1use super::*;
7
8pub struct AlgorithmDiscoveryEngine {
10 config: DiscoveryConfig,
11 search_engine: Arc<RwLock<SemanticSearchEngine>>,
12 recommendation_engine: Arc<RwLock<RecommendationEngine>>,
13 ranking_system: Arc<RwLock<RankingSystem>>,
14 personalization_engine: Arc<RwLock<PersonalizationEngine>>,
15 cache: Arc<RwLock<DiscoveryCache>>,
16}
17
18#[derive(Debug, Clone, Serialize, Deserialize)]
20pub struct DiscoveryCriteria {
21 pub query: Option<String>,
22 pub category: Option<AlgorithmCategory>,
23 pub tags: Vec<String>,
24 pub author: Option<String>,
25 pub min_rating: Option<f64>,
26 pub hardware_constraints: Option<HardwareConstraints>,
27 pub performance_requirements: Option<PerformanceRequirements>,
28 pub complexity_filter: Option<ComplexityFilter>,
29 pub license_filter: Option<Vec<LicenseType>>,
30 pub sort_by: SortBy,
31 pub limit: usize,
32 pub offset: usize,
33 pub include_experimental: bool,
34 pub user_context: Option<UserContext>,
35}
36
37#[derive(Debug, Clone, Serialize, Deserialize)]
39pub struct HardwareConstraints {
40 pub max_qubits: Option<usize>,
41 pub min_qubits: Option<usize>,
42 pub required_gates: Vec<String>,
43 pub forbidden_gates: Vec<String>,
44 pub topology_constraints: Vec<TopologyType>,
45 pub platform_compatibility: Vec<String>,
46 pub fidelity_threshold: Option<f64>,
47}
48
49#[derive(Debug, Clone, Serialize, Deserialize)]
51pub struct PerformanceRequirements {
52 pub max_execution_time: Option<Duration>,
53 pub min_success_probability: Option<f64>,
54 pub max_error_rate: Option<f64>,
55 pub min_quantum_advantage: Option<f64>,
56 pub resource_efficiency: Option<f64>,
57}
58
59#[derive(Debug, Clone, Serialize, Deserialize)]
61pub struct ComplexityFilter {
62 pub max_time_complexity: Option<String>,
63 pub max_space_complexity: Option<String>,
64 pub max_circuit_depth: Option<usize>,
65 pub max_gate_count: Option<usize>,
66}
67
68#[derive(Debug, Clone, PartialEq, Eq, Serialize, Deserialize)]
70pub enum SortBy {
71 Relevance,
72 Popularity,
73 Rating,
74 RecentlyUpdated,
75 Performance,
76 Alphabetical,
77 QuantumAdvantage,
78 ResourceEfficiency,
79 Custom(String),
80}
81
82#[derive(Debug, Clone, Serialize, Deserialize)]
84pub struct UserContext {
85 pub user_id: String,
86 pub experience_level: ExperienceLevel,
87 pub research_areas: Vec<String>,
88 pub preferred_platforms: Vec<String>,
89 pub usage_history: Vec<String>,
90 pub collaboration_preferences: Vec<String>,
91}
92
93#[derive(Debug, Clone, PartialEq, Eq, Serialize, Deserialize)]
95pub enum ExperienceLevel {
96 Beginner,
97 Intermediate,
98 Advanced,
99 Expert,
100 Researcher,
101}
102
103#[derive(Debug, Clone, Serialize, Deserialize)]
105pub struct AlgorithmInfo {
106 pub algorithm_id: String,
107 pub name: String,
108 pub version: String,
109 pub description: String,
110 pub author: String,
111 pub category: AlgorithmCategory,
112 pub tags: Vec<String>,
113 pub rating: f64,
114 pub downloads: u64,
115 pub last_updated: SystemTime,
116 pub quantum_advantage: QuantumAdvantage,
117 pub hardware_requirements: HardwareRequirements,
118 pub complexity_info: ComplexityInfo,
119 pub discovery_score: f64,
