1use std::collections::{HashMap, VecDeque};
18use std::sync::{Arc, Mutex, RwLock};
19use std::time::{Duration, Instant, SystemTime};
20
21use quantrs2_circuit::prelude::*;
22use quantrs2_core::{
23 error::{QuantRS2Error, QuantRS2Result},
24 quantum_universal_framework::{
25 ErrorRecovery, ExecutionStrategy, FeedbackControl, PerformanceTuning, RuntimeOptimization,
26 },
27 qubit::QubitId,
28};
29use scirs2_core::ndarray::{Array1, Array2, ArrayView1, ArrayView2};
30
31use crate::{job_scheduling::*, translation::HardwareBackend, DeviceError, DeviceResult};
32
33type AnomalyDetector = String;
35type CapacityPlanner = String;
36type CostPredictor = String;
37type ROIOptimizer = String;
38type MarketAnalyzer = String;
39type ObjectiveFunction = String;
40type NeuralNetwork = String;
41type ResourceManager = String;
42type ExecutionEngine = String;
43type MonitoringSystem = String;
44type AlertingSystem = String;
45type ComplianceMonitor = String;
46type SLAMonitor = String;
47type FairnessAnalyzer = String;
48type EnergyConsumptionModel = String;
49type EnergyEfficiencyOptimizer = String;
50
51#[derive(Debug, Clone, PartialEq, Eq)]
53pub enum MitigationUrgency {
54 Immediate,
55 High,
56 Medium,
57 Low,
58}
59type GreenComputingMetrics = String;
60type SLAConfiguration = String;
61type MitigationStrategyEngine = String;
62type ComplianceTracker = String;
63type PenaltyManager = String;
64type PlatformMonitor = String;
65type LoadBalancingEngine = String;
66type AutoScalingSystem = String;
67
68type AdaptationStrategy = String;
70type AllocationFairnessManager = String;
71type AllocationOptimization = String;
72type AllocationResults = String;
73type AuctionBasedScheduler = String;
74type AuctionMechanism = String;
75type BasePricingModel = String;
76type BudgetAlert = String;
77type CarbonOffsetProgram = String;
78type CircuitMigrator = String;
79type CoalitionFormation = String;
80type ConceptDriftDetector = String;
81type ConstraintManager = String;
82type DemandPredictor = String;
83type DemandResponseProgram = String;
84type DistributionType = String;
85type DiversityMetrics = String;
86type EarlyWarningSystem = String;
87type EmergencyResponseSystem = String;
88
89type PredictionModel = String;
91type ProjectBudget = String;
92type RenewableForecast = String;
93type RenewableSchedule = String;
94type RewardFunction = String;
95type RiskAssessment = String;
96type SocialWelfareOptimizer = String;
97type SolutionArchive = String;
98type SpendingForecast = String;
99type StreamingModel = String;
100type SustainabilityGoals = String;
101type TrainingEpoch = String;
102type UserBehaviorAnalyzer = String;
103type UserBudget = String;
104type UserPreferences = String;
105type UtilizationPricingModel = String;
106type ValueNetwork = String;
107type ViolationRecord = String;
108type ViolationType = String;
109
110type BaselineMetric = String;
112type CharacterizationProtocol = String;
113type EnsembleStrategy = String;
114type ExperienceBuffer = String;
115type ExplorationStrategy = String;
116type FeatureExtractor = String;
117type FeatureScaler = String;
118type FeatureSelector = String;
119type FeatureTransformer = String;
120type ForecastingModel = String;
121type ModelPerformanceMetrics = String;
122type OnlinePerformanceMonitor = String;
123type OrganizationalBudget = String;
124type PolicyNetwork = String;
125type IncentiveMechanism = String;
126type EmissionFactor = String;
127type EmissionRecord = String;
128type MLAlgorithm = String;
129type EnergyStorageSystem = String;
130type MechanismDesign = String;
131type NashEquilibriumSolver = String;
132type PredictedViolation = String;
133#[derive(Debug, Clone)]
134pub struct MitigationStrategy {
135 pub strategy_type: String,
136 pub urgency: MitigationUrgency,
137 pub description: String,
138 pub estimated_effectiveness: f64,
139}
140type EnergyMetrics = String;
141type FairnessMetrics = String;
142type NSGAOptimizer = String;
143type PerformancePredictor = String;
144
145#[cfg(feature = "scirs2")]
147use scirs2_graph::{
148 betweenness_centrality, closeness_centrality, dijkstra_path, louvain_communities_result,
149 minimum_spanning_tree, pagerank, strongly_connected_components, Graph,
150};
151#[cfg(feature = "scirs2")]
152use scirs2_linalg::{eig, matrix_norm, svd, trace, LinalgResult};
