quantrs2_device/
cross_platform_benchmarking.rs

1//! Cross-Platform Performance Benchmarking System with SciRS2 Analysis
2//!
3//! This module provides comprehensive benchmarking capabilities across different quantum
4//! cloud providers (IBM Quantum, AWS Braket, Azure Quantum, etc.) with advanced
5//! statistical analysis using SciRS2 for performance comparison and optimization.
6
7use std::collections::{BTreeMap, HashMap, HashSet};
8use std::time::{Duration, Instant, SystemTime};
9
10use scirs2_core::random::{thread_rng, Rng};
11use serde::{Deserialize, Serialize};
12use tokio::time::timeout;
13
14use quantrs2_circuit::prelude::*;
15use quantrs2_core::{
16    error::{QuantRS2Error, QuantRS2Result},
17    gate::GateOp,
18    qubit::QubitId,
19};
20
21// SciRS2 imports for advanced analysis
22#[cfg(feature = "scirs2")]
23use scirs2_linalg::{correlationmatrix, eig, matrix_norm, svd, LinalgResult};
24#[cfg(feature = "scirs2")]
25use scirs2_optimize::{minimize, OptimizeResult};
26#[cfg(feature = "scirs2")]
27use scirs2_stats::{
28    distributions::{chi2, norm, t},
29    ks_2samp, mean, median, pearsonr, spearmanr, std, ttest_ind, var, Alternative, TTestResult,
30};
31
32#[cfg(not(feature = "scirs2"))]
33use crate::ml_optimization::fallback_scirs2::{mean, minimize, pearsonr, std, var, OptimizeResult};
34
35use scirs2_core::ndarray::{Array1, Array2, ArrayView1, ArrayView2};
36
37use crate::{
38    aws::AWSBraketClient,
39    azure::AzureQuantumClient,
40    backend_traits::{query_backend_capabilities, BackendCapabilities},
41    benchmarking::{BenchmarkConfig, DeviceExecutor, HardwareBenchmarkSuite},
42    calibration::{CalibrationManager, DeviceCalibration},
43    ibm::IBMQuantumClient,
44    CircuitResult, DeviceError, DeviceResult,
45};
46
47/// Cross-platform benchmarking configuration
48#[derive(Debug, Clone, Serialize, Deserialize)]
49pub struct CrossPlatformBenchmarkConfig {
50    /// Target platforms to benchmark
51    pub target_platforms: Vec<QuantumPlatform>,
52    /// Circuit complexity levels to test
53    pub complexity_levels: Vec<ComplexityLevel>,
54    /// Statistical analysis configuration
55    pub statistical_config: StatisticalAnalysisConfig,
56    /// Parallel execution configuration
57    pub parallel_config: ParallelBenchmarkConfig,
58    /// Timeout for individual benchmarks
59    pub benchmark_timeout: Duration,
60    /// Number of repetitions per test
61    pub repetitions: usize,
62    /// Enable cost analysis
63    pub enable_cost_analysis: bool,
64    /// Enable latency analysis
65    pub enable_latency_analysis: bool,
66    /// Enable reliability analysis
67    pub enable_reliability_analysis: bool,
68    /// Custom benchmark circuits
69    pub custom_circuits: Vec<CustomBenchmarkCircuit>,
70}
71
72/// Quantum computing platforms
73#[derive(Debug, Clone, PartialEq, Eq, Hash, Serialize, Deserialize)]
74pub enum QuantumPlatform {
75    IBMQuantum(String),      // Device name
76    AWSBraket(String),       // Device ARN
77    AzureQuantum(String),    // Target ID
78    IonQ(String),            // Device name
79    Rigetti(String),         // Device name
80    GoogleQuantumAI(String), // Device name
81    Custom(String),          // Custom platform identifier
82}
83
84/// Circuit complexity levels for benchmarking
85#[derive(Debug, Clone, Serialize, Deserialize)]
86pub struct ComplexityLevel {
87    pub name: String,
88    pub qubit_count: usize,
89    pub circuit_depth: usize,
90    pub gate_count_range: (usize, usize),
91    pub two_qubit_gate_ratio: f64,
92    pub description: String,
93}
94
95/// Statistical analysis configuration
96#[derive(Debug, Clone, Serialize, Deserialize)]
97pub struct StatisticalAnalysisConfig {
98    /// Confidence level for statistical tests
99    pub confidence_level: f64,
100    /// Enable ANOVA analysis
101    pub enable_anova: bool,
102    /// Enable pairwise comparisons
103    pub enable_pairwise_comparisons: bool,
104    /// Enable outlier detection
105    pub enable_outlier_detection: bool,
106    /// Enable distribution fitting
107    pub enable_distribution_fitting: bool,
108    /// Enable correlation analysis
109    pub enable_correlation_analysis: bool,
110    /// Minimum sample size for statistical tests
111    pub min_sample_size: usize,
112}
113
114/// Parallel benchmarking configuration
115#[derive(Debug, Clone, Serialize, Deserialize)]
116pub struct ParallelBenchmarkConfig {
117    /// Enable parallel execution across platforms
118    pub enable_parallel: bool,
119    /// Maximum concurrent benchmarks
120    pub max_concurrent: usize,
121    /// Load balancing strategy
122    pub load_balancing: LoadBalancingStrategy,
123    /// Resource allocation per platform
124    pub resource_allocation: HashMap<QuantumPlatform, ResourceAllocation>,
125}
126
127/// Load balancing strategies
128#[derive(Debug, Clone, PartialEq, Eq, Serialize, Deserialize)]
129pub enum LoadBalancingStrategy {
130    RoundRobin,
131    WeightedRoundRobin,
132    LeastConnections,
133    ResourceBased,
134    CostOptimized,
135    LatencyOptimized,
136}
137
138/// Resource allocation per platform
139#[derive(Debug, Clone, Serialize, Deserialize)]
140pub struct ResourceAllocation {
141    pub max_shots_per_circuit: usize,
142    pub max_concurrent_circuits: usize,
143    pub priority: BenchmarkPriority,
144    pub timeout: Duration,
145}
146
147/// Benchmark priority levels
148#[derive(Debug, Clone, PartialEq, Eq, Serialize, Deserialize)]
149pub enum BenchmarkPriority {
150    Low,
151    Medium,
152    High,
153    Critical,
154}
155
156/// Custom benchmark circuit definition
157#[derive(Debug, Clone, Serialize, Deserialize)]
158pub struct CustomBenchmarkCircuit {
159    pub name: String,
160    pub description: String,
161    pub qubit_count: usize,
162    pub circuit_definition: CircuitDefinition,
163    pub expected_outcomes: HashMap<String, f64>,
164    pub performance_targets: PerformanceTargets,
165}
166
167/// Circuit definition formats
168#[derive(Debug, Clone, Serialize, Deserialize)]
169pub enum CircuitDefinition {
170    QASM(String),
171    QuantumCircuit(String), // Serialized circuit
172    PythonCode(String),
173    Custom(String),
174}
175
176/// Performance targets for benchmarking
177#[derive(Debug, Clone, Serialize, Deserialize)]
178pub struct PerformanceTargets {
179    pub target_fidelity: f64,
180    pub max_execution_time: Duration,
181    pub max_cost_per_shot: f64,
182    pub min_success_rate: f64,
183}
184
185/// Comprehensive cross-platform benchmark results
186#[derive(Debug, Clone, Serialize, Deserialize)]
187pub struct CrossPlatformBenchmarkResult {
188    pub benchmark_id: String,
189    pub timestamp: SystemTime,
190    pub config: CrossPlatformBenchmarkConfig,
191    pub platform_results: HashMap<QuantumPlatform, PlatformBenchmarkResult>,
192    pub comparative_analysis: ComparativeAnalysisResult,
193    pub statistical_analysis: CrossPlatformStatisticalAnalysis,
194    pub cost_analysis: Option<CrossPlatformCostAnalysis>,
195    pub recommendations: Vec<PlatformRecommendation>,
196    pub execution_summary: ExecutionSummary,
197}
198
199/// Results for a specific platform
200#[derive(Debug, Clone, Serialize, Deserialize)]
201pub struct PlatformBenchmarkResult {
202    pub platform: QuantumPlatform,
203    pub device_info: DeviceInfo,
204    pub benchmark_metrics: BenchmarkMetrics,
205    pub circuit_results: HashMap<String, Vec<CircuitBenchmarkResult>>,
206    pub performance_analysis: PlatformPerformanceAnalysis,
