1use std::collections::{BTreeMap, HashMap, HashSet};
8use std::time::{Duration, Instant, SystemTime};
9
10use scirs2_core::random::{thread_rng, Rng};
11use serde::{Deserialize, Serialize};
12use tokio::time::timeout;
13
14use quantrs2_circuit::prelude::*;
15use quantrs2_core::{
16 error::{QuantRS2Error, QuantRS2Result},
17 gate::GateOp,
18 qubit::QubitId,
19};
20
21#[cfg(feature = "scirs2")]
23use scirs2_linalg::{correlationmatrix, eig, matrix_norm, svd, LinalgResult};
24#[cfg(feature = "scirs2")]
25use scirs2_optimize::{minimize, OptimizeResult};
26#[cfg(feature = "scirs2")]
27use scirs2_stats::{
28 distributions::{chi2, norm, t},
29 ks_2samp, mean, median, pearsonr, spearmanr, std, ttest_ind, var, Alternative, TTestResult,
30};
31
32#[cfg(not(feature = "scirs2"))]
33use crate::ml_optimization::fallback_scirs2::{mean, minimize, pearsonr, std, var, OptimizeResult};
34
35use scirs2_core::ndarray::{Array1, Array2, ArrayView1, ArrayView2};
36
37use crate::{
38 aws::AWSBraketClient,
39 azure::AzureQuantumClient,
40 backend_traits::{query_backend_capabilities, BackendCapabilities},
41 benchmarking::{BenchmarkConfig, DeviceExecutor, HardwareBenchmarkSuite},
42 calibration::{CalibrationManager, DeviceCalibration},
43 ibm::IBMQuantumClient,
44 CircuitResult, DeviceError, DeviceResult,
45};
46
47#[derive(Debug, Clone, Serialize, Deserialize)]
49pub struct CrossPlatformBenchmarkConfig {
50 pub target_platforms: Vec<QuantumPlatform>,
52 pub complexity_levels: Vec<ComplexityLevel>,
54 pub statistical_config: StatisticalAnalysisConfig,
56 pub parallel_config: ParallelBenchmarkConfig,
58 pub benchmark_timeout: Duration,
60 pub repetitions: usize,
62 pub enable_cost_analysis: bool,
64 pub enable_latency_analysis: bool,
66 pub enable_reliability_analysis: bool,
68 pub custom_circuits: Vec<CustomBenchmarkCircuit>,
70}
71
72#[derive(Debug, Clone, PartialEq, Eq, Hash, Serialize, Deserialize)]
74pub enum QuantumPlatform {
75 IBMQuantum(String), AWSBraket(String), AzureQuantum(String), IonQ(String), Rigetti(String), GoogleQuantumAI(String), Custom(String), }
83
84#[derive(Debug, Clone, Serialize, Deserialize)]
86pub struct ComplexityLevel {
87 pub name: String,
88 pub qubit_count: usize,
89 pub circuit_depth: usize,
90 pub gate_count_range: (usize, usize),
91 pub two_qubit_gate_ratio: f64,
92 pub description: String,
93}
94
95#[derive(Debug, Clone, Serialize, Deserialize)]
97pub struct StatisticalAnalysisConfig {
98 pub confidence_level: f64,
100 pub enable_anova: bool,
102 pub enable_pairwise_comparisons: bool,
104 pub enable_outlier_detection: bool,
106 pub enable_distribution_fitting: bool,
108 pub enable_correlation_analysis: bool,
110 pub min_sample_size: usize,
112}
113
114#[derive(Debug, Clone, Serialize, Deserialize)]
116pub struct ParallelBenchmarkConfig {
117 pub enable_parallel: bool,
119 pub max_concurrent: usize,
121 pub load_balancing: LoadBalancingStrategy,
123 pub resource_allocation: HashMap<QuantumPlatform, ResourceAllocation>,
125}
126
127#[derive(Debug, Clone, PartialEq, Eq, Serialize, Deserialize)]
129pub enum LoadBalancingStrategy {
130 RoundRobin,
131 WeightedRoundRobin,
132 LeastConnections,
133 ResourceBased,
134 CostOptimized,
135 LatencyOptimized,
136}
137
138#[derive(Debug, Clone, Serialize, Deserialize)]
140pub struct ResourceAllocation {
141 pub max_shots_per_circuit: usize,
142 pub max_concurrent_circuits: usize,
143 pub priority: BenchmarkPriority,
144 pub timeout: Duration,
145}
146
147#[derive(Debug, Clone, PartialEq, Eq, Serialize, Deserialize)]
149pub enum BenchmarkPriority {
150 Low,
151 Medium,
152 High,
153 Critical,
154}
155
156#[derive(Debug, Clone, Serialize, Deserialize)]
158pub struct CustomBenchmarkCircuit {
159 pub name: String,
160 pub description: String,
161 pub qubit_count: usize,
162 pub circuit_definition: CircuitDefinition,
163 pub expected_outcomes: HashMap<String, f64>,
164 pub performance_targets: PerformanceTargets,
165}
166
167#[derive(Debug, Clone, Serialize, Deserialize)]
169pub enum CircuitDefinition {
170 QASM(String),
171 QuantumCircuit(String), PythonCode(String),
173 Custom(String),
174}
175
176#[derive(Debug, Clone, Serialize, Deserialize)]
178pub struct PerformanceTargets {
179 pub target_fidelity: f64,
180 pub max_execution_time: Duration,
181 pub max_cost_per_shot: f64,
182 pub min_success_rate: f64,
183}
184
185#[derive(Debug, Clone, Serialize, Deserialize)]
187pub struct CrossPlatformBenchmarkResult {
188 pub benchmark_id: String,
189 pub timestamp: SystemTime,
190 pub config: CrossPlatformBenchmarkConfig,
191 pub platform_results: HashMap<QuantumPlatform, PlatformBenchmarkResult>,
192 pub comparative_analysis: ComparativeAnalysisResult,
193 pub statistical_analysis: CrossPlatformStatisticalAnalysis,
194 pub cost_analysis: Option<CrossPlatformCostAnalysis>,
195 pub recommendations: Vec<PlatformRecommendation>,
196 pub execution_summary: ExecutionSummary,
197}
198
199#[derive(Debug, Clone, Serialize, Deserialize)]
201pub struct PlatformBenchmarkResult {
202 pub platform: QuantumPlatform,
203 pub device_info: DeviceInfo,
204 pub benchmark_metrics: BenchmarkMetrics,
205 pub circuit_results: HashMap<String, Vec<CircuitBenchmarkResult>>,
206 pub performance_analysis: PlatformPerformanceAnalysis,
207 pub reliability_metrics: ReliabilityMetrics,
208 pub latency_analysis: LatencyAnalysis,
209 pub error_analysis: ErrorAnalysis,
210}
211
212#[derive(Debug, Clone, Serialize, Deserialize)]
214pub struct DeviceInfo {
215 pub device_name: String,
216 pub provider: String,
217 pub technology: QuantumTechnology,
218 pub qubit_count: usize,
219 pub connectivity: ConnectivityInfo,
220 pub capabilities: BackendCapabilities,
221 pub calibration_date: Option<SystemTime>,
222}
223
224#[derive(Debug, Clone, PartialEq, Eq, Serialize, Deserialize)]