120 pub personalization_score: Option<f64>,
121}
122
123#[derive(Debug, Clone, Serialize, Deserialize)]
125pub struct ComplexityInfo {
126 pub time_complexity: String,
127 pub space_complexity: String,
128 pub circuit_depth: usize,
129 pub gate_count: usize,
130 pub qubit_count: usize,
131}
132
133pub struct SemanticSearchEngine {
135 word_embeddings: HashMap<String, Vec<f64>>,
136 algorithm_embeddings: HashMap<String, Vec<f64>>,
137 similarity_cache: HashMap<String, Vec<(String, f64)>>,
138 search_index: InvertedIndex,
139}
140
141#[derive(Debug, Clone)]
143pub struct InvertedIndex {
144 term_to_algorithms: HashMap<String, Vec<String>>,
145 algorithm_to_terms: HashMap<String, Vec<String>>,
146 term_frequencies: HashMap<String, HashMap<String, f64>>,
147 document_frequencies: HashMap<String, usize>,
148}
149
150pub struct RecommendationEngine {
152 user_profiles: HashMap<String, UserProfile>,
153 algorithm_similarities: HashMap<String, Vec<(String, f64)>>,
154 collaborative_filters: Vec<Box<dyn CollaborativeFilter + Send + Sync>>,
155 content_filters: Vec<Box<dyn ContentFilter + Send + Sync>>,
156 hybrid_weights: HybridWeights,
157}
158
159#[derive(Debug, Clone)]
161pub struct UserProfile {
162 pub user_id: String,
163 pub interests: Vec<String>,
164 pub expertise_areas: Vec<String>,
165 pub interaction_history: Vec<UserInteraction>,
166 pub preference_vector: Vec<f64>,
167 pub temporal_patterns: TemporalPatterns,
168}
169
170#[derive(Debug, Clone)]
172pub struct UserInteraction {
173 pub algorithm_id: String,
174 pub interaction_type: InteractionType,
175 pub timestamp: SystemTime,
176 pub duration: Option<Duration>,
177 pub rating: Option<f64>,
178 pub feedback: Option<String>,
179}
180
181#[derive(Debug, Clone, PartialEq, Eq)]
183pub enum InteractionType {
184 View,
185 Download,
186 Deploy,
187 Rate,
188 Review,
189 Share,
190 Bookmark,
191 Fork,
192 Contribute,
193}
194
195#[derive(Debug, Clone)]
197pub struct TemporalPatterns {
198 pub activity_by_hour: Vec<f64>,
199 pub activity_by_day: Vec<f64>,
200 pub seasonal_patterns: Vec<f64>,
201 pub burst_periods: Vec<(SystemTime, Duration)>,
202}
203
204pub trait CollaborativeFilter {
206 fn recommend(&self, user_id: &str, candidates: &[String]) -> DeviceResult<Vec<(String, f64)>>;
207 fn update_model(&mut self, interactions: &[UserInteraction]) -> DeviceResult<()>;
208}
209
210pub trait ContentFilter {
212 fn recommend(
213 &self,
214 user_profile: &UserProfile,
215 candidates: &[String],
216 ) -> DeviceResult<Vec<(String, f64)>>;
217 fn extract_features(&self, algorithm_id: &str) -> DeviceResult<Vec<f64>>;
218}
219
220#[derive(Debug, Clone)]
222pub struct HybridWeights {
223 pub collaborative_weight: f64,
224 pub content_weight: f64,
225 pub popularity_weight: f64,
226 pub temporal_weight: f64,
227 pub semantic_weight: f64,
228}
229
230pub struct RankingSystem {
232 ranking_algorithms: Vec<Box<dyn RankingAlgorithm + Send + Sync>>,
233 feature_extractors: Vec<Box<dyn FeatureExtractor + Send + Sync>>,
234 learning_to_rank_model: Option<LearningToRankModel>,
235 ranking_cache: HashMap<String, Vec<RankedResult>>,
236}
237
238pub trait RankingAlgorithm {
240 fn rank(
241 &self,