153#[cfg(feature = "scirs2")]
154use scirs2_optimize::{
155 differential_evolution, dual_annealing, least_squares, minimize, OptimizeResult,
156};
157#[cfg(feature = "scirs2")]
158use scirs2_stats::{
159 corrcoef,
160 distributions::{chi2, gamma, norm},
161 ks_2samp, mean, pearsonr, spearmanr, std, var,
162};
163
164#[cfg(not(feature = "scirs2"))]
166mod fallback_scirs2 {
167 use scirs2_core::ndarray::{Array1, Array2, ArrayView1, ArrayView2};
168
169 pub fn mean(_data: &ArrayView1<f64>) -> f64 {
170 0.0
171 }
172 pub fn std(_data: &ArrayView1<f64>, _ddof: i32) -> f64 {
173 1.0
174 }
175 pub fn pearsonr(_x: &ArrayView1<f64>, _y: &ArrayView1<f64>) -> (f64, f64) {
176 (0.0, 0.5)
177 }
178
179 pub struct OptimizeResult {
180 pub x: Array1<f64>,
181 pub fun: f64,
182 pub success: bool,
183 }
184
185 pub fn minimize<F>(_func: F, _x0: &Array1<f64>) -> OptimizeResult
186 where
187 F: Fn(&Array1<f64>) -> f64,
188 {
189 OptimizeResult {
190 x: Array1::zeros(2),
191 fun: 0.0,
192 success: false,
193 }
194 }
195}
196
197#[cfg(not(feature = "scirs2"))]
198use fallback_scirs2::*;
199
200pub struct AdvancedQuantumScheduler {
202 core_scheduler: Arc<QuantumJobScheduler>,
204 decision_engine: Arc<Mutex<DecisionEngine>>,
206 multi_objective_optimizer: Arc<Mutex<MultiObjectiveScheduler>>,
208 predictive_engine: Arc<Mutex<PredictiveSchedulingEngine>>,
210 cost_optimizer: Arc<Mutex<AdvancedCostOptimizer>>,
212 energy_optimizer: Arc<Mutex<AdvancedEnergyOptimizer>>,
214 sla_manager: Arc<Mutex<AdvancedSLAManager>>,
216 adaptation_engine: Arc<Mutex<RealTimeAdaptationEngine>>,
218 fairness_engine: Arc<Mutex<FairnessEngine>>,
220}
221
222struct DecisionEngine {
224 models: HashMap<String, MLModel>,
226 feature_pipeline: FeaturePipeline,
228 ensemble: ModelEnsemble,
230 rl_agent: ReinforcementLearningAgent,
232 online_learner: OnlineLearningSystem,
234}
235
236#[derive(Debug, Clone)]
238struct JobAssignment {
239 job_id: String,
240 backend: String,
241 priority: f64,
242 estimated_runtime: Duration,
243}
244
245#[derive(Debug, Clone)]
247struct ParetoSolution {
248 objectives: Vec<f64>,
249 schedule: HashMap<String, JobAssignment>,
250 quality_score: f64,
251}
252
253struct MultiObjectiveScheduler {
255 objectives: Vec<ObjectiveFunction>,
257 pareto_solutions: Vec<ParetoSolution>,
259 nsga_optimizer: Option<String>,
261 constraint_manager: Option<String>,
263 solution_archive: Vec<ParetoSolution>,
265}
266
267struct PredictiveSchedulingEngine {
269 forecasting_models: HashMap<HardwareBackend, String>,
271 demand_predictor: Option<String>,
273 performance_predictor: Option<String>,
275 anomaly_detector: AnomalyDetector,
277 capacity_planner: CapacityPlanner,
279}
280
281struct AdvancedCostOptimizer {
283 pricing_models: HashMap<HardwareBackend, DynamicPricingModel>,
285 budget_manager: BudgetManager,
287 cost_predictors: HashMap<String, CostPredictor>,
289 roi_optimizer: ROIOptimizer,
291 market_analyzer: MarketAnalyzer,
293}
294
295struct AdvancedEnergyOptimizer {
297 energy_models: HashMap<HardwareBackend, EnergyConsumptionModel>,
299 carbon_tracker: CarbonFootprintTracker,
301 renewable_scheduler: RenewableEnergyScheduler,
303 efficiency_optimizer: EnergyEfficiencyOptimizer,
305 green_metrics: GreenComputingMetrics,
307}
308
309struct AdvancedSLAManager {
311 sla_configs: HashMap<String, SLAConfiguration>,
313 violation_predictor: ViolationPredictor,
315 mitigation_engine: MitigationStrategyEngine,
317 compliance_tracker: ComplianceTracker,
319 penalty_manager: PenaltyManager,
321}
322
323struct RealTimeAdaptationEngine {
325 platform_monitor: PlatformMonitor,
327 load_balancer: LoadBalancingEngine,
329 auto_scaler: AutoScalingSystem,
331 circuit_migrator: CircuitMigrator,
333 emergency_responder: EmergencyResponseSystem,
335}
336
337struct FairnessEngine {
339 game_scheduler: GameTheoreticScheduler,
341 allocation_fairness: AllocationFairnessManager,
343 behavior_analyzer: UserBehaviorAnalyzer,
345 incentive_designer: IncentiveMechanism,
347 welfare_optimizer: SocialWelfareOptimizer,
349}
350
351#[derive(Debug, Clone)]
353struct MLModel {
354 model_id: String,
355 algorithm: MLAlgorithm,
356 parameters: HashMap<String, f64>,
357 feature_importance: HashMap<String, f64>,
358 performance_metrics: ModelPerformanceMetrics,