226pub enum QuantumTechnology {
227 Superconducting,
228 TrappedIon,
229 Photonic,
230 NeutralAtom,
231 Topological,
232 SpinQubit,
233 Other(String),
234}
235
236#[derive(Debug, Clone, Serialize, Deserialize)]
238pub struct ConnectivityInfo {
239 pub topology_type: TopologyType,
240 pub connectivity_graph: Array2<f64>,
241 pub average_connectivity: f64,
242 pub max_path_length: usize,
243}
244
245#[derive(Debug, Clone, PartialEq, Eq, Serialize, Deserialize)]
247pub enum TopologyType {
248 Linear,
249 Grid,
250 Heavy,
251 AllToAll,
252 Custom,
253}
254
255#[derive(Debug, Clone, Serialize, Deserialize)]
257pub struct BenchmarkMetrics {
258 pub overall_score: f64,
259 pub fidelity_score: f64,
260 pub speed_score: f64,
261 pub reliability_score: f64,
262 pub cost_efficiency_score: f64,
263 pub scalability_score: f64,
264 pub detailed_metrics: HashMap<String, f64>,
265}
266
267#[derive(Debug, Clone, Serialize, Deserialize)]
269pub struct CircuitBenchmarkResult {
270 pub circuit_name: String,
271 pub complexity_level: String,
272 pub execution_time: Duration,
273 pub queue_time: Duration,
274 pub total_time: Duration,
275 pub fidelity: f64,
276 pub success_rate: f64,
277 pub cost: f64,
278 pub shots: usize,
279 pub measurement_counts: HashMap<String, usize>,
280 pub error_messages: Vec<String>,
281}
282
283#[derive(Debug, Clone, Serialize, Deserialize)]
285pub struct PlatformPerformanceAnalysis {
286 pub throughput: f64,
287 pub latency_distribution: LatencyDistribution,
288 pub scalability_analysis: ScalabilityAnalysis,
289 pub resource_utilization: ResourceUtilization,
290 pub performance_trends: PerformanceTrends,
291}
292
293#[derive(Debug, Clone, Serialize, Deserialize)]
295pub struct LatencyDistribution {
296 pub mean: f64,
297 pub median: f64,
298 pub std_dev: f64,
299 pub percentiles: HashMap<u8, f64>, pub distribution_type: String,
301}
302
303#[derive(Debug, Clone, Serialize, Deserialize)]
305pub struct ScalabilityAnalysis {
306 pub qubit_scaling_factor: f64,
307 pub depth_scaling_factor: f64,
308 pub theoretical_limits: TheoreticalLimits,
309 pub bottleneck_analysis: BottleneckAnalysis,
310}
311
312#[derive(Debug, Clone, Serialize, Deserialize)]
314pub struct TheoreticalLimits {
315 pub max_qubit_count: usize,
316 pub max_circuit_depth: usize,
317 pub max_gate_count: usize,
318 pub coherence_limited_depth: usize,
319}
320
321#[derive(Debug, Clone, Serialize, Deserialize)]
323pub struct BottleneckAnalysis {
324 pub primary_bottleneck: BottleneckType,
325 pub bottleneck_severity: f64,
326 pub mitigation_strategies: Vec<String>,
327}
328
329#[derive(Debug, Clone, PartialEq, Eq, Serialize, Deserialize)]
331pub enum BottleneckType {
332 QueueTime,
333 ExecutionTime,
334 GateErrors,
335 Connectivity,
336 Coherence,
337 Readout,
338 Classical,
339 Network,
340 Other(String),
341}
342
343#[derive(Debug, Clone, Serialize, Deserialize)]
345pub struct ResourceUtilization {
346 pub qubit_utilization: f64,
347 pub gate_efficiency: f64,
348 pub shot_efficiency: f64,
349 pub time_efficiency: f64,
350}
351
352#[derive(Debug, Clone, Serialize, Deserialize)]
354pub struct PerformanceTrends {
355 pub fidelity_trend: TrendAnalysis,
356 pub latency_trend: TrendAnalysis,
357 pub reliability_trend: TrendAnalysis,
358 pub cost_trend: TrendAnalysis,
359}
360
361#[derive(Debug, Clone, Serialize, Deserialize)]
363pub struct TrendAnalysis {
364 pub slope: f64,
365 pub r_squared: f64,
366 pub trend_direction: TrendDirection,
367 pub confidence_interval: (f64, f64),
368}
369
370#[derive(Debug, Clone, PartialEq, Eq, Serialize, Deserialize)]
372pub enum TrendDirection {
373 Improving,
374 Stable,
375 Degrading,
376 Volatile,
377}
378
379#[derive(Debug, Clone, Serialize, Deserialize)]
381pub struct ReliabilityMetrics {
382 pub uptime_percentage: f64,
383 pub mtbf: Duration, pub mttr: Duration, pub error_rates: HashMap<String, f64>,
386 pub consistency_score: f64,
387}
388
389#[derive(Debug, Clone, Serialize, Deserialize)]
391pub struct LatencyAnalysis {
392 pub submission_latency: Duration,
393 pub queue_latency: Duration,
394 pub execution_latency: Duration,
395 pub retrieval_latency: Duration,
396 pub total_latency: Duration,
397 pub latency_variability: f64,
398}
399
400#[derive(Debug, Clone, Serialize, Deserialize)]
402pub struct ErrorAnalysis {
403 pub systematic_errors: HashMap<String, f64>,
404 pub random_errors: HashMap<String, f64>,
405 pub coherent_errors: HashMap<String, f64>,
406 pub readout_errors: HashMap<String, f64>,
407 pub gate_errors: HashMap<String, f64>,
408 pub error_correlations: Array2<f64>,
409}
410
411#[derive(Debug, Clone, Serialize, Deserialize)]
413pub struct ComparativeAnalysisResult {
414 pub platform_rankings: HashMap<String, PlatformRanking>,
415 pub performance_matrix: Array2<f64>,
416 pub statistical_comparisons: HashMap<String, StatisticalComparison>,
417 pub cost_effectiveness_analysis: CostEffectivenessAnalysis,
418 pub use_case_recommendations: HashMap<String, Vec<QuantumPlatform>>,
419}
420
421#[derive(Debug, Clone, Serialize, Deserialize)]
423pub struct PlatformRanking {
424 pub overall_rank: usize,
425 pub category_ranks: HashMap<String, usize>,
426 pub normalized_scores: HashMap<String, f64>,
427 pub relative_performance: f64,
428}
429
430#[derive(Debug, Clone, Serialize, Deserialize)]
432pub struct StatisticalComparison {
433 pub comparison_type: ComparisonType,
434 pub platforms_compared: Vec<QuantumPlatform>,
435 pub test_statistic: f64,
436 pub p_value: f64,
437 pub effect_size: f64,
438 pub confidence_interval: (f64, f64),
439 pub interpretation: String,
440}
441
442#[derive(Debug, Clone, PartialEq, Eq, Serialize, Deserialize)]
444pub enum ComparisonType {
445 TTest,
446 ANOVA,
447 KruskalWallis,
448 MannWhitney,
449 ChiSquare,
450 KolmogorovSmirnov,
451}
452
