quantrs2_device/dynamical_decoupling/
performance.rs

1//! Performance analysis for dynamical decoupling sequences
2
3use scirs2_core::ndarray::{Array1, Array2};
4use std::collections::HashMap;
5use std::time::Duration;
6
7use super::{
8    config::{BenchmarkProtocol, DDPerformanceConfig, DDPerformanceMetric, StatisticalDepth},
9    sequences::DDSequence,
10    DDCircuitExecutor,
11};
12use crate::DeviceResult;
13
14// SciRS2 dependencies with fallbacks
15#[cfg(feature = "scirs2")]
16use scirs2_stats::{ks_2samp, mean, pearsonr, shapiro_wilk, spearmanr, std, ttest_1samp};
17
18#[cfg(not(feature = "scirs2"))]
19use super::fallback_scirs2::{mean, pearsonr, std};
20
21/// Performance analysis results for DD sequences
22#[derive(Debug, Clone)]
23pub struct DDPerformanceAnalysis {
24    /// Measured performance metrics
25    pub metrics: HashMap<DDPerformanceMetric, f64>,
26    /// Benchmark results
27    pub benchmark_results: BenchmarkResults,
28    /// Statistical analysis
29    pub statistical_analysis: DDStatisticalAnalysis,
30    /// Comparative analysis
31    pub comparative_analysis: Option<ComparativeAnalysis>,
32    /// Performance trends
33    pub performance_trends: PerformanceTrends,
34}
35
36/// Benchmark results for DD sequences
37#[derive(Debug, Clone)]
38pub struct BenchmarkResults {
39    /// Randomized benchmarking results
40    pub randomized_benchmarking: Option<RandomizedBenchmarkingResults>,
41    /// Process tomography results
42    pub process_tomography: Option<ProcessTomographyResults>,
43    /// Gate set tomography results
44    pub gate_set_tomography: Option<GateSetTomographyResults>,
45    /// Cross-entropy benchmarking results
46    pub cross_entropy_benchmarking: Option<CrossEntropyResults>,
47    /// Cycle benchmarking results
48    pub cycle_benchmarking: Option<CycleBenchmarkingResults>,
49}
50
51/// Randomized benchmarking results
52#[derive(Debug, Clone)]
53pub struct RandomizedBenchmarkingResults {
54    /// Gate fidelity
55    pub gate_fidelity: f64,
56    /// Confidence interval
57    pub confidence_interval: (f64, f64),
58    /// Decay rate
59    pub decay_rate: f64,
60    /// Number of sequences tested
61    pub sequences_tested: usize,
62    /// Statistical significance
63    pub p_value: f64,
64}
65
66/// Process tomography results
67#[derive(Debug, Clone)]
68pub struct ProcessTomographyResults {
69    /// Process fidelity
70    pub process_fidelity: f64,
71    /// Process matrix
72    pub process_matrix: Array2<f64>,
73    /// Eigenvalue spectrum
74    pub eigenvalues: Array1<f64>,
75    /// Completeness score
76    pub completeness: f64,
77}
78
79/// Gate set tomography results
80#[derive(Debug, Clone)]
81pub struct GateSetTomographyResults {
82    /// Gate set fidelity
83    pub gate_set_fidelity: f64,
84    /// Individual gate fidelities
85    pub gate_fidelities: HashMap<String, f64>,
86    /// SPAM (State Preparation and Measurement) errors
87    pub spam_errors: HashMap<String, f64>,
88    /// Model consistency
89    pub model_consistency: f64,
90}
91
92/// Cross-entropy benchmarking results
93#[derive(Debug, Clone)]
94pub struct CrossEntropyResults {
95    /// Cross-entropy score
96    pub cross_entropy_score: f64,
97    /// Linear XEB fidelity
98    pub linear_xeb_fidelity: f64,
99    /// Quantum volume
100    pub quantum_volume: usize,
101    /// Statistical confidence
102    pub confidence_level: f64,
103}
104
105/// Cycle benchmarking results
106#[derive(Debug, Clone)]
107pub struct CycleBenchmarkingResults {
108    /// Cycle fidelity
109    pub cycle_fidelity: f64,
110    /// Systematic error rate
111    pub systematic_error_rate: f64,
112    /// Stochastic error rate
113    pub stochastic_error_rate: f64,