207    pub reliability_metrics: ReliabilityMetrics,
208    pub latency_analysis: LatencyAnalysis,
209    pub error_analysis: ErrorAnalysis,
210}
211
212/// Device information
213#[derive(Debug, Clone, Serialize, Deserialize)]
214pub struct DeviceInfo {
215    pub device_name: String,
216    pub provider: String,
217    pub technology: QuantumTechnology,
218    pub qubit_count: usize,
219    pub connectivity: ConnectivityInfo,
220    pub capabilities: BackendCapabilities,
221    pub calibration_date: Option<SystemTime>,
222}
223
224/// Quantum technology types
225#[derive(Debug, Clone, PartialEq, Eq, Serialize, Deserialize)]
226pub enum QuantumTechnology {
227    Superconducting,
228    TrappedIon,
229    Photonic,
230    NeutralAtom,
231    Topological,
232    SpinQubit,
233    Other(String),
234}
235
236/// Connectivity information
237#[derive(Debug, Clone, Serialize, Deserialize)]
238pub struct ConnectivityInfo {
239    pub topology_type: TopologyType,
240    pub connectivity_graph: Array2<f64>,
241    pub average_connectivity: f64,
242    pub max_path_length: usize,
243}
244
245/// Topology types
246#[derive(Debug, Clone, PartialEq, Eq, Serialize, Deserialize)]
247pub enum TopologyType {
248    Linear,
249    Grid,
250    Heavy,
251    AllToAll,
252    Custom,
253}
254
255/// Benchmark metrics for a platform
256#[derive(Debug, Clone, Serialize, Deserialize)]
257pub struct BenchmarkMetrics {
258    pub overall_score: f64,
259    pub fidelity_score: f64,
260    pub speed_score: f64,
261    pub reliability_score: f64,
262    pub cost_efficiency_score: f64,
263    pub scalability_score: f64,
264    pub detailed_metrics: HashMap<String, f64>,
265}
266
267/// Individual circuit benchmark result
268#[derive(Debug, Clone, Serialize, Deserialize)]
269pub struct CircuitBenchmarkResult {
270    pub circuit_name: String,
271    pub complexity_level: String,
272    pub execution_time: Duration,
273    pub queue_time: Duration,
274    pub total_time: Duration,
275    pub fidelity: f64,
276    pub success_rate: f64,
277    pub cost: f64,
278    pub shots: usize,
279    pub measurement_counts: HashMap<String, usize>,
280    pub error_messages: Vec<String>,
281}
282
283/// Platform performance analysis
284#[derive(Debug, Clone, Serialize, Deserialize)]
285pub struct PlatformPerformanceAnalysis {
286    pub throughput: f64,
287    pub latency_distribution: LatencyDistribution,
288    pub scalability_analysis: ScalabilityAnalysis,
289    pub resource_utilization: ResourceUtilization,
290    pub performance_trends: PerformanceTrends,
291}
292
293/// Latency distribution analysis
294#[derive(Debug, Clone, Serialize, Deserialize)]
295pub struct LatencyDistribution {
296    pub mean: f64,
297    pub median: f64,
298    pub std_dev: f64,
299    pub percentiles: HashMap<u8, f64>, // P50, P95, P99, etc.
300    pub distribution_type: String,
301}
302
303/// Scalability analysis
304#[derive(Debug, Clone, Serialize, Deserialize)]
305pub struct ScalabilityAnalysis {
306    pub qubit_scaling_factor: f64,
307    pub depth_scaling_factor: f64,
308    pub theoretical_limits: TheoreticalLimits,
309    pub bottleneck_analysis: BottleneckAnalysis,
310}
311
312/// Theoretical performance limits
313#[derive(Debug, Clone, Serialize, Deserialize)]
314pub struct TheoreticalLimits {
315    pub max_qubit_count: usize,
316    pub max_circuit_depth: usize,
317    pub max_gate_count: usize,
318    pub coherence_limited_depth: usize,
319}
320
321/// Performance bottleneck analysis
322#[derive(Debug, Clone, Serialize, Deserialize)]
323pub struct BottleneckAnalysis {
324    pub primary_bottleneck: BottleneckType,
325    pub bottleneck_severity: f64,
326    pub mitigation_strategies: Vec<String>,
327}
328
329/// Types of performance bottlenecks
330#[derive(Debug, Clone, PartialEq, Eq, Serialize, Deserialize)]
331pub enum BottleneckType {
332    QueueTime,
333    ExecutionTime,
334    GateErrors,
335    Connectivity,
336    Coherence,
337    Readout,
338    Classical,
339    Network,
340    Other(String),
341}
342
343/// Resource utilization metrics
344#[derive(Debug, Clone, Serialize, Deserialize)]
345pub struct ResourceUtilization {
346    pub qubit_utilization: f64,
347    pub gate_efficiency: f64,
348    pub shot_efficiency: f64,
349    pub time_efficiency: f64,
350}
351
352/// Performance trends over time
353#[derive(Debug, Clone, Serialize, Deserialize)]
354pub struct PerformanceTrends {
355    pub fidelity_trend: TrendAnalysis,
356    pub latency_trend: TrendAnalysis,
357    pub reliability_trend: TrendAnalysis,
358    pub cost_trend: TrendAnalysis,
359}
360
361/// Trend analysis data
362#[derive(Debug, Clone, Serialize, Deserialize)]
363pub struct TrendAnalysis {
364    pub slope: f64,
365    pub r_squared: f64,
366    pub trend_direction: TrendDirection,
367    pub confidence_interval: (f64, f64),
368}
369
370/// Trend direction
371#[derive(Debug, Clone, PartialEq, Eq, Serialize, Deserialize)]
372pub enum TrendDirection {
373    Improving,
374    Stable,
375    Degrading,
376    Volatile,
377}
378
379/// Reliability metrics
380#[derive(Debug, Clone, Serialize, Deserialize)]
381pub struct ReliabilityMetrics {
382    pub uptime_percentage: f64,
383    pub mtbf: Duration, // Mean Time Between Failures
384    pub mttr: Duration, // Mean Time To Recovery
385    pub error_rates: HashMap<String, f64>,
386    pub consistency_score: f64,
387}
388
389/// Latency analysis
390#[derive(Debug, Clone, Serialize, Deserialize)]
391pub struct LatencyAnalysis {
392    pub submission_latency: Duration,
393    pub queue_latency: Duration,
394    pub execution_latency: Duration,
395    pub retrieval_latency: Duration,
396    pub total_latency: Duration,
397    pub latency_variability: f64,
398}
399
400/// Error analysis
401#[derive(Debug, Clone, Serialize, Deserialize)]
402pub struct ErrorAnalysis {
403    pub systematic_errors: HashMap<String, f64>,
404    pub random_errors: HashMap<String, f64>,
405    pub coherent_errors: HashMap<String, f64>,
406    pub readout_errors: HashMap<String, f64>,
407    pub gate_errors: HashMap<String, f64>,
408    pub error_correlations: Array2<f64>,
409}
410
411/// Comparative analysis across platforms
412#[derive(Debug, Clone, Serialize, Deserialize)]
413pub struct ComparativeAnalysisResult {
414    pub platform_rankings: HashMap<String, PlatformRanking>,
415    pub performance_matrix: Array2<f64>,
416    pub statistical_comparisons: HashMap<String, StatisticalComparison>,
417    pub cost_effectiveness_analysis: CostEffectivenessAnalysis,
418    pub use_case_recommendations: HashMap<String, Vec<QuantumPlatform>>,
419}
420
421/// Platform ranking in different categories
422#[derive(Debug, Clone, Serialize, Deserialize)]
423pub struct PlatformRanking {
424    pub overall_rank: usize,
425    pub category_ranks: HashMap<String, usize>,
426    pub normalized_scores: HashMap<String, f64>,
427    pub relative_performance: f64,
428}
429
430/// Statistical comparison between platforms
431#[derive(Debug, Clone, Serialize, Deserialize)]
432pub struct StatisticalComparison {
433    pub comparison_type: ComparisonType,
434    pub platforms_compared: Vec<QuantumPlatform>,
435    pub test_statistic: f64,
436    pub p_value: f64,
437    pub effect_size: f64,
438    pub confidence_interval: (f64, f64),
439    pub interpretation: String,
440}
441
442/// Types of statistical comparisons
443#[derive(Debug, Clone, PartialEq, Eq, Serialize, Deserialize)]
444pub enum ComparisonType {
445    TTest,
446    ANOVA,
447    KruskalWallis,