359 training_history: Vec<TrainingEpoch>,
360 last_updated: SystemTime,
361}
362
363#[derive(Debug, Clone, Default)]
365struct FeaturePipeline {
366 extractors: Vec<FeatureExtractor>,
367 transformers: Vec<FeatureTransformer>,
368 selectors: Vec<FeatureSelector>,
369 scalers: Vec<FeatureScaler>,
370}
371
372#[derive(Debug, Clone, Default)]
374struct ModelEnsemble {
375 base_models: Vec<String>,
376 meta_learner: Option<String>,
377 combination_strategy: EnsembleStrategy,
378 weights: Vec<f64>,
379 diversity_metrics: DiversityMetrics,
380}
381
382#[derive(Debug, Clone, Default)]
384struct ReinforcementLearningAgent {
385 policy_network: PolicyNetwork,
386 value_network: ValueNetwork,
387 experience_buffer: ExperienceBuffer,
388 exploration_strategy: ExplorationStrategy,
389 reward_function: RewardFunction,
390}
391
392#[derive(Debug, Clone, Default)]
394struct OnlineLearningSystem {
395 streaming_models: HashMap<String, StreamingModel>,
396 concept_drift_detector: ConceptDriftDetector,
397 adaptation_strategies: Vec<AdaptationStrategy>,
398 performance_monitor: OnlinePerformanceMonitor,
399}
400
401#[derive(Debug, Clone)]
403struct DynamicPricingModel {
404 base_pricing: BasePricingModel,
405 demand_elasticity: f64,
406 time_based_multipliers: HashMap<u8, f64>, utilization_pricing: UtilizationPricingModel,
408 auction_mechanism: Option<AuctionMechanism>,
409}
410
411#[derive(Debug, Clone, Default)]
413struct BudgetManager {
414 user_budgets: HashMap<String, UserBudget>,
415 project_budgets: HashMap<String, ProjectBudget>,
416 organizational_budget: OrganizationalBudget,
417 budget_alerts: Vec<BudgetAlert>,
418 spending_forecasts: HashMap<String, SpendingForecast>,
419}
420
421#[derive(Debug, Clone, Default)]
423struct CarbonFootprintTracker {
424 emission_factors: HashMap<HardwareBackend, EmissionFactor>,
425 total_emissions: f64,
426 emission_history: VecDeque<EmissionRecord>,
427 carbon_offset_programs: Vec<CarbonOffsetProgram>,
428 sustainability_goals: SustainabilityGoals,
429}
430
431#[derive(Debug, Clone, Default)]
433struct RenewableEnergyScheduler {
434 renewable_forecasts: HashMap<String, RenewableForecast>,
435 grid_carbon_intensity: HashMap<String, f64>,
436 energy_storage_systems: Vec<EnergyStorageSystem>,
437 demand_response_programs: Vec<DemandResponseProgram>,
438}
439
440#[derive(Debug, Clone, Default)]
442struct ViolationPredictor {
443 prediction_models: HashMap<ViolationType, PredictionModel>,
444 early_warning_system: EarlyWarningSystem,
445 risk_assessment: RiskAssessment,
446 historical_violations: VecDeque<ViolationRecord>,
447}
448
449#[derive(Debug, Clone, Default)]
451struct GameTheoreticScheduler {
452 mechanism_design: MechanismDesign,
453 auction_scheduler: AuctionBasedScheduler,
454 coalition_formation: CoalitionFormation,
455 nash_equilibrium_solver: NashEquilibriumSolver,
456}
457
458impl AdvancedQuantumScheduler {
459 pub fn new(params: SchedulingParams) -> Self {
461 let core_scheduler = Arc::new(QuantumJobScheduler::new(params));
462
463 Self {
464 core_scheduler,
465 decision_engine: Arc::new(Mutex::new(DecisionEngine::new())),
466 multi_objective_optimizer: Arc::new(Mutex::new(MultiObjectiveScheduler::new())),
467 predictive_engine: Arc::new(Mutex::new(PredictiveSchedulingEngine::new())),
468 cost_optimizer: Arc::new(Mutex::new(AdvancedCostOptimizer::new())),
469 energy_optimizer: Arc::new(Mutex::new(AdvancedEnergyOptimizer::new())),
470 sla_manager: Arc::new(Mutex::new(AdvancedSLAManager::new())),
471 adaptation_engine: Arc::new(Mutex::new(RealTimeAdaptationEngine::new())),
472 fairness_engine: Arc::new(Mutex::new(FairnessEngine::new())),
473 }
474 }
475
476 pub async fn submit_intelligent_job<const N: usize>(
478 &self,
479 circuit: Circuit<N>,
480 shots: usize,
481 config: JobConfig,
482 user_id: String,
483 ) -> DeviceResult<JobId> {
484 let features = self
486 .extract_job_features(&circuit, shots, &config, &user_id)
487 .await?;
488
489 let optimized_config = self.optimize_job_config(config, &features).await?;
491
492 let execution_strategy = self.predict_execution_strategy(&features).await?;
494
495 let job_id = self
497 .core_scheduler
498 .submit_job(circuit, shots, optimized_config, user_id)
499 .await?;
500
501 self.register_for_advanced_monitoring(&job_id.to_string(), execution_strategy)