114    /// Leakage rate
115    pub leakage_rate: f64,
116}
117
118/// Statistical analysis for DD performance
119#[derive(Debug, Clone)]
120pub struct DDStatisticalAnalysis {
121    /// Descriptive statistics
122    pub descriptive_stats: DescriptiveStatistics,
123    /// Hypothesis testing results
124    pub hypothesis_tests: HypothesisTestResults,
125    /// Correlation analysis
126    pub correlation_analysis: CorrelationAnalysis,
127    /// Distribution analysis
128    pub distribution_analysis: DistributionAnalysis,
129    /// Confidence intervals
130    pub confidence_intervals: ConfidenceIntervals,
131}
132
133/// Descriptive statistics
134#[derive(Debug, Clone)]
135pub struct DescriptiveStatistics {
136    /// Mean values for each metric
137    pub means: HashMap<String, f64>,
138    /// Standard deviations
139    pub standard_deviations: HashMap<String, f64>,
140    /// Medians
141    pub medians: HashMap<String, f64>,
142    /// Percentiles (25th, 75th, 95th, 99th)
143    pub percentiles: HashMap<String, Vec<f64>>,
144    /// Min/max values
145    pub ranges: HashMap<String, (f64, f64)>,
146}
147
148/// Hypothesis testing results
149#[derive(Debug, Clone)]
150pub struct HypothesisTestResults {
151    /// T-test results comparing to baseline
152    pub t_test_results: HashMap<String, TTestResult>,
153    /// Kolmogorov-Smirnov test results
154    pub ks_test_results: HashMap<String, KSTestResult>,
155    /// Normality test results
156    pub normality_tests: HashMap<String, NormalityTestResult>,
157}
158
159/// T-test result
160#[derive(Debug, Clone)]
161pub struct TTestResult {
162    pub statistic: f64,
163    pub p_value: f64,
164    pub significant: bool,
165    pub effect_size: f64,
166}
167
168/// Kolmogorov-Smirnov test result
169#[derive(Debug, Clone)]
170pub struct KSTestResult {
171    pub statistic: f64,
172    pub p_value: f64,
173    pub significant: bool,
174}
175
176/// Normality test result
177#[derive(Debug, Clone)]
178pub struct NormalityTestResult {
179    pub shapiro_statistic: f64,
180    pub shapiro_p_value: f64,
181    pub is_normal: bool,
182}
183
184/// Correlation analysis results
185#[derive(Debug, Clone)]
186pub struct CorrelationAnalysis {
187    /// Pearson correlation matrix
188    pub pearson_correlations: Array2<f64>,
189    /// Spearman correlation matrix
190    pub spearman_correlations: Array2<f64>,
191    /// Significant correlations
192    pub significant_correlations: Vec<(String, String, f64)>,
193}
194
195/// Distribution analysis results
196#[derive(Debug, Clone)]
197pub struct DistributionAnalysis {
198    /// Best-fit distributions
199    pub best_fit_distributions: HashMap<String, String>,
200    /// Distribution parameters
201    pub distribution_parameters: HashMap<String, Vec<f64>>,
202    /// Goodness-of-fit statistics
203    pub goodness_of_fit: HashMap<String, f64>,
204}
205
206/// Confidence intervals
207#[derive(Debug, Clone)]
208pub struct ConfidenceIntervals {
209    /// 95% confidence intervals for means
210    pub mean_intervals: HashMap<String, (f64, f64)>,
211    /// Bootstrap confidence intervals
212    pub bootstrap_intervals: HashMap<String, (f64, f64)>,
213    /// Prediction intervals
214    pub prediction_intervals: HashMap<String, (f64, f64)>,
215}
216
217/// Comparative analysis between sequences
218#[derive(Debug, Clone)]
219pub struct ComparativeAnalysis {
220    /// Relative performance improvements
221    pub relative_improvements: HashMap<DDPerformanceMetric, f64>,
222    /// Statistical significance of improvements
223    pub significance_tests: HashMap<DDPerformanceMetric, bool>,
224    /// Effect sizes
225    pub effect_sizes: HashMap<DDPerformanceMetric, f64>,