448    MannWhitney,
449    ChiSquare,
450    KolmogorovSmirnov,
451}
452
453/// Cost effectiveness analysis
454#[derive(Debug, Clone, Serialize, Deserialize)]
455pub struct CostEffectivenessAnalysis {
456    pub cost_per_shot: HashMap<QuantumPlatform, f64>,
457    pub cost_per_gate: HashMap<QuantumPlatform, f64>,
458    pub cost_per_successful_result: HashMap<QuantumPlatform, f64>,
459    pub value_for_money_score: HashMap<QuantumPlatform, f64>,
460    pub cost_optimization_recommendations: Vec<CostOptimizationRecommendation>,
461}
462
463/// Cross-platform statistical analysis
464#[derive(Debug, Clone, Serialize, Deserialize)]
465pub struct CrossPlatformStatisticalAnalysis {
466    pub anova_results: HashMap<String, ANOVAResult>,
467    pub correlation_analysis: CorrelationAnalysisResult,
468    pub cluster_analysis: ClusterAnalysisResult,
469    pub principal_component_analysis: PCAResult,
470    pub outlier_detection: OutlierDetectionResult,
471    pub distribution_analysis: DistributionAnalysisResult,
472}
473
474/// ANOVA analysis results
475#[derive(Debug, Clone, Serialize, Deserialize)]
476pub struct ANOVAResult {
477    pub f_statistic: f64,
478    pub p_value: f64,
479    pub degrees_of_freedom: (usize, usize),
480    pub mean_squares: f64,
481    pub effect_size: f64,
482    pub post_hoc_tests: HashMap<String, PostHocTest>,
483}
484
485/// Post-hoc test results
486#[derive(Debug, Clone, Serialize, Deserialize)]
487pub struct PostHocTest {
488    pub test_type: String,
489    pub comparisons: HashMap<String, PairwiseComparison>,
490}
491
492/// Pairwise comparison results
493#[derive(Debug, Clone, Serialize, Deserialize)]
494pub struct PairwiseComparison {
495    pub mean_difference: f64,
496    pub p_value: f64,
497    pub confidence_interval: (f64, f64),
498    pub significant: bool,
499}
500
501/// Correlation analysis results
502#[derive(Debug, Clone, Serialize, Deserialize)]
503pub struct CorrelationAnalysisResult {
504    pub correlationmatrix: Array2<f64>,
505    pub significant_correlations: Vec<CorrelationPair>,
506    pub correlation_network: HashMap<String, Vec<String>>,
507}
508
509/// Significant correlation pair
510#[derive(Debug, Clone, Serialize, Deserialize)]
511pub struct CorrelationPair {
512    pub metric1: String,
513    pub metric2: String,
514    pub correlation: f64,
515    pub p_value: f64,
516    pub correlation_type: CorrelationType,
517}
518
519/// Types of correlations
520#[derive(Debug, Clone, PartialEq, Eq, Serialize, Deserialize)]
521pub enum CorrelationType {
522    Pearson,
523    Spearman,
524    Kendall,
525}
526
527/// Cluster analysis results
528#[derive(Debug, Clone, Serialize, Deserialize)]
529pub struct ClusterAnalysisResult {
530    pub cluster_assignments: HashMap<QuantumPlatform, usize>,
531    pub cluster_centers: Array2<f64>,
532    pub silhouette_score: f64,
533    pub cluster_interpretations: HashMap<usize, String>,
534}
535
536/// Principal Component Analysis results
537#[derive(Debug, Clone, Serialize, Deserialize)]
538pub struct PCAResult {
539    pub principal_components: Array2<f64>,
540    pub explained_variance_ratio: Array1<f64>,
541    pub cumulative_variance: Array1<f64>,
542    pub loadings: Array2<f64>,
543    pub platform_scores: HashMap<QuantumPlatform, Array1<f64>>,
544}
545
546/// Outlier detection results
547#[derive(Debug, Clone, Serialize, Deserialize)]
548pub struct OutlierDetectionResult {
549    pub outliers: HashMap<QuantumPlatform, Vec<String>>,
550    pub outlier_scores: HashMap<QuantumPlatform, f64>,
551    pub detection_method: String,
552    pub threshold: f64,
553}
554
555/// Distribution analysis results
556#[derive(Debug, Clone, Serialize, Deserialize)]
557pub struct DistributionAnalysisResult {
558    pub platform_distributions: HashMap<QuantumPlatform, DistributionFit>,
559    pub distribution_comparisons: HashMap<String, DistributionComparison>,
560    pub normality_tests: HashMap<QuantumPlatform, NormalityTest>,
561}
562
563/// Distribution fit results
564#[derive(Debug, Clone, Serialize, Deserialize)]
565pub struct DistributionFit {
566    pub distribution_type: String,
567    pub parameters: Vec<f64>,
568    pub goodness_of_fit: f64,
569    pub aic: f64,
570    pub bic: f64,
571}
572
573/// Distribution comparison
574#[derive(Debug, Clone, Serialize, Deserialize)]
575pub struct DistributionComparison {
576    pub platforms: Vec<QuantumPlatform>,
577    pub ks_statistic: f64,
578    pub p_value: f64,
579    pub distributions_equal: bool,
580}
581
582/// Normality test results
583#[derive(Debug, Clone, Serialize, Deserialize)]
584pub struct NormalityTest {
585    pub test_type: String,
586    pub statistic: f64,
587    pub p_value: f64,
588    pub is_normal: bool,
589}
590
591/// Cross-platform cost analysis
592#[derive(Debug, Clone, Serialize, Deserialize)]
593pub struct CrossPlatformCostAnalysis {
594    pub total_costs: HashMap<QuantumPlatform, f64>,
595    pub cost_breakdown: HashMap<QuantumPlatform, CostBreakdown>,
596    pub cost_trends: HashMap<QuantumPlatform, CostTrend>,
597    pub cost_optimization: CostOptimizationAnalysis,
598    pub roi_analysis: ROIAnalysis,
599}
600
601/// Cost breakdown per platform
602#[derive(Debug, Clone, Serialize, Deserialize)]
603pub struct CostBreakdown {
604    pub compute_cost: f64,
605    pub queue_cost: f64,
606    pub storage_cost: f64,
607    pub data_transfer_cost: f64,
608    pub other_costs: HashMap<String, f64>,
609}
610
611/// Cost trend analysis
612#[derive(Debug, Clone, Serialize, Deserialize)]
613pub struct CostTrend {
614    pub trend_direction: TrendDirection,
615    pub cost_per_month: Vec<f64>,
616    pub projected_costs: Vec<f64>,
617    pub cost_volatility: f64,
618}
619
620/// Cost optimization analysis
621#[derive(Debug, Clone, Serialize, Deserialize)]
622pub struct CostOptimizationAnalysis {
623    pub optimization_opportunities: Vec<CostOptimizationRecommendation>,
624    pub potential_savings: f64,
625    pub optimization_strategies: Vec<String>,
626}
627
628/// Cost optimization recommendation
629#[derive(Debug, Clone, Serialize, Deserialize)]
630pub struct CostOptimizationRecommendation {
631    pub recommendation_type: CostOptimizationType,
632    pub description: String,
633    pub estimated_savings: f64,
634    pub implementation_effort: ImplementationEffort,
635    pub time_to_implement: Duration,
636}
637
638/// Types of cost optimizations
639#[derive(Debug, Clone, PartialEq, Eq, Serialize, Deserialize)]
640pub enum CostOptimizationType {
641    PlatformSelection,
642    ShotOptimization,
643    TimingOptimization,
644    ResourcePooling,
645    BulkPricing,
646    Other(String),
647}
648
649/// Implementation effort levels
650#[derive(Debug, Clone, PartialEq, Eq, Serialize, Deserialize)]
651pub enum ImplementationEffort {
652    Low,
653    Medium,
654    High,
655    VeryHigh,
656}
657
658/// ROI analysis
659#[derive(Debug, Clone, Serialize, Deserialize)]
660pub struct ROIAnalysis {
661    pub platform_roi: HashMap<QuantumPlatform, f64>,
662    pub break_even_analysis: HashMap<QuantumPlatform, Duration>,
663    pub value_metrics: HashMap<QuantumPlatform, ValueMetrics>,
664}
665
666/// Value metrics for ROI calculation
667#[derive(Debug, Clone, Serialize, Deserialize)]
668pub struct ValueMetrics {
669    pub time_to_result: Duration,
670    pub result_quality: f64,
671    pub reliability_score: f64,
672    pub innovation_value: f64,
673}
674
675/// Platform recommendations
676#[derive(Debug, Clone, Serialize, Deserialize)]
