quantrs2_device/hardware_parallelization/
engine.rs

1//! Hardware-aware parallelization engine
2
3use super::config::*;
4use super::monitor::*;
5use super::types::*;
6use crate::{
7    calibration::CalibrationManager, integrated_device_manager::IntegratedQuantumDeviceManager,
8    routing_advanced::AdvancedQubitRouter, translation::HardwareBackend, DeviceResult,
9};
10use quantrs2_circuit::prelude::*;
11use quantrs2_core::qubit::QubitId;
12use std::collections::{HashMap, VecDeque};
13use std::sync::{Arc, RwLock};
14use std::time::{Duration, SystemTime};
15use tokio::sync::{Mutex as AsyncMutex, Semaphore};
16
17/// Main hardware-aware parallelization engine
18pub struct HardwareParallelizationEngine {
19    config: ParallelizationConfig,
20    device_manager: Arc<RwLock<IntegratedQuantumDeviceManager>>,
21    calibration_manager: Arc<RwLock<CalibrationManager>>,
22    router: Arc<RwLock<AdvancedQubitRouter>>,
23    // Execution pools
24    circuit_pool: Arc<AsyncMutex<VecDeque<ParallelCircuitTask>>>,
25    gate_pool: Arc<AsyncMutex<VecDeque<ParallelGateTask>>>,
26    // Resource tracking
27    resource_monitor: Arc<RwLock<ResourceMonitor>>,
28    // Performance tracking
29    performance_tracker: Arc<RwLock<PerformanceTracker>>,
30    // Load balancer
31    load_balancer: Arc<RwLock<LoadBalancer>>,
32    // Semaphores for resource control
33    circuit_semaphore: Arc<Semaphore>,
34    gate_semaphore: Arc<Semaphore>,
35    memory_semaphore: Arc<Semaphore>,
36}
37
38impl HardwareParallelizationEngine {
39    /// Create a new hardware parallelization engine
40    pub fn new(
41        config: ParallelizationConfig,
42        device_manager: Arc<RwLock<IntegratedQuantumDeviceManager>>,
43        calibration_manager: Arc<RwLock<CalibrationManager>>,
44        router: Arc<RwLock<AdvancedQubitRouter>>,
45    ) -> Self {
46        let circuit_semaphore = Arc::new(Semaphore::new(
47            config.resource_allocation.max_concurrent_circuits,
48        ));
49        let gate_semaphore = Arc::new(Semaphore::new(
50            config.resource_allocation.max_concurrent_gates,
51        ));
52        let memory_semaphore = Arc::new(Semaphore::new(
53            (config.resource_allocation.memory_limits.max_total_memory_mb
54                / config.resource_allocation.memory_limits.max_per_circuit_mb) as usize,
55        ));
56
57        Self {
58            config: config.clone(),
59            device_manager,
60            calibration_manager,
61            router,
62            circuit_pool: Arc::new(AsyncMutex::new(VecDeque::new())),
63            gate_pool: Arc::new(AsyncMutex::new(VecDeque::new())),
64            resource_monitor: Arc::new(RwLock::new(ResourceMonitor::new())),
65            performance_tracker: Arc::new(RwLock::new(PerformanceTracker::new())),
66            load_balancer: Arc::new(RwLock::new(LoadBalancer::new(
67                config.load_balancing.algorithm,
68            ))),
69            circuit_semaphore,
70            gate_semaphore,
71            memory_semaphore,
72        }
73    }
74
75    /// Submit a circuit for parallel execution
76    pub async fn submit_parallel_circuit<const N: usize>(
77        &self,
78        circuit: Circuit<N>,
79        target_backend: HardwareBackend,
80        priority: TaskPriority,
81        constraints: ExecutionConstraints,
82    ) -> DeviceResult<String> {
83        let task_id = uuid::Uuid::new_v4().to_string();
84
85        // Calculate resource requirements
86        let resource_requirements =
87            self.calculate_resource_requirements(&circuit, &target_backend)?;
88
89        // Create parallel task
90        let task = ParallelCircuitTask {
91            id: task_id.clone(),
92            circuit: Box::new(circuit),
93            target_backend,
94            priority,
95            resource_requirements,
96            constraints,
97            submitted_at: SystemTime::now(),
98            deadline: None, // Will be set based on constraints
99        };
100
101        // Add to circuit pool
102        {
103            let mut pool = self.circuit_pool.lock().await;
104            pool.push_back(task);
105        }
106
107        // Trigger scheduling
108        self.schedule_circuits().await?;
109
110        Ok(task_id)
111    }
112
113    /// Submit gates for parallel execution
114    pub async fn submit_parallel_gates(
115        &self,
116        gate_operations: Vec<ParallelGateOperation>,
117        target_qubits: Vec<QubitId>,
118        priority: TaskPriority,
119    ) -> DeviceResult<String> {
120        let task_id = uuid::Uuid::new_v4().to_string();
121
122        // Build dependency graph
123        let dependency_graph = self.build_dependency_graph(&gate_operations)?;
124
125        // Create parallel gate task
126        let task = ParallelGateTask {
127            id: task_id.clone(),
128            gate_operations,
129            target_qubits,
130            dependency_graph,
131            priority,
132            submitted_at: SystemTime::now(),
133        };
134
135        // Add to gate pool
136        {
137            let mut pool = self.gate_pool.lock().await;
138            pool.push_back(task);
139        }
140
141        // Trigger gate scheduling
142        self.schedule_gates().await?;
143