453#[derive(Debug, Clone, Serialize, Deserialize)]
455pub struct CostEffectivenessAnalysis {
456 pub cost_per_shot: HashMap<QuantumPlatform, f64>,
457 pub cost_per_gate: HashMap<QuantumPlatform, f64>,
458 pub cost_per_successful_result: HashMap<QuantumPlatform, f64>,
459 pub value_for_money_score: HashMap<QuantumPlatform, f64>,
460 pub cost_optimization_recommendations: Vec<CostOptimizationRecommendation>,
461}
462
463#[derive(Debug, Clone, Serialize, Deserialize)]
465pub struct CrossPlatformStatisticalAnalysis {
466 pub anova_results: HashMap<String, ANOVAResult>,
467 pub correlation_analysis: CorrelationAnalysisResult,
468 pub cluster_analysis: ClusterAnalysisResult,
469 pub principal_component_analysis: PCAResult,
470 pub outlier_detection: OutlierDetectionResult,
471 pub distribution_analysis: DistributionAnalysisResult,
472}
473
474#[derive(Debug, Clone, Serialize, Deserialize)]
476pub struct ANOVAResult {
477 pub f_statistic: f64,
478 pub p_value: f64,
479 pub degrees_of_freedom: (usize, usize),
480 pub mean_squares: f64,
481 pub effect_size: f64,
482 pub post_hoc_tests: HashMap<String, PostHocTest>,
483}
484
485#[derive(Debug, Clone, Serialize, Deserialize)]
487pub struct PostHocTest {
488 pub test_type: String,
489 pub comparisons: HashMap<String, PairwiseComparison>,
490}
491
492#[derive(Debug, Clone, Serialize, Deserialize)]
494pub struct PairwiseComparison {
495 pub mean_difference: f64,
496 pub p_value: f64,
497 pub confidence_interval: (f64, f64),
498 pub significant: bool,
499}
500
501#[derive(Debug, Clone, Serialize, Deserialize)]
503pub struct CorrelationAnalysisResult {
504 pub correlationmatrix: Array2<f64>,
505 pub significant_correlations: Vec<CorrelationPair>,
506 pub correlation_network: HashMap<String, Vec<String>>,
507}
508
509#[derive(Debug, Clone, Serialize, Deserialize)]
511pub struct CorrelationPair {
512 pub metric1: String,
513 pub metric2: String,
514 pub correlation: f64,
515 pub p_value: f64,
516 pub correlation_type: CorrelationType,
517}
518
519#[derive(Debug, Clone, PartialEq, Eq, Serialize, Deserialize)]
521pub enum CorrelationType {
522 Pearson,
523 Spearman,
524 Kendall,
525}
526
527#[derive(Debug, Clone, Serialize, Deserialize)]
529pub struct ClusterAnalysisResult {
530 pub cluster_assignments: HashMap<QuantumPlatform, usize>,
531 pub cluster_centers: Array2<f64>,
532 pub silhouette_score: f64,
533 pub cluster_interpretations: HashMap<usize, String>,
534}
535
536#[derive(Debug, Clone, Serialize, Deserialize)]
538pub struct PCAResult {
539 pub principal_components: Array2<f64>,
540 pub explained_variance_ratio: Array1<f64>,
541 pub cumulative_variance: Array1<f64>,
542 pub loadings: Array2<f64>,
543 pub platform_scores: HashMap<QuantumPlatform, Array1<f64>>,
544}
545
546#[derive(Debug, Clone, Serialize, Deserialize)]
548pub struct OutlierDetectionResult {
549 pub outliers: HashMap<QuantumPlatform, Vec<String>>,
550 pub outlier_scores: HashMap<QuantumPlatform, f64>,
551 pub detection_method: String,
552 pub threshold: f64,
553}
554
555#[derive(Debug, Clone, Serialize, Deserialize)]
557pub struct DistributionAnalysisResult {
558 pub platform_distributions: HashMap<QuantumPlatform, DistributionFit>,
559 pub distribution_comparisons: HashMap<String, DistributionComparison>,
560 pub normality_tests: HashMap<QuantumPlatform, NormalityTest>,
561}
562
563#[derive(Debug, Clone, Serialize, Deserialize)]
565pub struct DistributionFit {
566 pub distribution_type: String,
567 pub parameters: Vec<f64>,
568 pub goodness_of_fit: f64,
569 pub aic: f64,
570 pub bic: f64,
571}
572
573#[derive(Debug, Clone, Serialize, Deserialize)]
575pub struct DistributionComparison {
576 pub platforms: Vec<QuantumPlatform>,
577 pub ks_statistic: f64,
578 pub p_value: f64,
579 pub distributions_equal: bool,
580}
581
582#[derive(Debug, Clone, Serialize, Deserialize)]
584pub struct NormalityTest {
585 pub test_type: String,
586 pub statistic: f64,
587 pub p_value: f64,
588 pub is_normal: bool,
589}
590
591#[derive(Debug, Clone, Serialize, Deserialize)]
593pub struct CrossPlatformCostAnalysis {
594 pub total_costs: HashMap<QuantumPlatform, f64>,
595 pub cost_breakdown: HashMap<QuantumPlatform, CostBreakdown>,
596 pub cost_trends: HashMap<QuantumPlatform, CostTrend>,
597 pub cost_optimization: CostOptimizationAnalysis,
598 pub roi_analysis: ROIAnalysis,
599}
600
601#[derive(Debug, Clone, Serialize, Deserialize)]
603pub struct CostBreakdown {
604 pub compute_cost: f64,
605 pub queue_cost: f64,
606 pub storage_cost: f64,
607 pub data_transfer_cost: f64,
608 pub other_costs: HashMap<String, f64>,
609}
610
611#[derive(Debug, Clone, Serialize, Deserialize)]
613pub struct CostTrend {
614 pub trend_direction: TrendDirection,
615 pub cost_per_month: Vec<f64>,
616 pub projected_costs: Vec<f64>,
617 pub cost_volatility: f64,
618}
619
620#[derive(Debug, Clone, Serialize, Deserialize)]
622pub struct CostOptimizationAnalysis {
623 pub optimization_opportunities: Vec<CostOptimizationRecommendation>,
624 pub potential_savings: f64,
625 pub optimization_strategies: Vec<String>,
626}
627
628#[derive(Debug, Clone, Serialize, Deserialize)]
630pub struct CostOptimizationRecommendation {
631 pub recommendation_type: CostOptimizationType,
632 pub description: String,
633 pub estimated_savings: f64,
634 pub implementation_effort: ImplementationEffort,
635 pub time_to_implement: Duration,
636}
637
638#[derive(Debug, Clone, PartialEq, Eq, Serialize, Deserialize)]
640pub enum CostOptimizationType {
641 PlatformSelection,
642 ShotOptimization,
643 TimingOptimization,
644 ResourcePooling,
645 BulkPricing,
646 Other(String),
647}
648
649#[derive(Debug, Clone, PartialEq, Eq, Serialize, Deserialize)]
651pub enum ImplementationEffort {
652 Low,
653 Medium,
654 High,
655 VeryHigh,
656}
657