677pub struct PlatformRecommendation {
678    pub recommendation_type: RecommendationType,
679    pub target_platform: QuantumPlatform,
680    pub use_case: String,
681    pub confidence_score: f64,
682    pub reasoning: String,
683    pub conditions: Vec<String>,
684}
685
686/// Types of recommendations
687#[derive(Debug, Clone, PartialEq, Eq, Serialize, Deserialize)]
688pub enum RecommendationType {
689    BestOverall,
690    BestForUseCase,
691    MostCostEffective,
692    FastestExecution,
693    HighestFidelity,
694    MostReliable,
695    BestScalability,
696    Avoid,
697}
698
699/// Execution summary
700#[derive(Debug, Clone, Serialize, Deserialize)]
701pub struct ExecutionSummary {
702    pub total_execution_time: Duration,
703    pub total_benchmarks_run: usize,
704    pub successful_benchmarks: usize,
705    pub failed_benchmarks: usize,
706    pub platforms_tested: usize,
707    pub total_shots_executed: usize,
708    pub total_cost: f64,
709    pub data_points_collected: usize,
710}
711
712impl Default for CrossPlatformBenchmarkConfig {
713    fn default() -> Self {
714        Self {
715            target_platforms: vec![
716                QuantumPlatform::IBMQuantum("ibmq_qasm_simulator".to_string()),
717                QuantumPlatform::AWSBraket(
718                    "arn:aws:braket:::device/quantum-simulator/amazon/sv1".to_string(),
719                ),
720            ],
721            complexity_levels: vec![
722                ComplexityLevel {
723                    name: "Simple".to_string(),
724                    qubit_count: 2,
725                    circuit_depth: 5,
726                    gate_count_range: (5, 15),
727                    two_qubit_gate_ratio: 0.3,
728                    description: "Basic circuits for connectivity testing".to_string(),
729                },
730                ComplexityLevel {
731                    name: "Medium".to_string(),
732                    qubit_count: 5,
733                    circuit_depth: 20,
734                    gate_count_range: (20, 50),
735                    two_qubit_gate_ratio: 0.4,
736                    description: "Intermediate circuits for performance assessment".to_string(),
737                },
738                ComplexityLevel {
739                    name: "Complex".to_string(),
740                    qubit_count: 10,
741                    circuit_depth: 50,
742                    gate_count_range: (50, 150),
743                    two_qubit_gate_ratio: 0.5,
744                    description: "Complex circuits for scalability testing".to_string(),
745                },
746            ],
747            statistical_config: StatisticalAnalysisConfig::default(),
748            parallel_config: ParallelBenchmarkConfig::default(),
749            benchmark_timeout: Duration::from_secs(300),
750            repetitions: 10,
751            enable_cost_analysis: true,
752            enable_latency_analysis: true,
753            enable_reliability_analysis: true,
754            custom_circuits: Vec::new(),
755        }
756    }
757}
758
759impl Default for StatisticalAnalysisConfig {
760    fn default() -> Self {
761        Self {
762            confidence_level: 0.95,
763            enable_anova: true,
764            enable_pairwise_comparisons: true,
765            enable_outlier_detection: true,
766            enable_distribution_fitting: true,
767            enable_correlation_analysis: true,
768            min_sample_size: 5,
769        }
770    }
771}
772
773impl Default for ParallelBenchmarkConfig {
774    fn default() -> Self {
775        Self {
776            enable_parallel: true,
777            max_concurrent: 4,
778            load_balancing: LoadBalancingStrategy::ResourceBased,
779            resource_allocation: HashMap::new(),
780        }
781    }
782}
783
784/// Main cross-platform benchmarking engine
785pub struct CrossPlatformBenchmarker {
786    config: CrossPlatformBenchmarkConfig,
787    calibration_manager: CalibrationManager,
788    // Platform clients
789    ibm_client: Option<IBMQuantumClient>,
790    aws_client: Option<AWSBraketClient>,
791    azure_client: Option<AzureQuantumClient>,
792}
793
794impl CrossPlatformBenchmarker {
795    /// Create a new cross-platform benchmarker
796    pub const fn new(
797        config: CrossPlatformBenchmarkConfig,
798        calibration_manager: CalibrationManager,
799    ) -> Self {
800        Self {
801            config,
802            calibration_manager,
803            ibm_client: None,
804            aws_client: None,
805            azure_client: None,
806        }
807    }
808
809    /// Run comprehensive cross-platform benchmarks
810    pub async fn run_comprehensive_benchmark(
811        &mut self,
812    ) -> DeviceResult<CrossPlatformBenchmarkResult> {
813        let start_time = Instant::now();
814        let timestamp = SystemTime::now();
815        let benchmark_id = format!(
816            "benchmark_{}",
817            timestamp
818                .duration_since(SystemTime::UNIX_EPOCH)
819                .expect("System time should be after UNIX epoch")
820                .as_secs()
821        );
822
823        // Initialize platform clients
824        self.initialize_platform_clients().await?;
825
826        // Run benchmarks on each platform
827        let mut platform_results = HashMap::new();
828        let mut total_benchmarks = 0;
829        let mut successful_benchmarks = 0;
830        let mut failed_benchmarks = 0;
831        let mut total_shots = 0;
832        let mut total_cost = 0.0;
833
834        for platform in &self.config.target_platforms {
835            match timeout(
836                self.config.benchmark_timeout,
837                self.run_platform_benchmark(platform),
838            )
839            .await
840            {
841                Ok(Ok(result)) => {
842                    total_benchmarks += result.circuit_results.len();
843                    successful_benchmarks += result
844                        .circuit_results
845                        .values()
846                        .map(|results| results.len())
847                        .sum::<usize>();
848                    total_shots += result
849                        .circuit_results
850                        .values()
851                        .flat_map(|results| results.iter())
852                        .map(|r| r.shots)
853                        .sum::<usize>();
854                    total_cost += result
855                        .circuit_results
856                        .values()
857                        .flat_map(|results| results.iter())
858                        .map(|r| r.cost)
859                        .sum::<f64>();
860                    platform_results.insert(platform.clone(), result);
861                }
862                Ok(Err(e)) => {
863                    eprintln!("Platform benchmark failed for {platform:?}: {e}");
864                    failed_benchmarks += 1;
865                }
866                Err(_) => {
867                    eprintln!("Platform benchmark timed out for {platform:?}");
868                    failed_benchmarks += 1;
869                }
870            }
871        }
872
873        // Perform comparative analysis
874        let comparative_analysis = self.perform_comparative_analysis(&platform_results)?;
875
876        // Perform statistical analysis
877        let statistical_analysis =
878            self.perform_cross_platform_statistical_analysis(&platform_results)?;
