1use scirs2_core::ndarray::{Array1, Array2, Array3};
4use std::collections::HashMap;
5use std::time::Duration;
6
7use super::{
8 config::{DDNoiseConfig, NoiseType},
9 performance::DDPerformanceAnalysis,
10 sequences::DDSequence,
11};
12use crate::DeviceResult;
13
14#[derive(Debug, Clone)]
16pub struct DDNoiseAnalysis {
17 pub noise_characterization: NoiseCharacterization,
19 pub spectral_analysis: Option<SpectralAnalysis>,
21 pub temporal_analysis: Option<TemporalAnalysis>,
23 pub spatial_analysis: Option<SpatialAnalysis>,
25 pub non_markovian_analysis: Option<NonMarkovianAnalysis>,
27 pub suppression_effectiveness: SuppressionEffectiveness,
29}
30
31#[derive(Debug, Clone)]
33pub struct NoiseCharacterization {
34 pub noise_types: HashMap<NoiseType, NoiseCharacteristics>,
36 pub dominant_sources: Vec<NoiseSource>,
38 pub environment_classification: NoiseEnvironmentClassification,
40 pub time_dependent_parameters: TimeDependentNoiseParameters,
42}
43
44#[derive(Debug, Clone)]
46pub struct NoiseCharacteristics {
47 pub strength: f64,
49 pub frequency_profile: FrequencyProfile,
51 pub temporal_profile: TemporalProfile,
53 pub spatial_profile: Option<SpatialProfile>,
55 pub statistical_properties: NoiseStatistics,
57}
58
59#[derive(Debug, Clone)]
61pub struct FrequencyProfile {
62 pub power_spectral_density: Array1<f64>,
64 pub frequency_bins: Array1<f64>,
66 pub dominant_frequencies: Vec<f64>,
68 pub spectral_shape: SpectralShape,
70}
71
72#[derive(Debug, Clone, PartialEq)]
74pub enum SpectralShape {
75 White,
77 Pink,
79 Red,
81 Blue,
83 Violet,
85 Custom,
87}
88
89#[derive(Debug, Clone)]
91pub struct TemporalProfile {
92 pub autocorrelation: Array1<f64>,
94 pub correlation_time: Duration,
96 pub non_gaussianity: NonGaussianityMeasures,
98 pub intermittency: IntermittencyCharacteristics,
100}
101
102#[derive(Debug, Clone)]
104pub struct NonGaussianityMeasures {
105 pub skewness: f64,
107 pub kurtosis: f64,
109 pub higher_cumulants: Array1<f64>,
111 pub non_gaussianity_index: f64,
113}
114
115#[derive(Debug, Clone)]
117pub struct IntermittencyCharacteristics {
118 pub burst_durations: Array1<f64>,
120 pub quiet_periods: Array1<f64>,
122 pub intermittency_factor: f64,
124 pub burst_intensity: Array1<f64>,
126}
127
128#[derive(Debug, Clone)]
130pub struct SpatialProfile {
131 pub spatial_correlation: Array2<f64>,
133 pub correlation_length: f64,
135 pub spatial_coherence: f64,
137 pub spatial_gradient: Array1<f64>,
139}
140
141#[derive(Debug, Clone)]
143pub struct NoiseStatistics {
144 pub mean: f64,
146 pub variance: f64,
148 pub distribution_type: NoiseDistribution,
150 pub distribution_parameters: Array1<f64>,
152 pub entropy_measures: EntropyMeasures,
154}
155
156#[derive(Debug, Clone, PartialEq)]
158pub enum NoiseDistribution {
159 Gaussian,
160 Uniform,
161 Exponential,
162 Gamma,
163 Beta,
164 LogNormal,
165 Levy,
166 StudentT,
167 Custom,
168}
169
170#[derive(Debug, Clone)]
172pub struct EntropyMeasures {
173 pub shannon_entropy: f64,
175 pub renyi_entropy: Array1<f64>,
177 pub tsallis_entropy: f64,
179 pub differential_entropy: f64,
181}
182
183#[derive(Debug, Clone)]
185pub struct NoiseSource {
186 pub source_type: NoiseSourceType,
188 pub strength: f64,
190 pub location: Option<NoiseSourceLocation>,
192 pub frequency_range: (f64, f64),
194 pub mitigation_strategies: Vec<String>,
196}
197
198#[derive(Debug, Clone, PartialEq)]
200pub enum NoiseSourceType {
201 ElectromagneticInterference,
203 ThermalFluctuations,
205 VoltageFluctuations,
207 MechanicalVibrations,
209 ControlSystemNoise,
211 QuantumShotNoise,
213 CrossTalk,
215 MeasurementBackAction,
217 Unknown,
219}
220
221#[derive(Debug, Clone)]
223pub struct NoiseSourceLocation {
224 pub coordinates: Array1<f64>,
226 pub affected_qubits: Vec<quantrs2_core::qubit::QubitId>,
228 pub propagation_pattern: PropagationPattern,
230}
231
232#[derive(Debug, Clone, PartialEq)]
234pub enum PropagationPattern {
235 Local,
236 Nearest,
237 Global,
238 Exponential,
239 PowerLaw,
240 Custom,
241}
242
243#[derive(Debug, Clone)]
245pub struct NoiseEnvironmentClassification {
246 pub environment_type: NoiseEnvironmentType,
248 pub complexity_score: f64,
250 pub predictability_score: f64,
252 pub stationarity: StationarityAssessment,
254}
255
256#[derive(Debug, Clone, PartialEq)]
258pub enum NoiseEnvironmentType {
259 SimpleMarkovian,
261 ComplexMarkovian,
263 NonMarkovian,
265 Hybrid,
267 Exotic,
269}
270