242 candidates: &[AlgorithmInfo],
243 criteria: &DiscoveryCriteria,
244 ) -> DeviceResult<Vec<RankedResult>>;
245 fn get_algorithm_name(&self) -> String;
246}
247
248pub trait FeatureExtractor {
250 fn extract_features(
251 &self,
252 algorithm: &AlgorithmInfo,
253 context: &DiscoveryCriteria,
254 ) -> DeviceResult<Vec<f64>>;
255 fn get_feature_names(&self) -> Vec<String>;
256}
257
258#[derive(Debug, Clone)]
260pub struct RankedResult {
261 pub algorithm_id: String,
262 pub rank: usize,
263 pub score: f64,
264 pub feature_scores: HashMap<String, f64>,
265 pub explanation: RankingExplanation,
266}
267
268#[derive(Debug, Clone)]
270pub struct RankingExplanation {
271 pub primary_factors: Vec<String>,
272 pub relevance_score: f64,
273 pub popularity_score: f64,
274 pub quality_score: f64,
275 pub personalization_boost: f64,
276 pub detailed_explanation: String,
277}
278
279#[derive(Debug, Clone)]
281pub struct LearningToRankModel {
282 pub model_type: String,
283 pub feature_weights: Vec<f64>,
284 pub training_data: Vec<TrainingExample>,
285 pub model_performance: ModelPerformance,
286}
287
288#[derive(Debug, Clone)]
290pub struct TrainingExample {
291 pub query_id: String,
292 pub algorithm_id: String,
293 pub features: Vec<f64>,
294 pub relevance_score: f64,
295 pub user_action: Option<InteractionType>,
296}
297
298#[derive(Debug, Clone)]
300pub struct ModelPerformance {
301 pub ndcg_at_10: f64,
302 pub map_score: f64,
303 pub precision_at_k: Vec<f64>,
304 pub recall_at_k: Vec<f64>,
305 pub click_through_rate: f64,
306}
307
308pub struct PersonalizationEngine {
310 personalization_models: HashMap<String, PersonalizationModel>,
311 context_analyzers: Vec<Box<dyn ContextAnalyzer + Send + Sync>>,
312 adaptation_strategies: Vec<Box<dyn AdaptationStrategy + Send + Sync>>,
313 privacy_preserving: bool,
314}
315
316#[derive(Debug, Clone)]
318pub struct PersonalizationModel {
319 pub user_id: String,
320 pub model_parameters: Vec<f64>,
321 pub context_features: Vec<f64>,
322 pub adaptation_history: Vec<AdaptationEvent>,
323 pub model_confidence: f64,
324}
325
326pub trait ContextAnalyzer {
328 fn analyze_context(&self, user_context: &UserContext) -> DeviceResult<Vec<f64>>;
329 fn get_context_dimensions(&self) -> Vec<String>;
330}
331
332pub trait AdaptationStrategy {
334 fn adapt_recommendations(
335 &self,
336 base_recommendations: Vec<(String, f64)>,
337 user_context: &UserContext,
338 ) -> DeviceResult<Vec<(String, f64)>>;
339 fn update_strategy(&mut self, feedback: &[UserInteraction]) -> DeviceResult<()>;
340}
341
342#[derive(Debug, Clone)]
344pub struct AdaptationEvent {
345 pub timestamp: SystemTime,
346 pub adaptation_type: AdaptationType,
347 pub parameters_changed: Vec<String>,
348 pub performance_impact: f64,
349}
350
351#[derive(Debug, Clone, PartialEq, Eq)]
353pub enum AdaptationType {
354 UserFeedback,
355 PerformanceOptimization,
356 ConceptDrift,
357 ContextChange,
358 ColdStart,
359}
360
361#[derive(Debug, Clone)]
363pub struct DiscoveryCache {
364 query_cache: HashMap<String, CachedResult>,
365 recommendation_cache: HashMap<String, CachedRecommendations>,
366 similarity_cache: HashMap<String, HashMap<String, f64>>,