226    /// Ranking among compared sequences
227    pub performance_ranking: usize,
228}
229
230/// Performance trends over time/parameters
231#[derive(Debug, Clone)]
232pub struct PerformanceTrends {
233    /// Trend slopes for each metric
234    pub trend_slopes: HashMap<DDPerformanceMetric, f64>,
235    /// Trend significance
236    pub trend_significance: HashMap<DDPerformanceMetric, f64>,
237    /// Seasonality detection
238    pub seasonality: HashMap<DDPerformanceMetric, bool>,
239    /// Outlier detection
240    pub outliers: HashMap<DDPerformanceMetric, Vec<usize>>,
241}
242
243/// DD performance analyzer
244pub struct DDPerformanceAnalyzer {
245    pub config: DDPerformanceConfig,
246    pub historical_data: Vec<DDPerformanceAnalysis>,
247}
248
249impl DDPerformanceAnalyzer {
250    /// Create new performance analyzer
251    pub const fn new(config: DDPerformanceConfig) -> Self {
252        Self {
253            config,
254            historical_data: Vec::new(),
255        }
256    }
257
258    /// Analyze performance of DD sequence
259    pub async fn analyze_performance(
260        &mut self,
261        sequence: &DDSequence,
262        executor: &dyn DDCircuitExecutor,
263    ) -> DeviceResult<DDPerformanceAnalysis> {
264        println!("Starting DD performance analysis");
265        let start_time = std::time::Instant::now();
266
267        // Calculate performance metrics
268        let metrics = self
269            .calculate_performance_metrics(sequence, executor)
270            .await?;
271
272        // Run benchmarks if enabled
273        let benchmark_results = if self.config.enable_benchmarking {
274            self.run_benchmarks(sequence, executor).await?
275        } else {
276            BenchmarkResults {
277                randomized_benchmarking: None,
278                process_tomography: None,
279                gate_set_tomography: None,
280                cross_entropy_benchmarking: None,
281                cycle_benchmarking: None,
282            }
283        };
284
285        // Perform statistical analysis
286        let statistical_analysis = self.perform_statistical_analysis(&metrics, sequence)?;
287
288        // Comparative analysis (if historical data exists)
289        let comparative_analysis = if self.historical_data.is_empty() {
290            None
291        } else {
292            Some(self.perform_comparative_analysis(&metrics)?)
293        };
294
295        // Analyze performance trends
296        let performance_trends = self.analyze_performance_trends(&metrics)?;
297
298        let analysis = DDPerformanceAnalysis {
299            metrics,
300            benchmark_results,
301            statistical_analysis,
302            comparative_analysis,
303            performance_trends,
304        };
305
306        self.historical_data.push(analysis.clone());
307
308        println!(
309            "DD performance analysis completed in {:?}",
310            start_time.elapsed()
311        );
312        Ok(analysis)
313    }
314
315    /// Calculate performance metrics
316    async fn calculate_performance_metrics(
317        &self,
318        sequence: &DDSequence,
319        executor: &dyn DDCircuitExecutor,
320    ) -> DeviceResult<HashMap<DDPerformanceMetric, f64>> {
321        let mut metrics = HashMap::new();
322
323        for metric in &self.config.metrics {
324            let value = match metric {
325                DDPerformanceMetric::CoherenceTime => {
326                    self.measure_coherence_time(sequence, executor).await?
327                }
328                DDPerformanceMetric::ProcessFidelity => {
329                    self.measure_process_fidelity(sequence, executor).await?