879
880        // Perform cost analysis
881        let cost_analysis = if self.config.enable_cost_analysis {
882            Some(self.perform_cost_analysis(&platform_results)?)
883        } else {
884            None
885        };
886
887        // Generate recommendations
888        let recommendations = self.generate_platform_recommendations(
889            &platform_results,
890            &comparative_analysis,
891            &statistical_analysis,
892        )?;
893
894        let execution_time = start_time.elapsed();
895        let execution_summary = ExecutionSummary {
896            total_execution_time: execution_time,
897            total_benchmarks_run: total_benchmarks,
898            successful_benchmarks,
899            failed_benchmarks,
900            platforms_tested: platform_results.len(),
901            total_shots_executed: total_shots,
902            total_cost,
903            data_points_collected: platform_results
904                .values()
905                .map(|r| r.circuit_results.values().map(|v| v.len()).sum::<usize>())
906                .sum(),
907        };
908
909        Ok(CrossPlatformBenchmarkResult {
910            benchmark_id,
911            timestamp,
912            config: self.config.clone(),
913            platform_results,
914            comparative_analysis,
915            statistical_analysis,
916            cost_analysis,
917            recommendations,
918            execution_summary,
919        })
920    }
921
922    /// Initialize platform clients
923    async fn initialize_platform_clients(&mut self) -> DeviceResult<()> {
924        // Initialize clients for each platform type
925        for platform in &self.config.target_platforms {
926            match platform {
927                QuantumPlatform::IBMQuantum(_) => {
928                    if self.ibm_client.is_none() {
929                        // Initialize IBM client (would need actual credentials)
930                        // self.ibm_client = Some(IBMQuantumClient::new(credentials)?);
931                    }
932                }
933                QuantumPlatform::AWSBraket(_) => {
934                    if self.aws_client.is_none() {
935                        // Initialize AWS client (would need actual credentials)
936                        // self.aws_client = Some(AWSBraketClient::new(credentials)?);
937                    }
938                }
939                QuantumPlatform::AzureQuantum(_) => {
940                    if self.azure_client.is_none() {
941                        // Initialize Azure client (would need actual credentials)
942                        // self.azure_client = Some(AzureQuantumClient::new(credentials)?);
943                    }
944                }
945                _ => {
946                    // Handle other platforms
947                }
948            }
949        }
950        Ok(())
951    }
952
953    /// Run benchmark on a specific platform
954    async fn run_platform_benchmark(
955        &self,
956        platform: &QuantumPlatform,
957    ) -> DeviceResult<PlatformBenchmarkResult> {
958        // Get device information
959        let device_info = self.get_device_info(platform).await?;
960
961        // Run benchmarks for each complexity level
962        let mut circuit_results = HashMap::new();
963        let mut all_metrics = Vec::new();
964
965        for complexity in &self.config.complexity_levels {
966            let mut level_results = Vec::new();
967
968            // Generate benchmark circuits for this complexity level
969            let benchmark_circuits = self.generate_benchmark_circuits(complexity)?;
970
971            for circuit in benchmark_circuits {
972                // Run circuit multiple times for statistical significance
973                for _ in 0..self.config.repetitions {
974                    match self.execute_circuit_on_platform(&circuit, platform).await {
975                        Ok(result) => {
976                            level_results.push(result.clone());
977                            all_metrics.push(result.fidelity);
978                        }
979                        Err(e) => {
980                            eprintln!("Circuit execution failed: {e}");
981                        }
982                    }
983                }
984            }
985
986            circuit_results.insert(complexity.name.clone(), level_results);
987        }
988
989        // Analyze platform performance
990        let benchmark_metrics = self.calculate_platform_metrics(&circuit_results)?;
991        let performance_analysis = self.analyze_platform_performance(&circuit_results)?;
992        let reliability_metrics = self.calculate_reliability_metrics(&circuit_results)?;
993        let latency_analysis = self.analyze_latency(&circuit_results)?;
994        let error_analysis = self.analyze_errors(&circuit_results)?;
995
996        Ok(PlatformBenchmarkResult {
997            platform: platform.clone(),
998            device_info,
999            benchmark_metrics,
1000            circuit_results,
1001            performance_analysis,
1002            reliability_metrics,
1003            latency_analysis,
1004            error_analysis,
1005        })
1006    }
1007
1008    /// Get device information for a platform
1009    async fn get_device_info(&self, platform: &QuantumPlatform) -> DeviceResult<DeviceInfo> {
1010        // This would query the actual device information from the platform
1011        // For now, return mock data
1012        let (device_name, provider, technology) = match platform {
1013            QuantumPlatform::IBMQuantum(name) => (
1014                name.clone(),
1015                "IBM".to_string(),
1016                QuantumTechnology::Superconducting,
1017            ),
1018            QuantumPlatform::AWSBraket(arn) => (
1019                arn.clone(),
1020                "AWS".to_string(),
1021                QuantumTechnology::Superconducting,
1022            ),
1023            QuantumPlatform::AzureQuantum(target) => (
1024                target.clone(),
1025                "Microsoft".to_string(),
1026                QuantumTechnology::TrappedIon,
1027            ),
1028            QuantumPlatform::IonQ(name) => (
1029                name.clone(),
1030                "IonQ".to_string(),
1031                QuantumTechnology::TrappedIon,
1032            ),
1033            QuantumPlatform::Rigetti(name) => (
1034                name.clone(),
1035                "Rigetti".to_string(),
1036                QuantumTechnology::Superconducting,
1037            ),
1038            QuantumPlatform::GoogleQuantumAI(name) => (
1039                name.clone(),
1040                "Google".to_string(),
1041                QuantumTechnology::Superconducting,
1042            ),
1043            QuantumPlatform::Custom(name) => (
1044                name.clone(),
1045                "Custom".to_string(),
1046                QuantumTechnology::Other("Custom".to_string()),
1047            ),
1048        };
1049
1050        Ok(DeviceInfo {
1051            device_name,
1052            provider,
1053            technology,
1054            qubit_count: 20, // Mock value
1055            connectivity: ConnectivityInfo {
1056                topology_type: TopologyType::Heavy,
1057                connectivity_graph: Array2::eye(20),
1058                average_connectivity: 2.5,
1059                max_path_length: 5,
1060            },
1061            capabilities: query_backend_capabilities(
1062                crate::translation::HardwareBackend::IBMQuantum,
1063            ),
1064            calibration_date: Some(SystemTime::now()),
1065        })
1066    }
1067
1068    /// Generate benchmark circuits for a complexity level
1069    fn generate_benchmark_circuits(
1070        &self,
1071        complexity: &ComplexityLevel,
1072    ) -> DeviceResult<Vec<Circuit<16>>> {
1073        let mut circuits = Vec::new();
1074
1075        // Generate random circuits within the complexity constraints
1076        use scirs2_core::random::prelude::*;
1077        let mut rng = thread_rng();
1078
1079        let num_circuits = 5; // Generate 5 circuits per complexity level
1080
1081        for i in 0..num_circuits {
1082            let mut circuit = Circuit::<16>::new();
1083            let gate_count =
1084                rng.gen_range(complexity.gate_count_range.0..=complexity.gate_count_range.1);
1085            let two_qubit_gates = (gate_count as f64 * complexity.two_qubit_gate_ratio) as usize;
1086            let single_qubit_gates = gate_count - two_qubit_gates;
1087
1088            // Add random single-qubit gates
1089            for _ in 0..single_qubit_gates {
1090                let qubit = rng.gen_range(0..complexity.qubit_count) as u32;
1091                match rng.gen_range(0..4) {
1092                    0 => {
1093                        circuit.h(QubitId(qubit))?;
1094                    }
1095                    1 => {
1096                        circuit.x(QubitId(qubit))?;
1097                    }
1098                    2 => {
1099                        circuit.y(QubitId(qubit))?;
1100                    }
1101                    3 => {
1102                        circuit.z(QubitId(qubit))?;
1103                    }
1104                    _ => unreachable!(),
1105                }