367 cache_stats: CacheStatistics,
368}
369
370#[derive(Debug, Clone)]
372pub struct CachedResult {
373 pub results: Vec<AlgorithmInfo>,
374 pub cached_at: SystemTime,
375 pub expires_at: SystemTime,
376 pub hit_count: usize,
377}
378
379#[derive(Debug, Clone)]
381pub struct CachedRecommendations {
382 pub user_id: String,
383 pub recommendations: Vec<(String, f64)>,
384 pub cached_at: SystemTime,
385 pub context_hash: String,
386}
387
388#[derive(Debug, Clone, Default)]
390pub struct CacheStatistics {
391 pub total_requests: u64,
392 pub cache_hits: u64,
393 pub cache_misses: u64,
394 pub evictions: u64,
395 pub memory_usage: usize,
396}
397
398impl AlgorithmDiscoveryEngine {
399 pub fn new(config: &DiscoveryConfig) -> DeviceResult<Self> {
401 let search_engine = Arc::new(RwLock::new(SemanticSearchEngine::new()?));
402 let recommendation_engine = Arc::new(RwLock::new(RecommendationEngine::new()?));
403 let ranking_system = Arc::new(RwLock::new(RankingSystem::new()?));
404 let personalization_engine = Arc::new(RwLock::new(PersonalizationEngine::new()?));
405 let cache = Arc::new(RwLock::new(DiscoveryCache::new()));
406
407 Ok(Self {
408 config: config.clone(),
409 search_engine,
410 recommendation_engine,
411 ranking_system,
412 personalization_engine,
413 cache,
414 })
415 }
416
417 pub async fn initialize(&self) -> DeviceResult<()> {
419 Ok(())
421 }
422
423 pub async fn search_algorithms(
425 &self,
426 criteria: DiscoveryCriteria,
427 ) -> DeviceResult<Vec<AlgorithmInfo>> {
428 let cache_key = self.generate_cache_key(&criteria);
430 if let Some(cached_result) = self.check_cache(&cache_key).await? {
431 return Ok(cached_result);
432 }
433
434 let mut results = self.perform_search(&criteria).await?;
436
437 results = self.apply_ranking(results, &criteria).await?;
439
440 if let Some(user_context) = &criteria.user_context {
442 results = self.apply_personalization(results, user_context).await?;
443 }
444
445 self.cache_results(&cache_key, &results).await?;
447
448 Ok(results)
449 }
450
451 pub async fn get_recommendations(
453 &self,
454 user_id: &str,
455 count: usize,
456 ) -> DeviceResult<Vec<AlgorithmInfo>> {
457 let recommendation_engine = self
458 .recommendation_engine
459 .read()
460 .unwrap_or_else(|e| e.into_inner());
461
462 let recommendations = recommendation_engine.get_recommendations(user_id, count)?;
464
465 let mut results = Vec::new();
467 for (algorithm_id, score) in recommendations {
468 let info = AlgorithmInfo {
469 algorithm_id: algorithm_id.clone(),
470 name: format!("Algorithm {algorithm_id}"),
471 version: "1.0.0".to_string(),
472 description: "Recommended algorithm".to_string(),
473 author: "Unknown".to_string(),
474 category: AlgorithmCategory::Optimization,
475 tags: vec![],
476 rating: 4.5,
477 downloads: 1000,
478 last_updated: SystemTime::now(),
479 quantum_advantage: QuantumAdvantage {
480 advantage_type: AdvantageType::Quadratic,
481 speedup_factor: Some(2.0),
482 problem_size_threshold: Some(100),
483 verification_method: "Theoretical".to_string(),
484 theoretical_basis: "Grover's algorithm".to_string(),
485 experimental_validation: false,
486 },