330                }
331                DDPerformanceMetric::GateOverhead => sequence.properties.pulse_count as f64,
332                DDPerformanceMetric::TimeOverhead => {
333                    sequence.duration * 1e6 // Convert to microseconds
334                }
335                DDPerformanceMetric::RobustnessScore => {
336                    self.calculate_robustness_score(sequence, executor).await?
337                }
338                DDPerformanceMetric::NoiseSuppressionFactor => {
339                    self.calculate_noise_suppression(sequence, executor).await?
340                }
341                DDPerformanceMetric::ResourceEfficiency => {
342                    self.calculate_resource_efficiency(sequence, executor)
343                        .await?
344                }
345            };
346
347            metrics.insert(metric.clone(), value);
348        }
349
350        Ok(metrics)
351    }
352
353    /// Measure coherence time
354    pub async fn measure_coherence_time(
355        &self,
356        sequence: &DDSequence,
357        _executor: &dyn DDCircuitExecutor,
358    ) -> DeviceResult<f64> {
359        // Simplified coherence time measurement
360        let base_t2 = 50e-6; // 50 μs base T2
361        let enhancement_factor: f64 = sequence.properties.noise_suppression.values().sum();
362        let suppression_factor =
363            1.0 + enhancement_factor / sequence.properties.noise_suppression.len() as f64;
364
365        Ok(base_t2 * suppression_factor * 1e6) // Return in microseconds
366    }
367
368    /// Measure process fidelity
369    pub async fn measure_process_fidelity(
370        &self,
371        sequence: &DDSequence,
372        _executor: &dyn DDCircuitExecutor,
373    ) -> DeviceResult<f64> {
374        // Simplified fidelity calculation
375        let base_fidelity = 0.99;
376        let order_factor = 0.001 * (sequence.properties.sequence_order as f64);
377        let overhead_penalty = -0.0001 * (sequence.properties.pulse_count as f64);
378
379        Ok((base_fidelity + order_factor + overhead_penalty).clamp(0.0, 1.0))
380    }
381
382    /// Calculate robustness score
383    pub async fn calculate_robustness_score(
384        &self,
385        sequence: &DDSequence,
386        _executor: &dyn DDCircuitExecutor,
387    ) -> DeviceResult<f64> {
388        let mut robustness = 0.0;
389
390        // Symmetry contributions
391        if sequence.properties.symmetry.time_reversal {
392            robustness += 0.25;
393        }
394        if sequence.properties.symmetry.phase_symmetry {
395            robustness += 0.25;
396        }
397        if sequence.properties.symmetry.rotational_symmetry {
398            robustness += 0.25;
399        }
400        if sequence.properties.symmetry.inversion_symmetry {
401            robustness += 0.25;
402        }
403
404        // Noise suppression diversity
405        let noise_diversity = sequence.properties.noise_suppression.len() as f64 / 10.0;
406        robustness += noise_diversity.min(0.5);
407
408        Ok(robustness)
409    }
410
411    /// Calculate noise suppression factor
412    async fn calculate_noise_suppression(
413        &self,
414        sequence: &DDSequence,
415        _executor: &dyn DDCircuitExecutor,
416    ) -> DeviceResult<f64> {
417        let avg_suppression: f64 = sequence.properties.noise_suppression.values().sum::<f64>()
418            / sequence.properties.noise_suppression.len() as f64;
419        Ok(avg_suppression)
420    }
421
422    /// Calculate resource efficiency
423    async fn calculate_resource_efficiency(
424        &self,
425        sequence: &DDSequence,
426        _executor: &dyn DDCircuitExecutor,
427    ) -> DeviceResult<f64> {
428        let coherence_improvement = self.measure_coherence_time(sequence, _executor).await? / 50.0; // Relative to base T2
429        let resource_cost = sequence.properties.pulse_count as f64;
430
431        Ok(coherence_improvement / resource_cost.max(1.0))
432    }
433
434    /// Run benchmark protocols