658#[derive(Debug, Clone, Serialize, Deserialize)]
660pub struct ROIAnalysis {
661 pub platform_roi: HashMap<QuantumPlatform, f64>,
662 pub break_even_analysis: HashMap<QuantumPlatform, Duration>,
663 pub value_metrics: HashMap<QuantumPlatform, ValueMetrics>,
664}
665
666#[derive(Debug, Clone, Serialize, Deserialize)]
668pub struct ValueMetrics {
669 pub time_to_result: Duration,
670 pub result_quality: f64,
671 pub reliability_score: f64,
672 pub innovation_value: f64,
673}
674
675#[derive(Debug, Clone, Serialize, Deserialize)]
677pub struct PlatformRecommendation {
678 pub recommendation_type: RecommendationType,
679 pub target_platform: QuantumPlatform,
680 pub use_case: String,
681 pub confidence_score: f64,
682 pub reasoning: String,
683 pub conditions: Vec<String>,
684}
685
686#[derive(Debug, Clone, PartialEq, Eq, Serialize, Deserialize)]
688pub enum RecommendationType {
689 BestOverall,
690 BestForUseCase,
691 MostCostEffective,
692 FastestExecution,
693 HighestFidelity,
694 MostReliable,
695 BestScalability,
696 Avoid,
697}
698
699#[derive(Debug, Clone, Serialize, Deserialize)]
701pub struct ExecutionSummary {
702 pub total_execution_time: Duration,
703 pub total_benchmarks_run: usize,
704 pub successful_benchmarks: usize,
705 pub failed_benchmarks: usize,
706 pub platforms_tested: usize,
707 pub total_shots_executed: usize,
708 pub total_cost: f64,
709 pub data_points_collected: usize,
710}
711
712impl Default for CrossPlatformBenchmarkConfig {
713 fn default() -> Self {
714 Self {
715 target_platforms: vec![
716 QuantumPlatform::IBMQuantum("ibmq_qasm_simulator".to_string()),
717 QuantumPlatform::AWSBraket(
718 "arn:aws:braket:::device/quantum-simulator/amazon/sv1".to_string(),
719 ),
720 ],
721 complexity_levels: vec![
722 ComplexityLevel {
723 name: "Simple".to_string(),
724 qubit_count: 2,
725 circuit_depth: 5,
726 gate_count_range: (5, 15),
727 two_qubit_gate_ratio: 0.3,
728 description: "Basic circuits for connectivity testing".to_string(),
729 },
730 ComplexityLevel {
731 name: "Medium".to_string(),
732 qubit_count: 5,
733 circuit_depth: 20,
734 gate_count_range: (20, 50),
735 two_qubit_gate_ratio: 0.4,
736 description: "Intermediate circuits for performance assessment".to_string(),
737 },
738 ComplexityLevel {
739 name: "Complex".to_string(),
740 qubit_count: 10,
741 circuit_depth: 50,
742 gate_count_range: (50, 150),
743 two_qubit_gate_ratio: 0.5,
744 description: "Complex circuits for scalability testing".to_string(),
745 },
746 ],
747 statistical_config: StatisticalAnalysisConfig::default(),
748 parallel_config: ParallelBenchmarkConfig::default(),
749 benchmark_timeout: Duration::from_secs(300),
750 repetitions: 10,
751 enable_cost_analysis: true,
752 enable_latency_analysis: true,
753 enable_reliability_analysis: true,
754 custom_circuits: Vec::new(),
755 }
756 }
757}
758
759impl Default for StatisticalAnalysisConfig {
760 fn default() -> Self {
761 Self {
762 confidence_level: 0.95,
763 enable_anova: true,
764 enable_pairwise_comparisons: true,
765 enable_outlier_detection: true,
766 enable_distribution_fitting: true,
767 enable_correlation_analysis: true,
768 min_sample_size: 5,
769 }
770 }
771}
772
773impl Default for ParallelBenchmarkConfig {
774 fn default() -> Self {
775 Self {
776 enable_parallel: true,
777 max_concurrent: 4,
778 load_balancing: LoadBalancingStrategy::ResourceBased,
779 resource_allocation: HashMap::new(),
780 }
781 }
782}
783
784pub struct CrossPlatformBenchmarker {
786 config: CrossPlatformBenchmarkConfig,
787 calibration_manager: CalibrationManager,
788 ibm_client: Option<IBMQuantumClient>,
790 aws_client: Option<AWSBraketClient>,
791 azure_client: Option<AzureQuantumClient>,
792}
793
794impl CrossPlatformBenchmarker {
795 pub const fn new(
797 config: CrossPlatformBenchmarkConfig,
798 calibration_manager: CalibrationManager,
799 ) -> Self {
800 Self {
801 config,
802 calibration_manager,
803 ibm_client: None,
804 aws_client: None,
805 azure_client: None,
806 }
807 }
808
809 pub async fn run_comprehensive_benchmark(
811 &mut self,
812 ) -> DeviceResult<CrossPlatformBenchmarkResult> {
813 let start_time = Instant::now();
814 let timestamp = SystemTime::now();
815 let benchmark_id = format!(
816 "benchmark_{}",
817 timestamp
818 .duration_since(SystemTime::UNIX_EPOCH)
819 .expect("System time should be after UNIX epoch")
820 .as_secs()
821 );
822
823 self.initialize_platform_clients().await?;
825
826 let mut platform_results = HashMap::new();
828 let mut total_benchmarks = 0;
829 let mut successful_benchmarks = 0;
830 let mut failed_benchmarks = 0;
831 let mut total_shots = 0;
832 let mut total_cost = 0.0;
833
834 for platform in &self.config.target_platforms {
835 match timeout(
836 self.config.benchmark_timeout,
837 self.run_platform_benchmark(platform),
838 )
839 .await
840 {
841 Ok(Ok(result)) => {
842 total_benchmarks += result.circuit_results.len();
843 successful_benchmarks += result
844 .circuit_results
845 .values()
846 .map(|results| results.len())
847 .sum::<usize>();
848 total_shots += result
849 .circuit_results
850 .values()
851 .flat_map(|results| results.iter())
852 .map(|r| r.shots)
853 .sum::<usize>();
854 total_cost += result
855 .circuit_results
856 .values()
857 .flat_map(|results| results.iter())
858 .map(|r| r.cost)
859 .sum::<f64>();
860 platform_results.insert(platform.clone(), result);
861 }
862 Ok(Err(e)) => {
863 eprintln!("Platform benchmark failed for {platform:?}: {e}");
864 failed_benchmarks += 1;
865 }
866 Err(_) => {
867 eprintln!("Platform benchmark timed out for {platform:?}");
868 failed_benchmarks += 1;
869 }
870 }
871 }
872
873 let comparative_analysis = self.perform_comparative_analysis(&platform_results)?;
875
876 let statistical_analysis =
878 self.perform_cross_platform_statistical_analysis(&platform_results)?;