487 hardware_requirements: HardwareRequirements {
488 min_qubits: 1,
489 recommended_qubits: 10,
490 max_circuit_depth: 100,
491 required_gates: vec!["H".to_string(), "CNOT".to_string()],
492 connectivity_requirements: ConnectivityRequirements {
493 topology_type: TopologyType::AllToAll,
494 connectivity_degree: None,
495 all_to_all_required: false,
496 specific_connections: vec![],
497 },
498 fidelity_requirements: FidelityRequirements {
499 min_gate_fidelity: 0.99,
500 min_readout_fidelity: 0.95,
501 min_state_preparation_fidelity: 0.98,
502 coherence_time_requirement: Duration::from_micros(100),
503 error_budget: 0.01,
504 },
505 supported_platforms: vec!["IBM".to_string()],
506 special_hardware: vec![],
507 },
508 complexity_info: ComplexityInfo {
509 time_complexity: "O(sqrt(N))".to_string(),
510 space_complexity: "O(log N)".to_string(),
511 circuit_depth: 50,
512 gate_count: 100,
513 qubit_count: 10,
514 },
515 discovery_score: score,
516 personalization_score: Some(score),
517 };
518 results.push(info);
519 }
520
521 Ok(results)
522 }
523
524 async fn perform_search(
526 &self,
527 criteria: &DiscoveryCriteria,
528 ) -> DeviceResult<Vec<AlgorithmInfo>> {
529 Ok(vec![])
531 }
532
533 async fn apply_ranking(
534 &self,
535 mut results: Vec<AlgorithmInfo>,
536 criteria: &DiscoveryCriteria,
537 ) -> DeviceResult<Vec<AlgorithmInfo>> {
538 let ranking_system = self
539 .ranking_system
540 .read()
541 .unwrap_or_else(|e| e.into_inner());
542 let ranked_results = ranking_system.rank_algorithms(&results, criteria)?;
543
544 results.sort_by(|a, b| {
546 let rank_a = ranked_results
547 .iter()
548 .find(|r| r.algorithm_id == a.algorithm_id)
549 .map_or(usize::MAX, |r| r.rank);
550 let rank_b = ranked_results
551 .iter()
552 .find(|r| r.algorithm_id == b.algorithm_id)
553 .map_or(usize::MAX, |r| r.rank);
554 rank_a.cmp(&rank_b)
555 });
556
557 Ok(results)
558 }
559
560 async fn apply_personalization(
561 &self,
562 mut results: Vec<AlgorithmInfo>,
563 user_context: &UserContext,
564 ) -> DeviceResult<Vec<AlgorithmInfo>> {
565 let personalization_engine = self
566 .personalization_engine
567 .read()
568 .unwrap_or_else(|e| e.into_inner());
569 let personalized_scores =
570 personalization_engine.personalize_results(&results, user_context)?;
571
572 for (i, score) in personalized_scores.iter().enumerate() {
574 if i < results.len() {
575 results[i].personalization_score = Some(*score);
576 }
577 }
578
579 Ok(results)
580 }
581
582 fn generate_cache_key(&self, criteria: &DiscoveryCriteria) -> String {
583 format!("search:{criteria:?}")
585 }
586
587 async fn check_cache(&self, cache_key: &str) -> DeviceResult<Option<Vec<AlgorithmInfo>>> {
588 let cache = self.cache.read().unwrap_or_else(|e| e.into_inner());
589 if let Some(cached_result) = cache.query_cache.get(cache_key) {
590 if cached_result.expires_at > SystemTime::now() {
591 return Ok(Some(cached_result.results.clone()));
592 }
593 }
594 Ok(None)
595 }
596
597 async fn cache_results(&self, cache_key: &str, results: &[AlgorithmInfo]) -> DeviceResult<()> {
598 let mut cache = self.cache.write().unwrap_or_else(|e| e.into_inner());
599 let cached_result = CachedResult {