144        Ok(task_id)
145    }
146
147    /// Execute parallel circuits using the configured strategy
148    pub async fn execute_parallel_circuits(&self) -> DeviceResult<Vec<ParallelExecutionResult>> {
149        match self.config.strategy {
150            ParallelizationStrategy::CircuitLevel => {
151                self.execute_circuit_level_parallelization().await
152            }
153            ParallelizationStrategy::GateLevel => self.execute_gate_level_parallelization().await,
154            ParallelizationStrategy::Hybrid => self.execute_hybrid_parallelization().await,
155            ParallelizationStrategy::TopologyAware => {
156                self.execute_topology_aware_parallelization().await
157            }
158            ParallelizationStrategy::ResourceConstrained => {
159                self.execute_resource_constrained_parallelization().await
160            }
161            ParallelizationStrategy::SciRS2Optimized => {
162                self.execute_scirs2_optimized_parallelization().await
163            }
164            ParallelizationStrategy::Custom { .. } => self.execute_custom_parallelization().await,
165        }
166    }
167
168    /// Get current performance metrics
169    pub async fn get_performance_metrics(
170        &self,
171    ) -> DeviceResult<super::monitor::PerformanceMetrics> {
172        let tracker = self.performance_tracker.read().map_err(|_| {
173            crate::DeviceError::LockError(
174                "Failed to acquire read lock on performance tracker".into(),
175            )
176        })?;
177        Ok(tracker.performance_metrics.clone())
178    }
179
180    /// Get optimization suggestions
181    pub async fn get_optimization_suggestions(
182        &self,
183    ) -> DeviceResult<Vec<super::monitor::OptimizationSuggestion>> {
184        let tracker = self.performance_tracker.read().map_err(|_| {
185            crate::DeviceError::LockError(
186                "Failed to acquire read lock on performance tracker".into(),
187            )
188        })?;
189        Ok(tracker.optimization_suggestions.clone())
190    }
191
192    /// Apply dynamic load balancing
193    #[allow(clippy::await_holding_lock)] // Placeholder implementation - to be refactored
194    pub async fn apply_load_balancing(&self) -> DeviceResult<LoadBalancingResult> {
195        let mut balancer = self.load_balancer.write().map_err(|_| {
196            crate::DeviceError::LockError("Failed to acquire write lock on load balancer".into())
197        })?;
198        balancer.rebalance_loads().await
199    }
200
201    // Private implementation methods...
202
203    async fn schedule_circuits(&self) -> DeviceResult<()> {
204        // Implementation for circuit scheduling
205        Ok(())
206    }
207
208    async fn schedule_gates(&self) -> DeviceResult<()> {
209        // Implementation for gate scheduling
210        Ok(())
211    }
212
213    const fn calculate_resource_requirements<const N: usize>(
214        &self,
215        circuit: &Circuit<N>,
216        backend: &HardwareBackend,
217    ) -> DeviceResult<ParallelResourceRequirements> {
218        // Implementation for resource requirement calculation
219        Ok(ParallelResourceRequirements {
220            required_cpu_cores: 1,
221            required_memory_mb: 512.0,
222            required_qpu_time: Duration::from_secs(60),
223            required_bandwidth_mbps: 10.0,
224            required_storage_mb: 100.0,
225        })
226    }
227
228    fn build_dependency_graph(
229        &self,
230        operations: &[ParallelGateOperation],
231    ) -> DeviceResult<HashMap<String, Vec<String>>> {
232        // Implementation for dependency graph building
233        Ok(HashMap::new())
234    }
235
236    async fn execute_circuit_level_parallelization(
237        &self,
238    ) -> DeviceResult<Vec<ParallelExecutionResult>> {
239        // Implementation for circuit-level parallelization
240        Ok(vec![])
241    }
242
243    async fn execute_gate_level_parallelization(
244        &self,
245    ) -> DeviceResult<Vec<ParallelExecutionResult>> {
246        // Implementation for gate-level parallelization
247        Ok(vec![])
248    }
249
250    async fn execute_hybrid_parallelization(&self) -> DeviceResult<Vec<ParallelExecutionResult>> {
251        // Implementation for hybrid parallelization
252        Ok(vec![])
253    }
254
255    async fn execute_topology_aware_parallelization(
256        &self,
257    ) -> DeviceResult<Vec<ParallelExecutionResult>> {
258        // Implementation for topology-aware parallelization
259        Ok(vec![])
260    }
261
262    async fn execute_resource_constrained_parallelization(
263        &self,
264    ) -> DeviceResult<Vec<ParallelExecutionResult>> {
265        // Implementation for resource-constrained parallelization
266        Ok(vec![])
267    }
268
269    async fn execute_scirs2_optimized_parallelization(
270        &self,
271    ) -> DeviceResult<Vec<ParallelExecutionResult>> {
272        // Implementation for SciRS2-optimized parallelization
273        Ok(vec![])
274    }
275
276    async fn execute_custom_parallelization(&self) -> DeviceResult<Vec<ParallelExecutionResult>> {
277        // Implementation for custom parallelization
278        Ok(vec![])
279    }
280}