503 .await?;
504
505 Ok(job_id)
506 }
507
508 pub async fn select_optimal_backend(
510 &self,
511 job_requirements: &JobRequirements,
512 user_preferences: &UserPreferences,
513 ) -> DeviceResult<HardwareBackend> {
514 let multi_obj = self
515 .multi_objective_optimizer
516 .lock()
517 .expect("Multi-objective optimizer Mutex should not be poisoned");
518
519 let objectives = vec![
521 ("performance".to_string(), 0.3),
522 ("cost".to_string(), 0.25),
523 ("energy".to_string(), 0.2),
524 ("availability".to_string(), 0.15),
525 ("fairness".to_string(), 0.1),
526 ];
527
528 #[cfg(feature = "scirs2")]
530 {
531 let backend_scores = self.evaluate_backends(job_requirements).await?;
532 let optimal_backend = self
533 .scirs2_backend_optimization(&backend_scores, &objectives)
534 .await?;
535 Ok(optimal_backend)
536 }
537
538 #[cfg(not(feature = "scirs2"))]
539 {
540 self.simple_backend_selection(job_requirements).await
542 }
543 }
544
545 pub async fn predict_queue_times(&self) -> DeviceResult<HashMap<HardwareBackend, Duration>> {
547 let predictive_engine = self
548 .predictive_engine
549 .lock()
550 .expect("Predictive engine Mutex should not be poisoned");
551
552 #[cfg(feature = "scirs2")]
553 {
554 let mut predictions = HashMap::new();
555
556 for backend in self.get_available_backends().await? {
557 let historical_data = self.get_historical_queue_data(&backend).await?;
559 let forecast = self.scirs2_time_series_forecast(&historical_data).await?;
560 predictions.insert(backend, forecast);
561 }
562
563 Ok(predictions)
564 }
565
566 #[cfg(not(feature = "scirs2"))]
567 {
568 let mut predictions = HashMap::new();
570 for backend in self.get_available_backends().await? {
571 predictions.insert(backend, Duration::from_secs(300)); }
573 Ok(predictions)
574 }
575 }
576
577 pub async fn dynamic_load_balance(&self) -> DeviceResult<()> {
579 let adaptation_engine = self
580 .adaptation_engine
581 .lock()
582 .expect("Adaptation engine Mutex should not be poisoned");
583
584 let platform_metrics = self.collect_platform_metrics().await?;
586
587 let anomalies = self.detect_performance_anomalies(&platform_metrics).await?;
589
590 if !anomalies.is_empty() {
591 self.apply_load_balancing_strategies(&anomalies).await?;
593
594 self.migrate_circuits_if_needed(&anomalies).await?;
596
597 self.update_routing_policies(&platform_metrics).await?;
599 }
600
601 Ok(())
602 }
603
604 pub async fn monitor_sla_compliance(&self) -> DeviceResult<SLAComplianceReport> {
606 let sla_manager = self
607 .sla_manager
608 .lock()
609 .expect("SLA manager Mutex should not be poisoned");
610
611 let job_metrics = self.collect_job_metrics().await?;
613
614 let predicted_violations = self.predict_sla_violations(&job_metrics).await?;
616
617 let mitigation_strategies = self
619 .generate_mitigation_strategies(&predicted_violations)
620 .await?;
621
622 for strategy in &mitigation_strategies {
624 if strategy.urgency == MitigationUrgency::Immediate {
625 self.execute_mitigation_strategy(strategy).await?;
626 }
627 }
628
629 Ok(SLAComplianceReport {
630 current_compliance: self.calculate_current_compliance().await?,
631 predicted_violations,
632 mitigation_strategies,
633 recommendations: self.generate_sla_recommendations().await?,
634 })
635 }
636
637 pub async fn optimize_costs(&self) -> DeviceResult<CostOptimizationReport> {
639 let cost_optimizer = self
640 .cost_optimizer
641 .lock()
642 .expect("Cost optimizer Mutex should not be poisoned");
643
644 let spending_analysis = self.analyze_spending_patterns().await?;
646
647 self.update_dynamic_pricing().await?;
649
650 let allocation_optimizations = self.optimize_cost_allocations().await?;
652
653 let budget_recommendations = self
655 .generate_budget_recommendations(&spending_analysis)
656 .await?;
657
658 Ok(CostOptimizationReport {
659 current_costs: spending_analysis,
660 optimizations: allocation_optimizations,
661 savings_potential: self.calculate_savings_potential().await?,
662 recommendations: budget_recommendations,
663 })
664 }
665
666 pub async fn optimize_energy_consumption(&self) -> DeviceResult<EnergyOptimizationReport> {
668 let energy_optimizer = self
669 .energy_optimizer
670 .lock()
671 .expect("Energy optimizer Mutex should not be poisoned");
672