1106            }
1107
1108            // Add random two-qubit gates
1109            for _ in 0..two_qubit_gates {
1110                let qubit1 = rng.gen_range(0..complexity.qubit_count) as u32;
1111                let mut qubit2 = rng.gen_range(0..complexity.qubit_count) as u32;
1112                while qubit2 == qubit1 {
1113                    qubit2 = rng.gen_range(0..complexity.qubit_count) as u32;
1114                }
1115                let _ = circuit.cnot(QubitId(qubit1), QubitId(qubit2));
1116            }
1117
1118            circuits.push(circuit);
1119        }
1120
1121        // Add custom circuits if specified
1122        for custom_circuit in &self.config.custom_circuits {
1123            if custom_circuit.qubit_count <= complexity.qubit_count {
1124                // Parse and add custom circuit (simplified)
1125                let circuit = self.parse_custom_circuit(custom_circuit)?;
1126                circuits.push(circuit);
1127            }
1128        }
1129
1130        Ok(circuits)
1131    }
1132
1133    /// Execute a circuit on a specific platform
1134    async fn execute_circuit_on_platform(
1135        &self,
1136        circuit: &Circuit<16>,
1137        platform: &QuantumPlatform,
1138    ) -> DeviceResult<CircuitBenchmarkResult> {
1139        let start_time = Instant::now();
1140        let queue_start = Instant::now();
1141
1142        // Simulate circuit execution (in practice, would use actual platform APIs)
1143        let shots = 1000;
1144        let execution_time = Duration::from_millis(thread_rng().gen_range(100..2000));
1145        let queue_time = Duration::from_millis(thread_rng().gen_range(10..5000));
1146
1147        // Simulate measurement results
1148        let mut measurement_counts = HashMap::new();
1149        let num_qubits = circuit
1150            .gates()
1151            .iter()
1152            .flat_map(|g| g.qubits())
1153            .map(|q| q.0 as usize)
1154            .max()
1155            .unwrap_or(0)
1156            + 1;
1157
1158        let num_outcomes = 2_usize.pow(num_qubits.min(8) as u32); // Limit for simulation
1159        for i in 0..num_outcomes.min(8) {
1160            let outcome = format!("{:0width$b}", i, width = num_qubits.min(8));
1161            let count = thread_rng().gen_range(0..shots / num_outcomes * 2);
1162            if count > 0 {
1163                measurement_counts.insert(outcome, count);
1164            }
1165        }
1166
1167        // Calculate metrics
1168        let fidelity = self.calculate_circuit_fidelity(&measurement_counts, circuit)?;
1169        let success_rate =
1170            measurement_counts.values().map(|&c| c as f64).sum::<f64>() / shots as f64;
1171        let cost = self.calculate_execution_cost(platform, shots, execution_time)?;
1172
1173        Ok(CircuitBenchmarkResult {
1174            circuit_name: format!("circuit_{}", circuit.gates().len()),
1175            complexity_level: "medium".to_string(), // Would be passed as parameter
1176            execution_time,
1177            queue_time,
1178            total_time: queue_time + execution_time,
1179            fidelity,
1180            success_rate,
1181            cost,
1182            shots,
1183            measurement_counts,
1184            error_messages: Vec::new(),
1185        })
1186    }
1187
1188    // Helper methods for analysis and calculations
1189
1190    fn parse_custom_circuit(&self, custom: &CustomBenchmarkCircuit) -> DeviceResult<Circuit<16>> {
1191        // Simplified circuit parsing - would implement proper QASM/circuit parsing
1192        Ok(Circuit::<16>::new())
1193    }
1194
1195    fn calculate_circuit_fidelity(
1196        &self,
1197        _measurement_counts: &HashMap<String, usize>,
1198        _circuit: &Circuit<16>,
1199    ) -> DeviceResult<f64> {
1200        // Simplified fidelity calculation
1201        Ok(thread_rng().gen_range(0.8..0.99))
1202    }
1203
1204    fn calculate_execution_cost(
1205        &self,
1206        platform: &QuantumPlatform,
1207        shots: usize,
1208        execution_time: Duration,
1209    ) -> DeviceResult<f64> {
1210        // Simplified cost calculation based on platform
1211        let base_cost = match platform {
1212            QuantumPlatform::IBMQuantum(_) => 0.0001, // Free tier
1213            QuantumPlatform::AWSBraket(_) => 0.01,
1214            QuantumPlatform::AzureQuantum(_) => 0.008,
1215            QuantumPlatform::IonQ(_) => 0.01,
1216            _ => 0.005,
1217        };
1218
1219        Ok(base_cost * shots as f64 + execution_time.as_secs_f64() * 0.001)
1220    }
1221
1222    fn calculate_platform_metrics(
1223        &self,
1224        circuit_results: &HashMap<String, Vec<CircuitBenchmarkResult>>,
1225    ) -> DeviceResult<BenchmarkMetrics> {
1226        let all_results: Vec<&CircuitBenchmarkResult> = circuit_results
1227            .values()
1228            .flat_map(|results| results.iter())
1229            .collect();
1230
1231        if all_results.is_empty() {
1232            return Ok(BenchmarkMetrics {
1233                overall_score: 0.0,
1234                fidelity_score: 0.0,
1235                speed_score: 0.0,
1236                reliability_score: 0.0,
1237                cost_efficiency_score: 0.0,
1238                scalability_score: 0.0,
1239                detailed_metrics: HashMap::new(),
1240            });
1241        }
1242
1243        let avg_fidelity =
1244            all_results.iter().map(|r| r.fidelity).sum::<f64>() / all_results.len() as f64;
1245        let avg_execution_time = all_results
1246            .iter()
1247            .map(|r| r.execution_time.as_secs_f64())
1248            .sum::<f64>()
1249            / all_results.len() as f64;
1250        let avg_success_rate =
1251            all_results.iter().map(|r| r.success_rate).sum::<f64>() / all_results.len() as f64;
1252        let avg_cost = all_results.iter().map(|r| r.cost).sum::<f64>() / all_results.len() as f64;
1253
1254        let fidelity_score = avg_fidelity * 100.0;
1255        let speed_score = (1.0 / avg_execution_time * 100.0).min(100.0);
1256        let reliability_score = avg_success_rate * 100.0;
1257        let cost_efficiency_score = (1.0 / (avg_cost + 0.001) * 10.0).min(100.0);
1258        let scalability_score = 75.0; // Would calculate based on circuit complexity scaling
1259
1260        let overall_score = (fidelity_score * 0.3
1261            + speed_score * 0.2
1262            + reliability_score * 0.2
1263            + cost_efficiency_score * 0.15
1264            + scalability_score * 0.15)
1265            .min(100.0);
1266
1267        let mut detailed_metrics = HashMap::new();
1268        detailed_metrics.insert("avg_fidelity".to_string(), avg_fidelity);
1269        detailed_metrics.insert("avg_execution_time".to_string(), avg_execution_time);
1270        detailed_metrics.insert("avg_success_rate".to_string(), avg_success_rate);
1271        detailed_metrics.insert("avg_cost".to_string(), avg_cost);
1272
1273        Ok(BenchmarkMetrics {
1274            overall_score,
1275            fidelity_score,
1276            speed_score,
1277            reliability_score,
1278            cost_efficiency_score,
1279            scalability_score,
1280            detailed_metrics,
1281        })
1282    }
1283
1284    fn analyze_platform_performance(
1285        &self,
1286        circuit_results: &HashMap<String, Vec<CircuitBenchmarkResult>>,
1287    ) -> DeviceResult<PlatformPerformanceAnalysis> {
1288        let all_results: Vec<&CircuitBenchmarkResult> = circuit_results
1289            .values()
1290            .flat_map(|results| results.iter())
1291            .collect();
1292
1293        if all_results.is_empty() {
1294            return Err(DeviceError::APIError(
1295                "No results available for analysis".into(),
1296            ));
1297        }
1298
1299        // Calculate throughput (circuits per second)
1300        let total_time: f64 = all_results.iter().map(|r| r.total_time.as_secs_f64()).sum();
1301        let throughput = all_results.len() as f64 / total_time;
1302
1303        // Latency distribution
1304        let latencies: Vec<f64> = all_results
1305            .iter()
1306            .map(|r| r.total_time.as_secs_f64())
1307            .collect();
1308        let latency_array = Array1::from_vec(latencies.clone());
1309
1310        let mean_latency = mean(&latency_array.view()).unwrap_or(0.0);
1311        let median_latency = {
1312            let mut sorted_latencies = latencies.clone();
1313            sorted_latencies.sort_by(|a, b| a.partial_cmp(b).unwrap_or(std::cmp::Ordering::Equal));
1314            let mid = sorted_latencies.len() / 2;
1315            if sorted_latencies.len() % 2 == 0 {
1316                f64::midpoint(sorted_latencies[mid - 1], sorted_latencies[mid])
1317            } else {
1318                sorted_latencies[mid]
1319            }
1320        };
1321        let std_dev_latency = std(&latency_array.view(), 1, None).unwrap_or(0.0);
1322
1323        let mut percentiles = HashMap::new();
1324        let mut sorted_latencies = latencies;
1325        sorted_latencies.sort_by(|a, b| a.partial_cmp(b).unwrap_or(std::cmp::Ordering::Equal));
1326        percentiles.insert(50, median_latency);
1327        percentiles.insert(
1328            95,
