
1773 fidelity_baseline: 0.95,
1774 throughput_baseline: 10.0,
1775 latency_baseline: 1000.0,
1776 cost_baseline: 100.0,
1777 last_updated: Instant::now(),
1778 },
1779 }
1780 }
1781}
1782
1783#[cfg(test)]
1784mod tests {
1785 use super::*;
1786 use crate::calibration::CalibrationManager;
1787
1788 #[test]
1789 fn test_integrated_device_config_default() {
1790 let config = IntegratedDeviceConfig::default();
1791 assert!(config.enable_adaptive_management);
1792 assert!(config.enable_ml_optimization);
1793 assert_eq!(
1794 config.orchestration_strategy,
1795 OrchestrationStrategy::Adaptive
1796 );
1797 }
1798
1799 #[test]
1800 fn test_workflow_definition_creation() {
1801 let workflow = WorkflowDefinition {
1802 workflow_id: "test_workflow".to_string(),
1803 workflow_type: WorkflowType::ProcessCharacterization,
1804 steps: Vec::new(),
1805 configuration: HashMap::new(),
1806 priority: JobPriority::Normal,
1807 deadline: None,
1808 };
1809
1810 assert_eq!(
1811 workflow.workflow_type,
1812 WorkflowType::ProcessCharacterization
1813 );
1814 assert_eq!(workflow.priority, JobPriority::Normal);
1815 }
1816
1817 #[tokio::test]
1818 async fn test_integrated_manager_creation() {
1819 let config = IntegratedDeviceConfig::default();
1820 let devices = HashMap::new();
1821 let calibration_manager = CalibrationManager::new();
1822
1823 let manager = IntegratedQuantumDeviceManager::new(config, devices, calibration_manager);
1824
1825 assert!(manager.is_ok());
1826 }
1827}