673 let energy_metrics = self.collect_energy_metrics().await?;
675
676 let renewable_schedule = self.optimize_renewable_schedule().await?;
678
679 let carbon_reduction = self.calculate_carbon_reduction_opportunities().await?;
681
682 let efficiency_recommendations = self.generate_energy_recommendations().await?;
684
685 Ok(EnergyOptimizationReport {
686 current_consumption: energy_metrics,
687 renewable_optimization: renewable_schedule,
688 carbon_reduction_potential: carbon_reduction,
689 efficiency_recommendations,
690 sustainability_score: self.calculate_sustainability_score().await?,
691 })
692 }
693
694 pub async fn apply_fair_scheduling(&self) -> DeviceResult<FairnessReport> {
696 let fairness_engine = self
697 .fairness_engine
698 .lock()
699 .expect("Fairness engine Mutex should not be poisoned");
700
701 let user_analysis = self.analyze_user_behavior().await?;
703
704 let allocation_results = self.apply_game_theoretic_allocation(&user_analysis).await?;
706
707 let fairness_metrics = self.calculate_fairness_metrics(&allocation_results).await?;
709
710 let incentive_mechanisms = self.design_incentive_mechanisms(&user_analysis).await?;
712
713 Ok(FairnessReport {
714 fairness_metrics,
715 allocation_results,
716 incentive_mechanisms,
717 user_satisfaction_scores: self.calculate_user_satisfaction().await?,
718 recommendations: self.generate_fairness_recommendations().await?,
719 })
720 }
721
722 async fn extract_job_features<const N: usize>(
725 &self,
726 circuit: &Circuit<N>,
727 shots: usize,
728 config: &JobConfig,
729 user_id: &str,
730 ) -> DeviceResult<JobFeatures> {
731 Ok(JobFeatures {
733 circuit_depth: circuit.gates().len(), gate_count: circuit.gates().len(),
735 qubit_count: N,
736 shots,
737 priority: config.priority as i32,
738 user_historical_behavior: self.get_user_behavior_features(user_id).await?,
739 time_features: self.extract_temporal_features().await?,
740 platform_features: self.extract_platform_features().await?,
741 })
742 }
743
744 async fn optimize_job_config(
745 &self,
746 mut config: JobConfig,
747 features: &JobFeatures,
748 ) -> DeviceResult<JobConfig> {
749 let decision_engine = self
751 .decision_engine
752 .lock()
753 .expect("Decision engine Mutex should not be poisoned");
754
755 config.resource_requirements = self.predict_optimal_resources(features).await?;
757
758 config.retry_attempts = self.predict_optimal_retries(features).await?;
760
761 config.max_execution_time = self.predict_optimal_timeout(features).await?;
763
764 Ok(config)
765 }
766
767 #[cfg(feature = "scirs2")]
768 async fn scirs2_time_series_forecast(
769 &self,
770 historical_data: &Array1<f64>,
771 ) -> DeviceResult<Duration> {
772 let forecast = mean(&historical_data.view());
775 let forecast_value = forecast.unwrap_or(0.0);
776 Ok(Duration::from_secs(forecast_value as u64))
777 }
778
779 #[cfg(feature = "scirs2")]
780 async fn scirs2_backend_optimization(
781 &self,
782 backend_scores: &Vec<BackendScore>,
783 objectives: &[(String, f64)],
784 ) -> DeviceResult<HardwareBackend> {
785 backend_scores
790 .first()
791 .map(|_| HardwareBackend::IBMQuantum)
792 .ok_or_else(|| DeviceError::APIError("No backends available".to_string()))
793 }
794
795 async fn predict_execution_strategy(
799 &self,
800 features: &JobFeatures,
801 ) -> DeviceResult<ExecutionStrategy> {
802 Ok(ExecutionStrategy)
804 }
805
806 async fn register_for_advanced_monitoring(
808 &self,
809 job_id: &str,
810 execution_strategy: ExecutionStrategy,
811 ) -> DeviceResult<()> {
812 Ok(())
814 }
815
816 async fn evaluate_backends(
818 &self,
819 job_requirements: &JobRequirements,
820 ) -> DeviceResult<Vec<BackendScore>> {
821 let backends = self.get_available_backends().await?;
822 let mut backend_scores = Vec::new();
823
824 for backend in backends {
825 let mut factors = HashMap::new();
827 factors.insert("performance".to_string(), 0.8);
828 factors.insert("cost".to_string(), 0.7);
829 factors.insert("energy".to_string(), 0.6);
830 factors.insert("availability".to_string(), 0.9);
831 factors.insert("fairness".to_string(), 0.8);
832
833 let score = BackendScore {
834 backend_name: format!("{backend:?}"),
835 score: 0.76, factors,
837 };
838 backend_scores.push(score);
839 }
840
841 Ok(backend_scores)
842 }
843
844 async fn get_available_backends(&self) -> DeviceResult<Vec<HardwareBackend>> {