435    async fn run_benchmarks(
436        &self,
437        sequence: &DDSequence,
438        executor: &dyn DDCircuitExecutor,
439    ) -> DeviceResult<BenchmarkResults> {
440        let mut results = BenchmarkResults {
441            randomized_benchmarking: None,
442            process_tomography: None,
443            gate_set_tomography: None,
444            cross_entropy_benchmarking: None,
445            cycle_benchmarking: None,
446        };
447
448        for protocol in &self.config.benchmarking_config.protocols {
449            match protocol {
450                BenchmarkProtocol::RandomizedBenchmarking => {
451                    results.randomized_benchmarking =
452                        Some(self.run_randomized_benchmarking(sequence, executor).await?);
453                }
454                BenchmarkProtocol::ProcessTomography => {
455                    results.process_tomography =
456                        Some(self.run_process_tomography(sequence, executor).await?);
457                }
458                BenchmarkProtocol::GateSetTomography => {
459                    results.gate_set_tomography =
460                        Some(self.run_gate_set_tomography(sequence, executor).await?);
461                }
462                BenchmarkProtocol::CrossEntropyBenchmarking => {
463                    results.cross_entropy_benchmarking = Some(
464                        self.run_cross_entropy_benchmarking(sequence, executor)
465                            .await?,
466                    );
467                }
468                BenchmarkProtocol::CycleBenchmarking => {
469                    results.cycle_benchmarking =
470                        Some(self.run_cycle_benchmarking(sequence, executor).await?);
471                }
472            }
473        }
474
475        Ok(results)
476    }
477
478    /// Run randomized benchmarking
479    async fn run_randomized_benchmarking(
480        &self,
481        _sequence: &DDSequence,
482        _executor: &dyn DDCircuitExecutor,
483    ) -> DeviceResult<RandomizedBenchmarkingResults> {
484        // Simplified RB implementation
485        Ok(RandomizedBenchmarkingResults {
486            gate_fidelity: 0.995,
487            confidence_interval: (0.990, 0.999),
488            decay_rate: 0.005,
489            sequences_tested: self.config.benchmarking_config.benchmark_runs,
490            p_value: 0.001,
491        })
492    }
493
494    /// Run other benchmark protocols (simplified implementations)
495    async fn run_process_tomography(
496        &self,
497        _sequence: &DDSequence,
498        _executor: &dyn DDCircuitExecutor,
499    ) -> DeviceResult<ProcessTomographyResults> {
500        Ok(ProcessTomographyResults {
501            process_fidelity: 0.98,
502            process_matrix: Array2::eye(4),
503            eigenvalues: Array1::from_vec(vec![1.0, 0.99, 0.98, 0.97]),
504            completeness: 0.99,
505        })
506    }
507
508    async fn run_gate_set_tomography(
509        &self,
510        _sequence: &DDSequence,
511        _executor: &dyn DDCircuitExecutor,
512    ) -> DeviceResult<GateSetTomographyResults> {
513        let mut gate_fidelities = HashMap::new();
514        gate_fidelities.insert("X".to_string(), 0.995);
515        gate_fidelities.insert("Y".to_string(), 0.994);
516        gate_fidelities.insert("Z".to_string(), 0.999);
517
518        let mut spam_errors = HashMap::new();
519        spam_errors.insert("prep_error".to_string(), 0.001);
520        spam_errors.insert("meas_error".to_string(), 0.002);
521
522        Ok(GateSetTomographyResults {
523            gate_set_fidelity: 0.996,
524            gate_fidelities,
525            spam_errors,
526            model_consistency: 0.98,
527        })
528    }
529
530    async fn run_cross_entropy_benchmarking(
531        &self,
532        _sequence: &DDSequence,
533        _executor: &dyn DDCircuitExecutor,
534    ) -> DeviceResult<CrossEntropyResults> {
535        Ok(CrossEntropyResults {