879
880 let cost_analysis = if self.config.enable_cost_analysis {
882 Some(self.perform_cost_analysis(&platform_results)?)
883 } else {
884 None
885 };
886
887 let recommendations = self.generate_platform_recommendations(
889 &platform_results,
890 &comparative_analysis,
891 &statistical_analysis,
892 )?;
893
894 let execution_time = start_time.elapsed();
895 let execution_summary = ExecutionSummary {
896 total_execution_time: execution_time,
897 total_benchmarks_run: total_benchmarks,
898 successful_benchmarks,
899 failed_benchmarks,
900 platforms_tested: platform_results.len(),
901 total_shots_executed: total_shots,
902 total_cost,
903 data_points_collected: platform_results
904 .values()
905 .map(|r| r.circuit_results.values().map(|v| v.len()).sum::<usize>())
906 .sum(),
907 };
908
909 Ok(CrossPlatformBenchmarkResult {
910 benchmark_id,
911 timestamp,
912 config: self.config.clone(),
913 platform_results,
914 comparative_analysis,
915 statistical_analysis,
916 cost_analysis,
917 recommendations,
918 execution_summary,
919 })
920 }
921
922 async fn initialize_platform_clients(&mut self) -> DeviceResult<()> {
924 for platform in &self.config.target_platforms {
926 match platform {
927 QuantumPlatform::IBMQuantum(_) => {
928 if self.ibm_client.is_none() {
929 }
932 }
933 QuantumPlatform::AWSBraket(_) => {
934 if self.aws_client.is_none() {
935 }
938 }
939 QuantumPlatform::AzureQuantum(_) => {
940 if self.azure_client.is_none() {
941 }
944 }
945 _ => {
946 }
948 }
949 }
950 Ok(())
951 }
952
953 async fn run_platform_benchmark(
955 &self,
956 platform: &QuantumPlatform,
957 ) -> DeviceResult<PlatformBenchmarkResult> {
958 let device_info = self.get_device_info(platform).await?;
960
961 let mut circuit_results = HashMap::new();
963 let mut all_metrics = Vec::new();
964
965 for complexity in &self.config.complexity_levels {
966 let mut level_results = Vec::new();
967
968 let benchmark_circuits = self.generate_benchmark_circuits(complexity)?;
970
971 for circuit in benchmark_circuits {
972 for _ in 0..self.config.repetitions {
974 match self.execute_circuit_on_platform(&circuit, platform).await {
975 Ok(result) => {
976 level_results.push(result.clone());
977 all_metrics.push(result.fidelity);
978 }
979 Err(e) => {
980 eprintln!("Circuit execution failed: {e}");
981 }
982 }
983 }
984 }
985
986 circuit_results.insert(complexity.name.clone(), level_results);
987 }
988
989 let benchmark_metrics = self.calculate_platform_metrics(&circuit_results)?;
991 let performance_analysis = self.analyze_platform_performance(&circuit_results)?;
992 let reliability_metrics = self.calculate_reliability_metrics(&circuit_results)?;
993 let latency_analysis = self.analyze_latency(&circuit_results)?;
994 let error_analysis = self.analyze_errors(&circuit_results)?;
995
996 Ok(PlatformBenchmarkResult {
997 platform: platform.clone(),
998 device_info,
999 benchmark_metrics,
1000 circuit_results,
1001 performance_analysis,
1002 reliability_metrics,
1003 latency_analysis,
1004 error_analysis,
1005 })
1006 }
1007
1008 async fn get_device_info(&self, platform: &QuantumPlatform) -> DeviceResult<DeviceInfo> {
1010 let (device_name, provider, technology) = match platform {
1013 QuantumPlatform::IBMQuantum(name) => (
1014 name.clone(),
1015 "IBM".to_string(),
1016 QuantumTechnology::Superconducting,
1017 ),
1018 QuantumPlatform::AWSBraket(arn) => (
1019 arn.clone(),
1020 "AWS".to_string(),
1021 QuantumTechnology::Superconducting,
1022 ),
1023 QuantumPlatform::AzureQuantum(target) => (
1024 target.clone(),
1025 "Microsoft".to_string(),
1026 QuantumTechnology::TrappedIon,
1027 ),
1028 QuantumPlatform::IonQ(name) => (
1029 name.clone(),
1030 "IonQ".to_string(),
1031 QuantumTechnology::TrappedIon,
1032 ),
1033 QuantumPlatform::Rigetti(name) => (
1034 name.clone(),
1035 "Rigetti".to_string(),
1036 QuantumTechnology::Superconducting,
1037 ),
1038 QuantumPlatform::GoogleQuantumAI(name) => (
1039 name.clone(),
1040 "Google".to_string(),
1041 QuantumTechnology::Superconducting,
1042 ),
1043 QuantumPlatform::Custom(name) => (
1044 name.clone(),
1045 "Custom".to_string(),
1046 QuantumTechnology::Other("Custom".to_string()),
1047 ),
1048 };
1049
1050 Ok(DeviceInfo {
1051 device_name,
1052 provider,
1053 technology,
1054 qubit_count: 20, connectivity: ConnectivityInfo {
1056 topology_type: TopologyType::Heavy,
1057 connectivity_graph: Array2::eye(20),
1058 average_connectivity: 2.5,
1059 max_path_length: 5,
1060 },
1061 capabilities: query_backend_capabilities(
1062 crate::translation::HardwareBackend::IBMQuantum,
1063 ),
1064 calibration_date: Some(SystemTime::now()),
1065 })
1066 }
1067
1068 fn generate_benchmark_circuits(
1070 &self,
1071 complexity: &ComplexityLevel,
1072 ) -> DeviceResult<Vec<Circuit<16>>> {
1073 let mut circuits = Vec::new();
1074
1075 use scirs2_core::random::prelude::*;
1077 let mut rng = thread_rng();
1078
1079 let num_circuits = 5; for i in 0..num_circuits {
1082 let mut circuit = Circuit::<16>::new();
1083 let gate_count =
1084 rng.gen_range(complexity.gate_count_range.0..=complexity.gate_count_range.1);
1085 let two_qubit_gates = (gate_count as f64 * complexity.two_qubit_gate_ratio) as usize;
1086 let single_qubit_gates = gate_count - two_qubit_gates;
1087
1088 for _ in 0..single_qubit_gates {
1090 let qubit = rng.gen_range(0..complexity.qubit_count) as u32;
1091 match rng.gen_range(0..4) {
1092 0 => {
1093 circuit.h(QubitId(qubit))?;
1094 }
1095 1 => {
1096 circuit.x(QubitId(qubit))?;
1097 }
1098 2 => {
1099 circuit.y(QubitId(qubit))?;
1100 }
1101 3 => {
1102 circuit.z(QubitId(qubit))?;
1103 }
1104 _ => unreachable!(),
1105 }
1106 }
1107
1108 for _ in 0..two_qubit_gates {
1110 let qubit1 = rng.gen_range(0..complexity.qubit_count) as u32;
1111 let mut qubit2 = rng.gen_range(0..complexity.qubit_count) as u32;
1112 while qubit2 == qubit1 {
1113 qubit2 = rng.gen_range(0..complexity.qubit_count) as u32;
1114 }
1115 let _ = circuit.cnot(QubitId(qubit1), QubitId(qubit2));
1116 }
1117
1118 circuits.push(circuit);
1119 }
1120
1121 for custom_circuit in &self.config.custom_circuits {
1123 if custom_circuit.qubit_count <= complexity.qubit_count {
1124 let circuit = self.parse_custom_circuit(custom_circuit)?;
1126 circuits.push(circuit);
1127 }
1128 }
1129
1130 Ok(circuits)
1131 }
1132
1133 async fn execute_circuit_on_platform(
1135 &self,
1136 circuit: &Circuit<16>,
1137 platform: &QuantumPlatform,
1138 ) -> DeviceResult<CircuitBenchmarkResult> {
1139 let start_time = Instant::now();
1140 let queue_start = Instant::now();
1141
1142 let shots = 1000;
1144 let execution_time = Duration::from_millis(thread_rng().gen_range(100..2000));