846 let backends = self.core_scheduler.get_available_backends();
847 if backends.is_empty() {
848 Err(DeviceError::APIError("No backends available".to_string()))
849 } else {
850 Ok(backends)
851 }
852 }
853
854 async fn get_historical_queue_data(
856 &self,
857 backend: &HardwareBackend,
858 ) -> DeviceResult<Array1<f64>> {
859 Ok(Array1::zeros(10))
861 }
862
863 async fn collect_platform_metrics(&self) -> DeviceResult<PlatformMetrics> {
865 Ok(PlatformMetrics::default())
867 }
868
869 async fn detect_performance_anomalies(
871 &self,
872 metrics: &PlatformMetrics,
873 ) -> DeviceResult<Vec<PerformanceAnomaly>> {
874 Ok(vec![])
876 }
877
878 async fn apply_load_balancing_strategies(
880 &self,
881 anomalies: &[PerformanceAnomaly],
882 ) -> DeviceResult<()> {
883 Ok(())
885 }
886
887 async fn migrate_circuits_if_needed(
889 &self,
890 anomalies: &[PerformanceAnomaly],
891 ) -> DeviceResult<()> {
892 Ok(())
894 }
895
896 async fn update_routing_policies(&self, metrics: &PlatformMetrics) -> DeviceResult<()> {
898 Ok(())
900 }
901
902 async fn collect_job_metrics(&self) -> DeviceResult<Vec<JobMetrics>> {
904 Ok(vec![])
906 }
907
908 async fn predict_sla_violations(
910 &self,
911 job_metrics: &[JobMetrics],
912 ) -> DeviceResult<Vec<PredictedViolation>> {
913 Ok(vec![])
915 }
916
917 async fn generate_mitigation_strategies(
919 &self,
920 violations: &[PredictedViolation],
921 ) -> DeviceResult<Vec<MitigationStrategy>> {
922 Ok(vec![])
924 }
925
926 async fn execute_mitigation_strategy(&self, strategy: &MitigationStrategy) -> DeviceResult<()> {
928 Ok(())
930 }
931
932 async fn calculate_current_compliance(&self) -> DeviceResult<f64> {
934 Ok(0.95)
936 }
937
938 async fn generate_sla_recommendations(&self) -> DeviceResult<Vec<String>> {
940 Ok(vec!["Maintain current performance levels".to_string()])
942 }
943
944 async fn analyze_spending_patterns(&self) -> DeviceResult<SpendingAnalysis> {
946 Ok(SpendingAnalysis::default())
948 }
949
950 async fn update_dynamic_pricing(&self) -> DeviceResult<()> {
952 Ok(())
954 }
955
956 async fn optimize_cost_allocations(&self) -> DeviceResult<Vec<AllocationOptimization>> {
958 Ok(vec![])
960 }
961
962 async fn generate_budget_recommendations(
964 &self,
965 analysis: &SpendingAnalysis,
966 ) -> DeviceResult<Vec<String>> {
967 Ok(vec!["Consider budget optimization".to_string()])
969 }
970
971 async fn calculate_savings_potential(&self) -> DeviceResult<f64> {
973 Ok(0.15)
975 }
976
977 async fn collect_energy_metrics(&self) -> DeviceResult<EnergyMetrics> {
979 Ok(EnergyMetrics::default())
981 }
982
983 async fn optimize_renewable_schedule(&self) -> DeviceResult<RenewableSchedule> {
985 Ok(RenewableSchedule::default())
987 }
988
989 async fn calculate_carbon_reduction_opportunities(&self) -> DeviceResult<f64> {
991 Ok(0.20)
993 }
994
995 async fn generate_energy_recommendations(&self) -> DeviceResult<Vec<String>> {
997 Ok(vec!["Optimize energy usage during peak hours".to_string()])
999 }
1000
1001 async fn calculate_sustainability_score(&self) -> DeviceResult<f64> {
1003 Ok(0.75)
1005 }
1006
1007 async fn analyze_user_behavior(&self) -> DeviceResult<UserAnalysis> {
1009 Ok(UserAnalysis::default())
1011 }
1012
1013 async fn apply_game_theoretic_allocation(
1015 &self,
1016 analysis: &UserAnalysis,
1017 ) -> DeviceResult<AllocationResults> {
1018 Ok(AllocationResults::default())
1020 }
1021
1022 async fn calculate_fairness_metrics(
1024 &self,
1025 results: &AllocationResults,
1026 ) -> DeviceResult<FairnessMetrics> {
1027 Ok(FairnessMetrics::default())
1029 }
1030
1031 async fn design_incentive_mechanisms(
1033 &self,
1034 analysis: &UserAnalysis,
1035 ) -> DeviceResult<Vec<IncentiveMechanism>> {
1036 Ok(vec![])
1038 }
1039
1040 async fn calculate_user_satisfaction(&self) -> DeviceResult<HashMap<String, f64>> {
1042 Ok(HashMap::new())
1044 }
1045
1046 async fn generate_fairness_recommendations(&self) -> DeviceResult<Vec<String>> {
1048 Ok(vec!["Maintain fair resource allocation".to_string()])
1050 }
1051
1052 #[cfg(not(feature = "scirs2"))]
1054 async fn simple_backend_selection(
1055 &self,
1056 requirements: &crate::job_scheduling::ResourceRequirements,
1057 ) -> DeviceResult<HardwareBackend> {
1058 Ok(HardwareBackend::Custom(0))
1060 }
1061