1329            sorted_latencies[(sorted_latencies.len() as f64 * 0.95) as usize],
1330        );
1331        percentiles.insert(
1332            99,
1333            sorted_latencies[(sorted_latencies.len() as f64 * 0.99) as usize],
1334        );
1335
1336        let latency_distribution = LatencyDistribution {
1337            mean: mean_latency,
1338            median: median_latency,
1339            std_dev: std_dev_latency,
1340            percentiles,
1341            distribution_type: "Normal".to_string(), // Would determine actual distribution
1342        };
1343
1344        // Simplified scalability analysis
1345        let scalability_analysis = ScalabilityAnalysis {
1346            qubit_scaling_factor: 1.2, // Would calculate based on actual scaling tests
1347            depth_scaling_factor: 1.5,
1348            theoretical_limits: TheoreticalLimits {
1349                max_qubit_count: 100,
1350                max_circuit_depth: 1000,
1351                max_gate_count: 10000,
1352                coherence_limited_depth: 50,
1353            },
1354            bottleneck_analysis: BottleneckAnalysis {
1355                primary_bottleneck: BottleneckType::QueueTime,
1356                bottleneck_severity: 0.3,
1357                mitigation_strategies: vec!["Optimize timing".to_string()],
1358            },
1359        };
1360
1361        // Resource utilization
1362        let resource_utilization = ResourceUtilization {
1363            qubit_utilization: 0.6, // Would calculate based on actual circuit requirements
1364            gate_efficiency: 0.8,
1365            shot_efficiency: 0.9,
1366            time_efficiency: 0.7,
1367        };
1368
1369        // Performance trends (simplified)
1370        let performance_trends = PerformanceTrends {
1371            fidelity_trend: TrendAnalysis {
1372                slope: 0.001,
1373                r_squared: 0.8,
1374                trend_direction: TrendDirection::Improving,
1375                confidence_interval: (0.0005, 0.0015),
1376            },
1377            latency_trend: TrendAnalysis {
1378                slope: -0.01,
1379                r_squared: 0.6,
1380                trend_direction: TrendDirection::Improving,
1381                confidence_interval: (-0.02, 0.0),
1382            },
1383            reliability_trend: TrendAnalysis {
1384                slope: 0.005,
1385                r_squared: 0.7,
1386                trend_direction: TrendDirection::Stable,
1387                confidence_interval: (0.0, 0.01),
1388            },
1389            cost_trend: TrendAnalysis {
1390                slope: -0.001,
1391                r_squared: 0.5,
1392                trend_direction: TrendDirection::Improving,
1393                confidence_interval: (-0.002, 0.0),
1394            },
1395        };
1396
1397        Ok(PlatformPerformanceAnalysis {
1398            throughput,
1399            latency_distribution,
1400            scalability_analysis,
1401            resource_utilization,
1402            performance_trends,
1403        })
1404    }
1405
1406    fn calculate_reliability_metrics(
1407        &self,
1408        circuit_results: &HashMap<String, Vec<CircuitBenchmarkResult>>,
1409    ) -> DeviceResult<ReliabilityMetrics> {
1410        let all_results: Vec<&CircuitBenchmarkResult> = circuit_results
1411            .values()
1412            .flat_map(|results| results.iter())
1413            .collect();
1414
1415        let successful_runs = all_results
1416            .iter()
1417            .filter(|r| r.error_messages.is_empty())
1418            .count();
1419        let uptime_percentage = (successful_runs as f64 / all_results.len() as f64) * 100.0;
1420
1421        let mut error_rates = HashMap::new();
1422        error_rates.insert(
1423            "execution_error".to_string(),
1424            (all_results.len() - successful_runs) as f64 / all_results.len() as f64,
1425        );
1426
1427        Ok(ReliabilityMetrics {
1428            uptime_percentage,
1429            mtbf: Duration::from_secs(3600), // 1 hour average
1430            mttr: Duration::from_secs(300),  // 5 minutes average
1431            error_rates,
1432            consistency_score: uptime_percentage / 100.0,
1433        })
1434    }
1435
1436    fn analyze_latency(
1437        &self,
1438        circuit_results: &HashMap<String, Vec<CircuitBenchmarkResult>>,
1439    ) -> DeviceResult<LatencyAnalysis> {
1440        let all_results: Vec<&CircuitBenchmarkResult> = circuit_results
1441            .values()
1442            .flat_map(|results| results.iter())
1443            .collect();
1444
1445        if all_results.is_empty() {
1446            return Err(DeviceError::APIError(
1447                "No results for latency analysis".into(),
1448            ));
1449        }
1450
1451        let avg_queue =
1452            all_results.iter().map(|r| r.queue_time).sum::<Duration>() / all_results.len() as u32;
1453        let avg_execution = all_results
1454            .iter()
1455            .map(|r| r.execution_time)
1456            .sum::<Duration>()
1457            / all_results.len() as u32;
1458        let avg_total =
1459            all_results.iter().map(|r| r.total_time).sum::<Duration>() / all_results.len() as u32;
1460
1461        let latency_values: Vec<f64> = all_results
1462            .iter()
1463            .map(|r| r.total_time.as_secs_f64())
1464            .collect();
1465        let latency_array = Array1::from_vec(latency_values);
1466        let latency_variability = std(&latency_array.view(), 1, None).unwrap_or(0.0);
1467
1468        Ok(LatencyAnalysis {
1469            submission_latency: Duration::from_millis(100), // Mock value
1470            queue_latency: avg_queue,
1471            execution_latency: avg_execution,
1472            retrieval_latency: Duration::from_millis(50), // Mock value
1473            total_latency: avg_total,
1474            latency_variability,
1475        })
1476    }
1477
1478    fn analyze_errors(
1479        &self,
1480        circuit_results: &HashMap<String, Vec<CircuitBenchmarkResult>>,
1481    ) -> DeviceResult<ErrorAnalysis> {
1482        let all_results: Vec<&CircuitBenchmarkResult> = circuit_results
1483            .values()
1484            .flat_map(|results| results.iter())
1485            .collect();
1486
1487        let mut systematic_errors = HashMap::new();
1488        let mut random_errors = HashMap::new();
1489
1490        // Simple error analysis
1491        systematic_errors.insert("gate_error".to_string(), 0.001);
1492        random_errors.insert("thermal_noise".to_string(), 0.0005);
1493
1494        let n_qubits = 5; // Simplified
1495        let error_correlations = Array2::eye(n_qubits);
1496
1497        Ok(ErrorAnalysis {
1498            systematic_errors,
1499            random_errors,
1500            coherent_errors: HashMap::new(),
1501            readout_errors: HashMap::new(),
1502            gate_errors: HashMap::new(),
1503            error_correlations,
1504        })
1505    }
1506
1507    fn perform_comparative_analysis(
1508        &self,
1509        platform_results: &HashMap<QuantumPlatform, PlatformBenchmarkResult>,
1510    ) -> DeviceResult<ComparativeAnalysisResult> {
1511        let mut platform_rankings = HashMap::new();
1512        let mut performance_matrix_data = Vec::new();
1513        let mut statistical_comparisons = HashMap::new();
1514
1515        // Create rankings
1516        let platforms: Vec<_> = platform_results.keys().collect();
1517        let n_platforms = platforms.len();
1518
1519        for (i, (platform, result)) in platform_results.iter().enumerate() {
1520            let ranking = PlatformRanking {
1521                overall_rank: i + 1, // Simplified ranking
1522                category_ranks: HashMap::new(),
1523                normalized_scores: HashMap::new(),
1524                relative_performance: result.benchmark_metrics.overall_score / 100.0,
1525            };
1526            platform_rankings.insert(format!("{platform:?}"), ranking);
1527
1528            // Add to performance matrix
1529            performance_matrix_data.extend(vec![
1530                result.benchmark_metrics.fidelity_score,
1531                result.benchmark_metrics.speed_score,
1532                result.benchmark_metrics.reliability_score,
1533                result.benchmark_metrics.cost_efficiency_score,
1534            ]);
1535        }
1536
1537        let performance_matrix = Array2::from_shape_vec((n_platforms, 4), performance_matrix_data)
1538            .map_err(|e| DeviceError::APIError(format!("Matrix creation error: {e}")))?;
1539
1540        // Cost effectiveness analysis
1541        let mut cost_per_shot = HashMap::new();
1542        let mut cost_per_gate = HashMap::new();
1543        let mut cost_per_successful_result = HashMap::new();
1544        let mut value_for_money_score = HashMap::new();
1545
1546        for (platform, result) in platform_results {
1547            let total_cost: f64 = result
1548                .circuit_results
1549                .values()
1550                .flat_map(|results| results.iter())
1551                .map(|r| r.cost)
1552                .sum();
1553            let total_shots: usize = result
1554                .circuit_results
1555                .values()
1556                .flat_map(|results| results.iter())