1145 let queue_time = Duration::from_millis(thread_rng().gen_range(10..5000));
1146
1147 let mut measurement_counts = HashMap::new();
1149 let num_qubits = circuit
1150 .gates()
1151 .iter()
1152 .flat_map(|g| g.qubits())
1153 .map(|q| q.0 as usize)
1154 .max()
1155 .unwrap_or(0)
1156 + 1;
1157
1158 let num_outcomes = 2_usize.pow(num_qubits.min(8) as u32); for i in 0..num_outcomes.min(8) {
1160 let outcome = format!("{:0width$b}", i, width = num_qubits.min(8));
1161 let count = thread_rng().gen_range(0..shots / num_outcomes * 2);
1162 if count > 0 {
1163 measurement_counts.insert(outcome, count);
1164 }
1165 }
1166
1167 let fidelity = self.calculate_circuit_fidelity(&measurement_counts, circuit)?;
1169 let success_rate =
1170 measurement_counts.values().map(|&c| c as f64).sum::<f64>() / shots as f64;
1171 let cost = self.calculate_execution_cost(platform, shots, execution_time)?;
1172
1173 Ok(CircuitBenchmarkResult {
1174 circuit_name: format!("circuit_{}", circuit.gates().len()),
1175 complexity_level: "medium".to_string(), execution_time,
1177 queue_time,
1178 total_time: queue_time + execution_time,
1179 fidelity,
1180 success_rate,
1181 cost,
1182 shots,
1183 measurement_counts,
1184 error_messages: Vec::new(),
1185 })
1186 }
1187
1188 fn parse_custom_circuit(&self, custom: &CustomBenchmarkCircuit) -> DeviceResult<Circuit<16>> {
1191 Ok(Circuit::<16>::new())
1193 }
1194
1195 fn calculate_circuit_fidelity(
1196 &self,
1197 _measurement_counts: &HashMap<String, usize>,
1198 _circuit: &Circuit<16>,
1199 ) -> DeviceResult<f64> {
1200 Ok(thread_rng().gen_range(0.8..0.99))
1202 }
1203
1204 fn calculate_execution_cost(
1205 &self,
1206 platform: &QuantumPlatform,
1207 shots: usize,
1208 execution_time: Duration,
1209 ) -> DeviceResult<f64> {
1210 let base_cost = match platform {
1212 QuantumPlatform::IBMQuantum(_) => 0.0001, QuantumPlatform::AWSBraket(_) => 0.01,
1214 QuantumPlatform::AzureQuantum(_) => 0.008,
1215 QuantumPlatform::IonQ(_) => 0.01,
1216 _ => 0.005,
1217 };
1218
1219 Ok(base_cost * shots as f64 + execution_time.as_secs_f64() * 0.001)
1220 }
1221
1222 fn calculate_platform_metrics(
1223 &self,
1224 circuit_results: &HashMap<String, Vec<CircuitBenchmarkResult>>,
1225 ) -> DeviceResult<BenchmarkMetrics> {
1226 let all_results: Vec<&CircuitBenchmarkResult> = circuit_results
1227 .values()
1228 .flat_map(|results| results.iter())
1229 .collect();
1230
1231 if all_results.is_empty() {
1232 return Ok(BenchmarkMetrics {
1233 overall_score: 0.0,
1234 fidelity_score: 0.0,
1235 speed_score: 0.0,
1236 reliability_score: 0.0,
1237 cost_efficiency_score: 0.0,
1238 scalability_score: 0.0,
1239 detailed_metrics: HashMap::new(),
1240 });
1241 }
1242
1243 let avg_fidelity =
1244 all_results.iter().map(|r| r.fidelity).sum::<f64>() / all_results.len() as f64;
1245 let avg_execution_time = all_results
1246 .iter()
1247 .map(|r| r.execution_time.as_secs_f64())
1248 .sum::<f64>()
1249 / all_results.len() as f64;
1250 let avg_success_rate =
1251 all_results.iter().map(|r| r.success_rate).sum::<f64>() / all_results.len() as f64;
1252 let avg_cost = all_results.iter().map(|r| r.cost).sum::<f64>() / all_results.len() as f64;
1253
1254 let fidelity_score = avg_fidelity * 100.0;
1255 let speed_score = (1.0 / avg_execution_time * 100.0).min(100.0);
1256 let reliability_score = avg_success_rate * 100.0;
1257 let cost_efficiency_score = (1.0 / (avg_cost + 0.001) * 10.0).min(100.0);
1258 let scalability_score = 75.0; let overall_score = (fidelity_score * 0.3
1261 + speed_score * 0.2
1262 + reliability_score * 0.2
1263 + cost_efficiency_score * 0.15
1264 + scalability_score * 0.15)
1265 .min(100.0);
1266
1267 let mut detailed_metrics = HashMap::new();
1268 detailed_metrics.insert("avg_fidelity".to_string(), avg_fidelity);
1269 detailed_metrics.insert("avg_execution_time".to_string(), avg_execution_time);
1270 detailed_metrics.insert("avg_success_rate".to_string(), avg_success_rate);
1271 detailed_metrics.insert("avg_cost".to_string(), avg_cost);
1272
1273 Ok(BenchmarkMetrics {
1274 overall_score,
1275 fidelity_score,
1276 speed_score,
1277 reliability_score,
1278 cost_efficiency_score,
1279 scalability_score,
1280 detailed_metrics,
1281 })
1282 }
1283
1284 fn analyze_platform_performance(
1285 &self,
1286 circuit_results: &HashMap<String, Vec<CircuitBenchmarkResult>>,
1287 ) -> DeviceResult<PlatformPerformanceAnalysis> {
1288 let all_results: Vec<&CircuitBenchmarkResult> = circuit_results
1289 .values()
1290 .flat_map(|results| results.iter())
1291 .collect();
1292
1293 if all_results.is_empty() {
1294 return Err(DeviceError::APIError(
1295 "No results available for analysis".into(),
1296 ));
1297 }
1298
1299 let total_time: f64 = all_results.iter().map(|r| r.total_time.as_secs_f64()).sum();
1301 let throughput = all_results.len() as f64 / total_time;
1302
1303 let latencies: Vec<f64> = all_results
1305 .iter()
1306 .map(|r| r.total_time.as_secs_f64())
1307 .collect();
1308 let latency_array = Array1::from_vec(latencies.clone());
1309
1310 let mean_latency = mean(&latency_array.view()).unwrap_or(0.0);
1311 let median_latency = {
1312 let mut sorted_latencies = latencies.clone();
1313 sorted_latencies.sort_by(|a, b| a.partial_cmp(b).unwrap_or(std::cmp::Ordering::Equal));
1314 let mid = sorted_latencies.len() / 2;
1315 if sorted_latencies.len() % 2 == 0 {
1316 f64::midpoint(sorted_latencies[mid - 1], sorted_latencies[mid])
1317 } else {
1318 sorted_latencies[mid]
1319 }
1320 };
1321 let std_dev_latency = std(&latency_array.view(), 1, None).unwrap_or(0.0);
1322
1323 let mut percentiles = HashMap::new();
1324 let mut sorted_latencies = latencies;
1325 sorted_latencies.sort_by(|a, b| a.partial_cmp(b).unwrap_or(std::cmp::Ordering::Equal));
1326 percentiles.insert(50, median_latency);
1327 percentiles.insert(
1328 95,
1329 sorted_latencies[(sorted_latencies.len() as f64 * 0.95) as usize],
1330 );
1331 percentiles.insert(
1332 99,
1333 sorted_latencies[(sorted_latencies.len() as f64 * 0.99) as usize],
1334 );
1335
1336 let latency_distribution = LatencyDistribution {
1337 mean: mean_latency,
1338 median: median_latency,
1339 std_dev: std_dev_latency,
1340 percentiles,
1341 distribution_type: "Normal".to_string(), };
1343
1344 let scalability_analysis = ScalabilityAnalysis {
1346 qubit_scaling_factor: 1.2, depth_scaling_factor: 1.5,
1348 theoretical_limits: TheoreticalLimits {
1349 max_qubit_count: 100,
1350 max_circuit_depth: 1000,
1351 max_gate_count: 10000,
1352 coherence_limited_depth: 50,
1353 },
1354 bottleneck_analysis: BottleneckAnalysis {
1355 primary_bottleneck: BottleneckType::QueueTime,