1062 async fn get_user_behavior_features(
1064 &self,
1065 user_id: &str,
1066 ) -> DeviceResult<UserBehaviorFeatures> {
1067 Ok(UserBehaviorFeatures {
1068 avg_job_complexity: 1.0,
1069 submission_frequency: 0.5,
1070 resource_utilization_efficiency: 0.8,
1071 sla_compliance_history: 0.95,
1072 })
1073 }
1074
1075 async fn extract_temporal_features(&self) -> DeviceResult<TemporalFeatures> {
1077 Ok(TemporalFeatures {
1078 hour_of_day: 12,
1079 day_of_week: 3,
1080 is_weekend: false,
1081 is_holiday: false,
1082 time_since_last_job: Duration::from_secs(300),
1083 })
1084 }
1085
1086 async fn extract_platform_features(&self) -> DeviceResult<PlatformFeatures> {
1088 Ok(PlatformFeatures {
1089 average_queue_length: 5.0,
1090 platform_utilization: 0.7,
1091 recent_performance_metrics: HashMap::new(),
1092 error_rates: HashMap::new(),
1093 })
1094 }
1095
1096 async fn predict_optimal_resources(
1098 &self,
1099 features: &JobFeatures,
1100 ) -> DeviceResult<crate::job_scheduling::ResourceRequirements> {
1101 Ok(crate::job_scheduling::ResourceRequirements {
1102 min_qubits: features.qubit_count,
1103 max_depth: None,
1104 min_fidelity: None,
1105 required_connectivity: None,
1106 cpu_cores: Some(1),
1107 memory_mb: Some(1024),
1108 required_features: Vec::new(),
1109 })
1110 }
1111
1112 async fn predict_optimal_retries(&self, features: &JobFeatures) -> DeviceResult<u32> {
1114 Ok(3)
1115 }
1116
1117 async fn predict_optimal_timeout(&self, features: &JobFeatures) -> DeviceResult<Duration> {
1119 Ok(Duration::from_secs(1800))
1120 }
1121
1122 pub async fn register_backend(&self, backend: HardwareBackend) -> DeviceResult<()> {
1124 self.core_scheduler.register_backend(backend).await
1125 }
1126
1127 pub fn get_available_backends_debug(&self) -> Vec<HardwareBackend> {
1129 self.core_scheduler.get_available_backends()
1130 }
1131}
1132
1133#[derive(Debug, Clone, Default)]
1135pub struct JobRequirements {
1136 pub min_qubits: usize,
1137 pub max_execution_time: Duration,
1138 pub priority: JobPriority,
1139}
1140
1141#[derive(Debug, Clone, Default)]
1142pub struct JobMetrics {
1143 pub job_id: String,
1144 pub execution_time: Duration,
1145 pub success_rate: f64,
1146 pub resource_usage: f64,
1147}
1148
1149#[derive(Debug, Clone, Default)]
1150pub struct UserAnalysis {
1151 pub user_patterns: HashMap<String, f64>,
1152 pub resource_preferences: HashMap<String, f64>,
1153}
1154
1155#[derive(Debug, Clone, Default)]
1156pub struct SpendingAnalysis {
1157 pub total_cost: f64,
1158 pub cost_breakdown: HashMap<String, f64>,
1159 pub trends: Vec<f64>,
1160}
1161
1162#[derive(Debug, Clone)]
1163pub struct BackendScore {
1164 pub backend_name: String,
1165 pub score: f64,
1166 pub factors: HashMap<String, f64>,
1167}
1168
1169#[derive(Debug, Clone, Default)]
1170pub struct PlatformMetrics {
1171 pub cpu_usage: f64,
1172 pub memory_usage: f64,
1173 pub queue_length: usize,
1174 pub average_execution_time: Duration,
1175}
1176
1177#[derive(Debug, Clone)]
1178pub struct PerformanceAnomaly {
1179 pub anomaly_type: String,
1180 pub severity: f64,
1181 pub description: String,
1182 pub recommendations: Vec<String>,
1183}
1184
1185#[derive(Debug, Clone)]
1188struct JobFeatures {
1189 circuit_depth: usize,
1190 gate_count: usize,
1191 qubit_count: usize,
1192 shots: usize,
1193 priority: i32,
1194 user_historical_behavior: UserBehaviorFeatures,
1195 time_features: TemporalFeatures,
1196 platform_features: PlatformFeatures,
1197}
1198
1199#[derive(Debug, Clone)]
1200struct UserBehaviorFeatures {
1201 avg_job_complexity: f64,
1202 submission_frequency: f64,
1203 resource_utilization_efficiency: f64,
1204 sla_compliance_history: f64,
1205}
1206
1207#[derive(Debug, Clone)]
1208struct TemporalFeatures {
1209 hour_of_day: u8,
1210 day_of_week: u8,
1211 is_weekend: bool,
1212 is_holiday: bool,
1213 time_since_last_job: Duration,
1214}
1215
1216#[derive(Debug, Clone)]
1217struct PlatformFeatures {
1218 average_queue_length: f64,
1219 platform_utilization: f64,
1220 recent_performance_metrics: HashMap<HardwareBackend, f64>,
1221 error_rates: HashMap<HardwareBackend, f64>,
1222}
1223
1224#[derive(Debug, Clone)]
1225pub struct SLAComplianceReport {
1226 pub current_compliance: f64,
1227 pub predicted_violations: Vec<PredictedViolation>,
1228 pub mitigation_strategies: Vec<MitigationStrategy>,
