Module ml_optimization

Module ml_optimization 

Source
Expand description

ML-Driven Circuit Optimization and Hardware Prediction with SciRS2

This module provides comprehensive machine learning-driven circuit optimization and hardware performance prediction using SciRS2’s advanced ML capabilities, statistical analysis, and optimization algorithms for intelligent quantum computing.

Re-exports§

pub use fallback_scirs2::*;
pub use config::*;
pub use ensemble::*;
pub use features::*;
pub use hardware::*;
pub use monitoring::*;
pub use online_learning::*;
pub use optimization::*;
pub use training::*;
pub use transfer_learning::*;
pub use validation::*;

Modules§

config
ML Optimization Configuration Types
ensemble
Ensemble Learning Configuration Types
fallback_scirs2
Fallback implementations for SciRS2 functionality when the feature is not available
features
Feature Extraction Configuration Types
hardware
Hardware Prediction Configuration Types
monitoring
ML Monitoring Configuration Types
online_learning
Online Learning Configuration Types
optimization
Optimization Strategy Configuration Types
training
ML Training Configuration Types
transfer_learning
Transfer Learning Configuration Types
validation
ML Validation Configuration Types