1356 bottleneck_severity: 0.3,
1357 mitigation_strategies: vec!["Optimize timing".to_string()],
1358 },
1359 };
1360
1361 let resource_utilization = ResourceUtilization {
1363 qubit_utilization: 0.6, gate_efficiency: 0.8,
1365 shot_efficiency: 0.9,
1366 time_efficiency: 0.7,
1367 };
1368
1369 let performance_trends = PerformanceTrends {
1371 fidelity_trend: TrendAnalysis {
1372 slope: 0.001,
1373 r_squared: 0.8,
1374 trend_direction: TrendDirection::Improving,
1375 confidence_interval: (0.0005, 0.0015),
1376 },
1377 latency_trend: TrendAnalysis {
1378 slope: -0.01,
1379 r_squared: 0.6,
1380 trend_direction: TrendDirection::Improving,
1381 confidence_interval: (-0.02, 0.0),
1382 },
1383 reliability_trend: TrendAnalysis {
1384 slope: 0.005,
1385 r_squared: 0.7,
1386 trend_direction: TrendDirection::Stable,
1387 confidence_interval: (0.0, 0.01),
1388 },
1389 cost_trend: TrendAnalysis {
1390 slope: -0.001,
1391 r_squared: 0.5,
1392 trend_direction: TrendDirection::Improving,
1393 confidence_interval: (-0.002, 0.0),
1394 },
1395 };
1396
1397 Ok(PlatformPerformanceAnalysis {
1398 throughput,
1399 latency_distribution,
1400 scalability_analysis,
1401 resource_utilization,
1402 performance_trends,
1403 })
1404 }
1405
1406 fn calculate_reliability_metrics(
1407 &self,
1408 circuit_results: &HashMap<String, Vec<CircuitBenchmarkResult>>,
1409 ) -> DeviceResult<ReliabilityMetrics> {
1410 let all_results: Vec<&CircuitBenchmarkResult> = circuit_results
1411 .values()
1412 .flat_map(|results| results.iter())
1413 .collect();
1414
1415 let successful_runs = all_results
1416 .iter()
1417 .filter(|r| r.error_messages.is_empty())
1418 .count();
1419 let uptime_percentage = (successful_runs as f64 / all_results.len() as f64) * 100.0;
1420
1421 let mut error_rates = HashMap::new();
1422 error_rates.insert(
1423 "execution_error".to_string(),
1424 (all_results.len() - successful_runs) as f64 / all_results.len() as f64,
1425 );
1426
1427 Ok(ReliabilityMetrics {
1428 uptime_percentage,
1429 mtbf: Duration::from_secs(3600), mttr: Duration::from_secs(300), error_rates,
1432 consistency_score: uptime_percentage / 100.0,
1433 })
1434 }
1435
1436 fn analyze_latency(
1437 &self,
1438 circuit_results: &HashMap<String, Vec<CircuitBenchmarkResult>>,
1439 ) -> DeviceResult<LatencyAnalysis> {
1440 let all_results: Vec<&CircuitBenchmarkResult> = circuit_results
1441 .values()
1442 .flat_map(|results| results.iter())
1443 .collect();
1444
1445 if all_results.is_empty() {
1446 return Err(DeviceError::APIError(
1447 "No results for latency analysis".into(),
1448 ));
1449 }
1450
1451 let avg_queue =
1452 all_results.iter().map(|r| r.queue_time).sum::<Duration>() / all_results.len() as u32;
1453 let avg_execution = all_results
1454 .iter()
1455 .map(|r| r.execution_time)
1456 .sum::<Duration>()
1457 / all_results.len() as u32;
1458 let avg_total =
1459 all_results.iter().map(|r| r.total_time).sum::<Duration>() / all_results.len() as u32;
1460
1461 let latency_values: Vec<f64> = all_results
1462 .iter()
1463 .map(|r| r.total_time.as_secs_f64())
1464 .collect();
1465 let latency_array = Array1::from_vec(latency_values);
1466 let latency_variability = std(&latency_array.view(), 1, None).unwrap_or(0.0);
1467
1468 Ok(LatencyAnalysis {
1469 submission_latency: Duration::from_millis(100), queue_latency: avg_queue,
1471 execution_latency: avg_execution,
1472 retrieval_latency: Duration::from_millis(50), total_latency: avg_total,
1474 latency_variability,
1475 })
1476 }
1477
1478 fn analyze_errors(
1479 &self,
1480 circuit_results: &HashMap<String, Vec<CircuitBenchmarkResult>>,
1481 ) -> DeviceResult<ErrorAnalysis> {
1482 let all_results: Vec<&CircuitBenchmarkResult> = circuit_results
1483 .values()
1484 .flat_map(|results| results.iter())
1485 .collect();
1486
1487 let mut systematic_errors = HashMap::new();
1488 let mut random_errors = HashMap::new();
1489
1490 systematic_errors.insert("gate_error".to_string(), 0.001);
1492 random_errors.insert("thermal_noise".to_string(), 0.0005);
1493
1494 let n_qubits = 5; let error_correlations = Array2::eye(n_qubits);
1496
1497 Ok(ErrorAnalysis {
1498 systematic_errors,
1499 random_errors,
1500 coherent_errors: HashMap::new(),
1501 readout_errors: HashMap::new(),
1502 gate_errors: HashMap::new(),
1503 error_correlations,
1504 })
1505 }
1506
1507 fn perform_comparative_analysis(
1508 &self,
1509 platform_results: &HashMap<QuantumPlatform, PlatformBenchmarkResult>,
1510 ) -> DeviceResult<ComparativeAnalysisResult> {
1511 let mut platform_rankings = HashMap::new();
1512 let mut performance_matrix_data = Vec::new();
1513 let mut statistical_comparisons = HashMap::new();
1514
1515 let platforms: Vec<_> = platform_results.keys().collect();
1517 let n_platforms = platforms.len();
1518
1519 for (i, (platform, result)) in platform_results.iter().enumerate() {
1520 let ranking = PlatformRanking {
1521 overall_rank: i + 1, category_ranks: HashMap::new(),
1523 normalized_scores: HashMap::new(),
1524 relative_performance: result.benchmark_metrics.overall_score / 100.0,
1525 };
1526 platform_rankings.insert(format!("{platform:?}"), ranking);
1527
1528 performance_matrix_data.extend(vec![
1530 result.benchmark_metrics.fidelity_score,
1531 result.benchmark_metrics.speed_score,
1532 result.benchmark_metrics.reliability_score,
1533 result.benchmark_metrics.cost_efficiency_score,
1534 ]);
1535 }
1536
1537 let performance_matrix = Array2::from_shape_vec((n_platforms, 4), performance_matrix_data)
1538 .map_err(|e| DeviceError::APIError(format!("Matrix creation error: {e}")))?;
1539
1540 let mut cost_per_shot = HashMap::new();
1542 let mut cost_per_gate = HashMap::new();
1543 let mut cost_per_successful_result = HashMap::new();
1544 let mut value_for_money_score = HashMap::new();
1545
1546 for (platform, result) in platform_results {
1547 let total_cost: f64 = result
1548 .circuit_results
1549 .values()
1550 .flat_map(|results| results.iter())
1551 .map(|r| r.cost)
1552 .sum();
1553 let total_shots: usize = result
1554 .circuit_results
1555 .values()
1556 .flat_map(|results| results.iter())
1557 .map(|r| r.shots)
1558 .sum();
1559
1560 cost_per_shot.insert(platform.clone(), total_cost / total_shots as f64);
1561 cost_per_gate.insert(platform.clone(), total_cost / 100.0); cost_per_successful_result.insert(
1563 platform.clone(),
1564 total_cost
1565 / (total_shots as f64 * result.benchmark_metrics.reliability_score / 100.0),
1566 );
1567 value_for_money_score.insert(
1568 platform.clone(),
1569 result.benchmark_metrics.overall_score / (total_cost + 0.001),
1570 );
1571 }
1572
1573 let cost_effectiveness_analysis = CostEffectivenessAnalysis {