1557                .map(|r| r.shots)
1558                .sum();
1559
1560            cost_per_shot.insert(platform.clone(), total_cost / total_shots as f64);
1561            cost_per_gate.insert(platform.clone(), total_cost / 100.0); // Simplified
1562            cost_per_successful_result.insert(
1563                platform.clone(),
1564                total_cost
1565                    / (total_shots as f64 * result.benchmark_metrics.reliability_score / 100.0),
1566            );
1567            value_for_money_score.insert(
1568                platform.clone(),
1569                result.benchmark_metrics.overall_score / (total_cost + 0.001),
1570            );
1571        }
1572
1573        let cost_effectiveness_analysis = CostEffectivenessAnalysis {
1574            cost_per_shot,
1575            cost_per_gate,
1576            cost_per_successful_result,
1577            value_for_money_score,
1578            cost_optimization_recommendations: Vec::new(),
1579        };
1580
1581        // Use case recommendations (simplified)
1582        let mut use_case_recommendations = HashMap::new();
1583        use_case_recommendations.insert(
1584            "general_purpose".to_string(),
1585            platforms.iter().map(|&p| p.clone()).collect(),
1586        );
1587
1588        Ok(ComparativeAnalysisResult {
1589            platform_rankings,
1590            performance_matrix,
1591            statistical_comparisons,
1592            cost_effectiveness_analysis,
1593            use_case_recommendations,
1594        })
1595    }
1596
1597    fn perform_cross_platform_statistical_analysis(
1598        &self,
1599        platform_results: &HashMap<QuantumPlatform, PlatformBenchmarkResult>,
1600    ) -> DeviceResult<CrossPlatformStatisticalAnalysis> {
1601        // Simplified statistical analysis
1602        let anova_results = HashMap::new();
1603        let correlation_analysis = CorrelationAnalysisResult {
1604            correlationmatrix: Array2::eye(4),
1605            significant_correlations: Vec::new(),
1606            correlation_network: HashMap::new(),
1607        };
1608        let cluster_analysis = ClusterAnalysisResult {
1609            cluster_assignments: HashMap::new(),
1610            cluster_centers: Array2::zeros((2, 4)),
1611            silhouette_score: 0.7,
1612            cluster_interpretations: HashMap::new(),
1613        };
1614        let principal_component_analysis = PCAResult {
1615            principal_components: Array2::eye(4),
1616            explained_variance_ratio: Array1::from_vec(vec![0.4, 0.3, 0.2, 0.1]),
1617            cumulative_variance: Array1::from_vec(vec![0.4, 0.7, 0.9, 1.0]),
1618            loadings: Array2::eye(4),
1619            platform_scores: HashMap::new(),
1620        };
1621        let outlier_detection = OutlierDetectionResult {
1622            outliers: HashMap::new(),
1623            outlier_scores: HashMap::new(),
1624            detection_method: "IQR".to_string(),
1625            threshold: 1.5,
1626        };
1627        let distribution_analysis = DistributionAnalysisResult {
1628            platform_distributions: HashMap::new(),
1629            distribution_comparisons: HashMap::new(),
1630            normality_tests: HashMap::new(),
1631        };
1632
1633        Ok(CrossPlatformStatisticalAnalysis {
1634            anova_results,
1635            correlation_analysis,
1636            cluster_analysis,
1637            principal_component_analysis,
1638            outlier_detection,
1639            distribution_analysis,
1640        })
1641    }
1642
1643    fn perform_cost_analysis(
1644        &self,
1645        platform_results: &HashMap<QuantumPlatform, PlatformBenchmarkResult>,
1646    ) -> DeviceResult<CrossPlatformCostAnalysis> {
1647        let mut total_costs = HashMap::new();
1648        let mut cost_breakdown = HashMap::new();
1649        let mut cost_trends = HashMap::new();
1650
1651        for (platform, result) in platform_results {
1652            let total_cost: f64 = result
1653                .circuit_results
1654                .values()
1655                .flat_map(|results| results.iter())
1656                .map(|r| r.cost)
1657                .sum();
1658
1659            total_costs.insert(platform.clone(), total_cost);
1660
1661            cost_breakdown.insert(
1662                platform.clone(),
1663                CostBreakdown {
1664                    compute_cost: total_cost * 0.8,
1665                    queue_cost: total_cost * 0.1,
1666                    storage_cost: total_cost * 0.05,
1667                    data_transfer_cost: total_cost * 0.05,
1668                    other_costs: HashMap::new(),
1669                },
1670            );
1671
1672            cost_trends.insert(
1673                platform.clone(),
1674                CostTrend {
1675                    trend_direction: TrendDirection::Stable,
1676                    cost_per_month: vec![total_cost; 6], // Mock 6 months of data
1677                    projected_costs: vec![total_cost; 6],
1678                    cost_volatility: 0.1,
1679                },
1680            );
1681        }
1682
1683        let cost_optimization = CostOptimizationAnalysis {
1684            optimization_opportunities: Vec::new(),
1685            potential_savings: 100.0,
1686            optimization_strategies: vec!["Use lower-cost platforms for development".to_string()],
1687        };
1688
1689        let roi_analysis = ROIAnalysis {
1690            platform_roi: HashMap::new(),
1691            break_even_analysis: HashMap::new(),
1692            value_metrics: HashMap::new(),
1693        };
1694
1695        Ok(CrossPlatformCostAnalysis {
1696            total_costs,
1697            cost_breakdown,
1698            cost_trends,
1699            cost_optimization,
1700            roi_analysis,
1701        })
1702    }
1703
1704    fn generate_platform_recommendations(
1705        &self,
1706        platform_results: &HashMap<QuantumPlatform, PlatformBenchmarkResult>,
1707        comparative_analysis: &ComparativeAnalysisResult,
1708        _statistical_analysis: &CrossPlatformStatisticalAnalysis,
1709    ) -> DeviceResult<Vec<PlatformRecommendation>> {
1710        let mut recommendations = Vec::new();
1711
1712        // Find best overall platform
1713        if let Some((best_platform, _)) = platform_results.iter().max_by(|a, b| {
1714            a.1.benchmark_metrics
1715                .overall_score
1716                .partial_cmp(&b.1.benchmark_metrics.overall_score)
1717                .unwrap_or(std::cmp::Ordering::Equal)
1718        }) {
1719            recommendations.push(PlatformRecommendation {
1720                recommendation_type: RecommendationType::BestOverall,
1721                target_platform: best_platform.clone(),
1722                use_case: "General quantum computing tasks".to_string(),
1723                confidence_score: 0.9,
1724                reasoning: "Highest overall benchmark score".to_string(),
1725                conditions: vec!["Consider cost constraints".to_string()],
1726            });
1727        }
1728
1729        // Find most cost-effective platform
1730        if let Some((most_cost_effective, _)) = comparative_analysis
1731            .cost_effectiveness_analysis
1732            .value_for_money_score
1733            .iter()
1734            .max_by(|a, b| a.1.partial_cmp(b.1).unwrap_or(std::cmp::Ordering::Equal))
1735        {
1736            recommendations.push(PlatformRecommendation {
1737                recommendation_type: RecommendationType::MostCostEffective,
1738                target_platform: most_cost_effective.clone(),
1739                use_case: "Budget-conscious development and testing".to_string(),
1740                confidence_score: 0.8,
1741                reasoning: "Best value for money ratio".to_string(),
1742                conditions: vec!["May have lower performance".to_string()],
1743            });
1744        }
1745
1746        Ok(recommendations)
1747    }
1748}
1749
1750#[cfg(test)]
1751mod tests {
1752    use super::*;
1753
1754    #[test]
1755    fn test_cross_platform_config_default() {
1756        let config = CrossPlatformBenchmarkConfig::default();
1757        assert_eq!(config.target_platforms.len(), 2);
1758        assert_eq!(config.complexity_levels.len(), 3);
1759        assert!(config.enable_cost_analysis);
1760    }
1761
1762    #[test]
1763    fn test_complexity_level_creation() {
1764        let complexity = ComplexityLevel {
1765            name: "Test".to_string(),
1766            qubit_count: 5,
1767            circuit_depth: 10,
1768            gate_count_range: (10, 30),
1769            two_qubit_gate_ratio: 0.4,
1770            description: "Test complexity level".to_string(),
1771        };
1772
1773        assert_eq!(complexity.name, "Test");
1774        assert_eq!(complexity.qubit_count, 5);
1775        assert_eq!(complexity.two_qubit_gate_ratio, 0.4);
1776    }
1777
1778    #[test]
1779    fn test_platform_enum() {
1780        let ibm_platform = QuantumPlatform::IBMQuantum("ibmq_qasm_simulator".to_string());
1781        let aws_platform = QuantumPlatform::AWSBraket(
1782            "arn:aws:braket:::device/quantum-simulator/amazon/sv1".to_string(),
1783        );
1784
1785        assert_ne!(ibm_platform, aws_platform);
1786    }
1787}