536            cross_entropy_score: 2.1,
537            linear_xeb_fidelity: 0.92,
538            quantum_volume: 64,
539            confidence_level: 0.95,
540        })
541    }
542
543    async fn run_cycle_benchmarking(
544        &self,
545        _sequence: &DDSequence,
546        _executor: &dyn DDCircuitExecutor,
547    ) -> DeviceResult<CycleBenchmarkingResults> {
548        Ok(CycleBenchmarkingResults {
549            cycle_fidelity: 0.993,
550            systematic_error_rate: 0.002,
551            stochastic_error_rate: 0.005,
552            leakage_rate: 0.0001,
553        })
554    }
555
556    /// Perform statistical analysis
557    fn perform_statistical_analysis(
558        &self,
559        metrics: &HashMap<DDPerformanceMetric, f64>,
560        _sequence: &DDSequence,
561    ) -> DeviceResult<DDStatisticalAnalysis> {
562        // Simplified statistical analysis to avoid potential stack overflow
563        let mut means = HashMap::new();
564        let mut standard_deviations = HashMap::new();
565        let mut medians = HashMap::new();
566        let mut percentiles = HashMap::new();
567        let mut ranges = HashMap::new();
568
569        // Populate with basic statistics from the metrics
570        for (metric, &value) in metrics {
571            let metric_name = format!("{metric:?}");
572            means.insert(metric_name.clone(), value);
573            standard_deviations.insert(metric_name.clone(), value * 0.1); // 10% std dev
574            medians.insert(metric_name.clone(), value);
575            percentiles.insert(
576                metric_name.clone(),
577                vec![value * 0.9, value * 1.1, value * 1.2, value * 1.3],
578            );
579            ranges.insert(metric_name, (value * 0.8, value * 1.2));
580        }
581
582        let descriptive_stats = DescriptiveStatistics {
583            means,
584            standard_deviations,
585            medians,
586            percentiles,
587            ranges,
588        };
589
590        let hypothesis_tests = HypothesisTestResults {
591            t_test_results: HashMap::new(),
592            ks_test_results: HashMap::new(),
593            normality_tests: HashMap::new(),
594        };
595
596        let correlation_analysis = CorrelationAnalysis {
597            pearson_correlations: Array2::eye(metrics.len().max(1)),
598            spearman_correlations: Array2::eye(metrics.len().max(1)),
599            significant_correlations: Vec::new(),
600        };
601
602        let distribution_analysis = DistributionAnalysis {
603            best_fit_distributions: HashMap::new(),
604            distribution_parameters: HashMap::new(),
605            goodness_of_fit: HashMap::new(),
606        };
607
608        let confidence_intervals = ConfidenceIntervals {
609            mean_intervals: HashMap::new(),
610            bootstrap_intervals: HashMap::new(),
611            prediction_intervals: HashMap::new(),
612        };
613
614        Ok(DDStatisticalAnalysis {
615            descriptive_stats,
616            hypothesis_tests,
617            correlation_analysis,
618            distribution_analysis,
619            confidence_intervals,
620        })
621    }
622
623    /// Calculate descriptive statistics
624    fn calculate_descriptive_statistics(
625        &self,
626        data: &HashMap<String, Array1<f64>>,
627    ) -> DeviceResult<DescriptiveStatistics> {
628        let mut means = HashMap::new();
629        let mut standard_deviations = HashMap::new();
630        let mut medians = HashMap::new();
631        let mut percentiles = HashMap::new();
632        let mut ranges = HashMap::new();
633
634        for (metric_name, values) in data {
635            #[cfg(feature = "scirs2")]
636            let mean_val = mean(&values.view()).unwrap_or(0.0);
637            #[cfg(not(feature = "scirs2"))]
638            let mean_val = values.sum() / values.len() as f64;
639
640            #[cfg(feature = "scirs2")]
641            let std_val = std(&values.view(), 1, None).unwrap_or(1.0);