600 results: results.to_vec(),
601 cached_at: SystemTime::now(),
602 expires_at: SystemTime::now() + self.config.cache_ttl,
603 hit_count: 0,
604 };
605 cache
606 .query_cache
607 .insert(cache_key.to_string(), cached_result);
608 Ok(())
609 }
610}
611
612impl SemanticSearchEngine {
614 fn new() -> DeviceResult<Self> {
615 Ok(Self {
616 word_embeddings: HashMap::new(),
617 algorithm_embeddings: HashMap::new(),
618 similarity_cache: HashMap::new(),
619 search_index: InvertedIndex::new(),
620 })
621 }
622}
623
624impl InvertedIndex {
625 fn new() -> Self {
626 Self {
627 term_to_algorithms: HashMap::new(),
628 algorithm_to_terms: HashMap::new(),
629 term_frequencies: HashMap::new(),
630 document_frequencies: HashMap::new(),
631 }
632 }
633}
634
635impl RecommendationEngine {
636 fn new() -> DeviceResult<Self> {
637 Ok(Self {
638 user_profiles: HashMap::new(),
639 algorithm_similarities: HashMap::new(),
640 collaborative_filters: vec![],
641 content_filters: vec![],
642 hybrid_weights: HybridWeights {
643 collaborative_weight: 0.4,
644 content_weight: 0.3,
645 popularity_weight: 0.15,
646 temporal_weight: 0.1,
647 semantic_weight: 0.05,
648 },
649 })
650 }
651
652 fn get_recommendations(
653 &self,
654 _user_id: &str,
655 count: usize,
656 ) -> DeviceResult<Vec<(String, f64)>> {
657 let mut recommendations = Vec::new();
659 for i in 0..count {
660 recommendations.push((format!("algorithm_{i}"), (i as f64).mul_add(-0.1, 0.8)));
661 }
662 Ok(recommendations)
663 }
664}
665
666impl RankingSystem {
667 fn new() -> DeviceResult<Self> {
668 Ok(Self {
669 ranking_algorithms: vec![],
670 feature_extractors: vec![],
671 learning_to_rank_model: None,
672 ranking_cache: HashMap::new(),
673 })
674 }
675
676 fn rank_algorithms(
677 &self,
678 algorithms: &[AlgorithmInfo],
679 _criteria: &DiscoveryCriteria,
680 ) -> DeviceResult<Vec<RankedResult>> {
681 let mut results = Vec::new();
682 for (i, algorithm) in algorithms.iter().enumerate() {
683 results.push(RankedResult {
684 algorithm_id: algorithm.algorithm_id.clone(),
685 rank: i,
686 score: (i as f64).mul_add(-0.1, 1.0),
687 feature_scores: HashMap::new(),
688 explanation: RankingExplanation {
689 primary_factors: vec!["relevance".to_string()],
690 relevance_score: 0.9,
691 popularity_score: 0.8,
692 quality_score: 0.85,
693 personalization_boost: 0.1,
694 detailed_explanation: "High relevance to query".to_string(),
695 },
696 });
697 }
698 Ok(results)
699 }
700}
701
702impl PersonalizationEngine {
703 fn new() -> DeviceResult<Self> {
704 Ok(Self {
705 personalization_models: HashMap::new(),
706 context_analyzers: vec![],
707 adaptation_strategies: vec![],
708 privacy_preserving: true,
709 })
710 }
711
712 fn personalize_results(
713 &self,
714 results: &[AlgorithmInfo],
715 _user_context: &UserContext,
716 ) -> DeviceResult<Vec<f64>> {
717 Ok(results
719 .iter()
720 .enumerate()
721 .map(|(i, _)| (i as f64).mul_add(-0.1, 0.9))
722 .collect())
723 }
724}
725
726impl DiscoveryCache {
727 fn new() -> Self {
728 Self {
729 query_cache: HashMap::new(),
730 recommendation_cache: HashMap::new(),
731 similarity_cache: HashMap::new(),
732 cache_stats: CacheStatistics::default(),
733 }
734 }
735}