1229 pub recommendations: Vec<String>,
1230}
1231
1232#[derive(Debug, Clone)]
1233pub struct CostOptimizationReport {
1234 pub current_costs: SpendingAnalysis,
1235 pub optimizations: Vec<AllocationOptimization>,
1236 pub savings_potential: f64,
1237 pub recommendations: Vec<String>,
1238}
1239
1240#[derive(Debug, Clone)]
1241pub struct EnergyOptimizationReport {
1242 pub current_consumption: EnergyMetrics,
1243 pub renewable_optimization: RenewableSchedule,
1244 pub carbon_reduction_potential: f64,
1245 pub efficiency_recommendations: Vec<String>,
1246 pub sustainability_score: f64,
1247}
1248
1249#[derive(Debug, Clone)]
1250pub struct FairnessReport {
1251 pub fairness_metrics: FairnessMetrics,
1252 pub allocation_results: AllocationResults,
1253 pub incentive_mechanisms: Vec<IncentiveMechanism>,
1254 pub user_satisfaction_scores: HashMap<String, f64>,
1255 pub recommendations: Vec<String>,
1256}
1257
1258impl DecisionEngine {
1262 fn new() -> Self {
1263 Self {
1264 models: HashMap::new(),
1265 feature_pipeline: FeaturePipeline::default(),
1266 ensemble: ModelEnsemble::default(),
1267 rl_agent: ReinforcementLearningAgent::default(),
1268 online_learner: OnlineLearningSystem::default(),
1269 }
1270 }
1271}
1272
1273impl MultiObjectiveScheduler {
1274 fn new() -> Self {
1275 Self {
1276 objectives: Vec::new(),
1277 pareto_solutions: Vec::new(),
1278 nsga_optimizer: Some(NSGAOptimizer::default()),
1279 constraint_manager: Some(ConstraintManager::default()),
1280 solution_archive: Vec::new(),
1281 }
1282 }
1283}
1284
1285impl PredictiveSchedulingEngine {
1286 fn new() -> Self {
1287 Self {
1288 forecasting_models: HashMap::new(),
1289 demand_predictor: None,
1290 performance_predictor: None,
1291 anomaly_detector: AnomalyDetector::default(),
1292 capacity_planner: CapacityPlanner::default(),
1293 }
1294 }
1295}
1296
1297impl AdvancedCostOptimizer {
1298 fn new() -> Self {
1299 Self {
1300 pricing_models: HashMap::new(),
1301 budget_manager: BudgetManager::default(),
1302 cost_predictors: HashMap::new(),
1303 roi_optimizer: ROIOptimizer::default(),
1304 market_analyzer: MarketAnalyzer::default(),
1305 }
1306 }
1307}
1308
1309impl AdvancedEnergyOptimizer {
1310 fn new() -> Self {
1311 Self {
1312 energy_models: HashMap::new(),
1313 carbon_tracker: CarbonFootprintTracker::default(),
1314 renewable_scheduler: RenewableEnergyScheduler::default(),
1315 efficiency_optimizer: EnergyEfficiencyOptimizer::default(),
1316 green_metrics: GreenComputingMetrics::default(),
1317 }
1318 }
1319}
1320
1321impl AdvancedSLAManager {
1322 fn new() -> Self {
1323 Self {
1324 sla_configs: HashMap::new(),
1325 violation_predictor: ViolationPredictor::default(),
1326 mitigation_engine: MitigationStrategyEngine::default(),
1327 compliance_tracker: ComplianceTracker::default(),
1328 penalty_manager: PenaltyManager::default(),
1329 }
1330 }
1331}
1332
1333impl RealTimeAdaptationEngine {
1334 fn new() -> Self {
1335 Self {
1336 platform_monitor: PlatformMonitor::default(),
1337 load_balancer: LoadBalancingEngine::default(),
1338 auto_scaler: AutoScalingSystem::default(),
1339 circuit_migrator: CircuitMigrator::default(),
1340 emergency_responder: EmergencyResponseSystem::default(),
1341 }
1342 }
1343}
1344
1345impl FairnessEngine {
1346 fn new() -> Self {
1347 Self {
1348 game_scheduler: GameTheoreticScheduler::default(),
1349 allocation_fairness: AllocationFairnessManager::default(),
1350 behavior_analyzer: UserBehaviorAnalyzer::default(),
1351 incentive_designer: IncentiveMechanism::default(),
1352 welfare_optimizer: SocialWelfareOptimizer::default(),
1353 }
1354 }
1355}
1356
1357#[cfg(test)]
1375mod tests {
1376 use super::*;
1377
1378 #[tokio::test]
1379 async fn test_advanced_scheduler_creation() {
1380 let params = SchedulingParams::default();
1381 let scheduler = AdvancedQuantumScheduler::new(params);
1382 assert!(true); }
1386
1387 #[tokio::test]
1388 async fn test_intelligent_job_submission() {
1389 let params = SchedulingParams::default();
1390 let scheduler = AdvancedQuantumScheduler::new(params);
1391
1392 }
1395
1396 #[tokio::test]
1397 async fn test_multi_objective_optimization() {
1398 let params = SchedulingParams::default();
1399 let scheduler = AdvancedQuantumScheduler::new(params);
1400
1401 }
1404}