642            #[cfg(not(feature = "scirs2"))]
643            let std_val = {
644                let mean = mean_val;
645                let variance = values.iter().map(|x| (x - mean).powi(2)).sum::<f64>()
646                    / (values.len() - 1) as f64;
647                variance.sqrt()
648            };
649
650            means.insert(metric_name.clone(), mean_val);
651            standard_deviations.insert(metric_name.clone(), std_val);
652
653            // Calculate median and percentiles (simplified)
654            let mut sorted = values.to_vec();
655            sorted.sort_by(|a, b| a.partial_cmp(b).unwrap_or(std::cmp::Ordering::Equal));
656            let len = sorted.len();
657
658            let median = if len % 2 == 0 {
659                f64::midpoint(sorted[len / 2 - 1], sorted[len / 2])
660            } else {
661                sorted[len / 2]
662            };
663            medians.insert(metric_name.clone(), median);
664
665            let p25 = sorted[len / 4];
666            let p75 = sorted[3 * len / 4];
667            let p95 = sorted[95 * len / 100];
668            let p99 = sorted[99 * len / 100];
669
670            percentiles.insert(metric_name.clone(), vec![p25, p75, p95, p99]);
671            ranges.insert(metric_name.clone(), (sorted[0], sorted[len - 1]));
672        }
673
674        Ok(DescriptiveStatistics {
675            means,
676            standard_deviations,
677            medians,
678            percentiles,
679            ranges,
680        })
681    }
682
683    /// Other statistical analysis methods (simplified implementations)
684    fn perform_hypothesis_tests(
685        &self,
686        _data: &HashMap<String, Array1<f64>>,
687    ) -> DeviceResult<HypothesisTestResults> {
688        Ok(HypothesisTestResults {
689            t_test_results: HashMap::new(),
690            ks_test_results: HashMap::new(),
691            normality_tests: HashMap::new(),
692        })
693    }
694
695    fn perform_correlation_analysis(
696        &self,
697        data: &HashMap<String, Array1<f64>>,
698    ) -> DeviceResult<CorrelationAnalysis> {
699        let n_metrics = data.len();
700        let pearson_correlations = Array2::eye(n_metrics);
701        let spearman_correlations = Array2::eye(n_metrics);
702
703        Ok(CorrelationAnalysis {
704            pearson_correlations,
705            spearman_correlations,
706            significant_correlations: Vec::new(),
707        })
708    }
709
710    fn analyze_distributions(
711        &self,
712        _data: &HashMap<String, Array1<f64>>,
713    ) -> DeviceResult<DistributionAnalysis> {
714        Ok(DistributionAnalysis {
715            best_fit_distributions: HashMap::new(),
716            distribution_parameters: HashMap::new(),
717            goodness_of_fit: HashMap::new(),
718        })
719    }
720
721    fn calculate_confidence_intervals(
722        &self,
723        _data: &HashMap<String, Array1<f64>>,
724    ) -> DeviceResult<ConfidenceIntervals> {
725        Ok(ConfidenceIntervals {
726            mean_intervals: HashMap::new(),
727            bootstrap_intervals: HashMap::new(),
728            prediction_intervals: HashMap::new(),
729        })
730    }
731
732    fn perform_comparative_analysis(
733        &self,
734        _metrics: &HashMap<DDPerformanceMetric, f64>,
735    ) -> DeviceResult<ComparativeAnalysis> {
736        Ok(ComparativeAnalysis {
737            relative_improvements: HashMap::new(),
738            significance_tests: HashMap::new(),
739            effect_sizes: HashMap::new(),
740            performance_ranking: 1,
741        })
742    }
743
744    fn analyze_performance_trends(
745        &self,
746        _metrics: &HashMap<DDPerformanceMetric, f64>,
747    ) -> DeviceResult<PerformanceTrends> {
748        Ok(PerformanceTrends {
749            trend_slopes: HashMap::new(),
750            trend_significance: HashMap::new(),
751            seasonality: HashMap::new(),
752            outliers: HashMap::new(),
753        })
754    }
755}