1574 cost_per_shot,
1575 cost_per_gate,
1576 cost_per_successful_result,
1577 value_for_money_score,
1578 cost_optimization_recommendations: Vec::new(),
1579 };
1580
1581 let mut use_case_recommendations = HashMap::new();
1583 use_case_recommendations.insert(
1584 "general_purpose".to_string(),
1585 platforms.iter().map(|&p| p.clone()).collect(),
1586 );
1587
1588 Ok(ComparativeAnalysisResult {
1589 platform_rankings,
1590 performance_matrix,
1591 statistical_comparisons,
1592 cost_effectiveness_analysis,
1593 use_case_recommendations,
1594 })
1595 }
1596
1597 fn perform_cross_platform_statistical_analysis(
1598 &self,
1599 platform_results: &HashMap<QuantumPlatform, PlatformBenchmarkResult>,
1600 ) -> DeviceResult<CrossPlatformStatisticalAnalysis> {
1601 let anova_results = HashMap::new();
1603 let correlation_analysis = CorrelationAnalysisResult {
1604 correlationmatrix: Array2::eye(4),
1605 significant_correlations: Vec::new(),
1606 correlation_network: HashMap::new(),
1607 };
1608 let cluster_analysis = ClusterAnalysisResult {
1609 cluster_assignments: HashMap::new(),
1610 cluster_centers: Array2::zeros((2, 4)),
1611 silhouette_score: 0.7,
1612 cluster_interpretations: HashMap::new(),
1613 };
1614 let principal_component_analysis = PCAResult {
1615 principal_components: Array2::eye(4),
1616 explained_variance_ratio: Array1::from_vec(vec![0.4, 0.3, 0.2, 0.1]),
1617 cumulative_variance: Array1::from_vec(vec![0.4, 0.7, 0.9, 1.0]),
1618 loadings: Array2::eye(4),
1619 platform_scores: HashMap::new(),
1620 };
1621 let outlier_detection = OutlierDetectionResult {
1622 outliers: HashMap::new(),
1623 outlier_scores: HashMap::new(),
1624 detection_method: "IQR".to_string(),
1625 threshold: 1.5,
1626 };
1627 let distribution_analysis = DistributionAnalysisResult {
1628 platform_distributions: HashMap::new(),
1629 distribution_comparisons: HashMap::new(),
1630 normality_tests: HashMap::new(),
1631 };
1632
1633 Ok(CrossPlatformStatisticalAnalysis {
1634 anova_results,
1635 correlation_analysis,
1636 cluster_analysis,
1637 principal_component_analysis,
1638 outlier_detection,
1639 distribution_analysis,
1640 })
1641 }
1642
1643 fn perform_cost_analysis(
1644 &self,
1645 platform_results: &HashMap<QuantumPlatform, PlatformBenchmarkResult>,
1646 ) -> DeviceResult<CrossPlatformCostAnalysis> {
1647 let mut total_costs = HashMap::new();
1648 let mut cost_breakdown = HashMap::new();
1649 let mut cost_trends = HashMap::new();
1650
1651 for (platform, result) in platform_results {
1652 let total_cost: f64 = result
1653 .circuit_results
1654 .values()
1655 .flat_map(|results| results.iter())
1656 .map(|r| r.cost)
1657 .sum();
1658
1659 total_costs.insert(platform.clone(), total_cost);
1660
1661 cost_breakdown.insert(
1662 platform.clone(),
1663 CostBreakdown {
1664 compute_cost: total_cost * 0.8,
1665 queue_cost: total_cost * 0.1,
1666 storage_cost: total_cost * 0.05,
1667 data_transfer_cost: total_cost * 0.05,
1668 other_costs: HashMap::new(),
1669 },
1670 );
1671
1672 cost_trends.insert(
1673 platform.clone(),
1674 CostTrend {
1675 trend_direction: TrendDirection::Stable,
1676 cost_per_month: vec![total_cost; 6], projected_costs: vec![total_cost; 6],
1678 cost_volatility: 0.1,
1679 },
1680 );
1681 }
1682
1683 let cost_optimization = CostOptimizationAnalysis {
1684 optimization_opportunities: Vec::new(),
1685 potential_savings: 100.0,
1686 optimization_strategies: vec!["Use lower-cost platforms for development".to_string()],
1687 };
1688
1689 let roi_analysis = ROIAnalysis {
1690 platform_roi: HashMap::new(),
1691 break_even_analysis: HashMap::new(),
1692 value_metrics: HashMap::new(),
1693 };
1694
1695 Ok(CrossPlatformCostAnalysis {
1696 total_costs,
1697 cost_breakdown,
1698 cost_trends,
1699 cost_optimization,
1700 roi_analysis,
1701 })
1702 }
1703
1704 fn generate_platform_recommendations(
1705 &self,
1706 platform_results: &HashMap<QuantumPlatform, PlatformBenchmarkResult>,
1707 comparative_analysis: &ComparativeAnalysisResult,
1708 _statistical_analysis: &CrossPlatformStatisticalAnalysis,
1709 ) -> DeviceResult<Vec<PlatformRecommendation>> {
1710 let mut recommendations = Vec::new();
1711
1712 if let Some((best_platform, _)) = platform_results.iter().max_by(|a, b| {
1714 a.1.benchmark_metrics
1715 .overall_score
1716 .partial_cmp(&b.1.benchmark_metrics.overall_score)
1717 .unwrap_or(std::cmp::Ordering::Equal)
1718 }) {
1719 recommendations.push(PlatformRecommendation {
1720 recommendation_type: RecommendationType::BestOverall,
1721 target_platform: best_platform.clone(),
1722 use_case: "General quantum computing tasks".to_string(),
1723 confidence_score: 0.9,
1724 reasoning: "Highest overall benchmark score".to_string(),
1725 conditions: vec!["Consider cost constraints".to_string()],
1726 });
1727 }
1728
1729 if let Some((most_cost_effective, _)) = comparative_analysis
1731 .cost_effectiveness_analysis
1732 .value_for_money_score
1733 .iter()
1734 .max_by(|a, b| a.1.partial_cmp(b.1).unwrap_or(std::cmp::Ordering::Equal))
1735 {
1736 recommendations.push(PlatformRecommendation {
1737 recommendation_type: RecommendationType::MostCostEffective,
1738 target_platform: most_cost_effective.clone(),
1739 use_case: "Budget-conscious development and testing".to_string(),
1740 confidence_score: 0.8,
1741 reasoning: "Best value for money ratio".to_string(),
1742 conditions: vec!["May have lower performance".to_string()],
1743 });
1744 }
1745
1746 Ok(recommendations)
1747 }
1748}
1749
1750#[cfg(test)]
1751mod tests {
1752 use super::*;
1753
1754 #[test]
1755 fn test_cross_platform_config_default() {
1756 let config = CrossPlatformBenchmarkConfig::default();
1757 assert_eq!(config.target_platforms.len(), 2);
1758 assert_eq!(config.complexity_levels.len(), 3);
1759 assert!(config.enable_cost_analysis);
1760 }
1761
1762 #[test]
1763 fn test_complexity_level_creation() {
1764 let complexity = ComplexityLevel {
1765 name: "Test".to_string(),
1766 qubit_count: 5,
1767 circuit_depth: 10,
1768 gate_count_range: (10, 30),
1769 two_qubit_gate_ratio: 0.4,
1770 description: "Test complexity level".to_string(),
1771 };
1772
1773 assert_eq!(complexity.name, "Test");
1774 assert_eq!(complexity.qubit_count, 5);
1775 assert_eq!(complexity.two_qubit_gate_ratio, 0.4);
1776 }
1777
1778 #[test]
1779 fn test_platform_enum() {
1780 let ibm_platform = QuantumPlatform::IBMQuantum("ibmq_qasm_simulator".to_string());
1781 let aws_platform = QuantumPlatform::AWSBraket(
1782 "arn:aws:braket:::device/quantum-simulator/amazon/sv1".to_string(),
1783 );
1784
1785 assert_ne!(ibm_platform, aws_platform);
1786 }
1787}