271#[derive(Debug, Clone)]
273pub struct StationarityAssessment {
274 pub is_stationary: bool,
276 pub confidence: f64,
278 pub non_stationary_components: Vec<NonStationaryComponent>,
280 pub trend_analysis: TrendAnalysis,
282}
283
284#[derive(Debug, Clone)]
286pub struct NonStationaryComponent {
287 pub component_type: NonStationaryType,
289 pub time_scale: Duration,
291 pub strength_variation: f64,
293 pub frequency_drift: f64,
295}
296
297#[derive(Debug, Clone, PartialEq)]
299pub enum NonStationaryType {
300 LinearTrend,
301 PeriodicModulation,
302 RandomWalk,
303 Switching,
304 Burst,
305 Drift,
306}
307
308#[derive(Debug, Clone)]
310pub struct TrendAnalysis {
311 pub linear_slope: f64,
313 pub trend_significance: f64,
315 pub cyclical_components: Vec<CyclicalComponent>,
317 pub change_points: Vec<ChangePoint>,
319}
320
321#[derive(Debug, Clone)]
323pub struct CyclicalComponent {
324 pub period: Duration,
326 pub amplitude: f64,
328 pub phase: f64,
330 pub confidence: f64,
332}
333
334#[derive(Debug, Clone)]
336pub struct ChangePoint {
337 pub time: Duration,
339 pub magnitude: f64,
341 pub change_type: ChangeType,
343 pub confidence: f64,
345}
346
347#[derive(Debug, Clone, PartialEq)]
349pub enum ChangeType {
350 MeanShift,
351 VarianceChange,
352 DistributionChange,
353 CorrelationChange,
354 FrequencyShift,
355}
356
357#[derive(Debug, Clone)]
359pub struct TimeDependentNoiseParameters {
360 pub parameter_evolution: HashMap<String, Array1<f64>>,
362 pub time_grid: Array1<f64>,
364 pub parameter_correlations: Array2<f64>,
366 pub prediction_model: Option<ParameterPredictionModel>,
368}
369
370#[derive(Debug, Clone)]
372pub struct ParameterPredictionModel {
373 pub model_type: PredictionModelType,
375 pub model_parameters: Array1<f64>,
377 pub accuracy: f64,
379 pub horizon: Duration,
381}
382
383#[derive(Debug, Clone, PartialEq)]
385pub enum PredictionModelType {
386 AutoRegressive,
387 MovingAverage,
388 ARIMA,
389 StateSpace,
390 NeuralNetwork,
391 GaussianProcess,
392}
393
394#[derive(Debug, Clone)]
396pub struct SpectralAnalysis {
397 pub psd_analysis: PSDAnalysis,
399 pub cross_spectral_analysis: CrossSpectralAnalysis,
401 pub coherence_analysis: CoherenceAnalysis,
403 pub spectral_features: SpectralFeatures,
405}
406
407#[derive(Debug, Clone)]
409pub struct PSDAnalysis {
410 pub psd_estimate: Array1<f64>,
412 pub frequency_bins: Array1<f64>,
414 pub confidence_intervals: Array2<f64>,
416 pub peaks: Vec<SpectralPeak>,
418}
419
420#[derive(Debug, Clone)]
422pub struct SpectralPeak {
423 pub frequency: f64,
425 pub power: f64,
427 pub width: f64,
429 pub significance: f64,
431}
432
433#[derive(Debug, Clone)]
435pub struct CrossSpectralAnalysis {
436 pub cross_psd: Array2<f64>,
438 pub phase_relationships: Array2<f64>,
440 pub frequency_coupling: Array2<f64>,
442 pub coherence_function: Array1<f64>,
444}
445
446#[derive(Debug, Clone)]
448pub struct CoherenceAnalysis {
449 pub coherence_matrix: Array2<f64>,
451 pub significant_coherences: Vec<(usize, usize, f64)>,
453 pub coherence_network: CoherenceNetwork,
455}
456
457#[derive(Debug, Clone)]
459pub struct CoherenceNetwork {
460 pub adjacency_matrix: Array2<f64>,
462 pub network_metrics: NetworkMetrics,
464 pub communities: Vec<Vec<usize>>,
466}
467
468#[derive(Debug, Clone)]
470pub struct NetworkMetrics {
471 pub clustering_coefficient: f64,
473 pub average_path_length: f64,
475 pub density: f64,
477 pub small_world_index: f64,
479}
480
481#[derive(Debug, Clone)]
483pub struct SpectralFeatures {
484 pub spectral_centroid: f64,
486 pub spectral_bandwidth: f64,
488 pub spectral_rolloff: f64,
490 pub spectral_flatness: f64,
492 pub spectral_entropy: f64,
494}
495
496#[derive(Debug, Clone)]
498pub struct TemporalAnalysis {
499 pub autocorrelation_analysis: AutocorrelationAnalysis,
501 pub memory_effects: MemoryEffects,
503 pub temporal_scaling: TemporalScaling,
505 pub burst_statistics: BurstStatistics,
507}
508
509#[derive(Debug, Clone)]
511pub struct AutocorrelationAnalysis {
512 pub autocorrelation_function: Array1<f64>,
514 pub time_lags: Array1<f64>,
516 pub decay_constants: Array1<f64>,
518 pub oscillatory_components: Vec<OscillatoryComponent>,
520}
521
522#[derive(Debug, Clone)]
524pub struct OscillatoryComponent {
525 pub frequency: f64,
527 pub amplitude: f64,
529 pub decay_rate: f64,
531 pub phase: f64,
533}
534
535#[derive(Debug, Clone)]
537pub struct MemoryEffects {
538 pub memory_kernel: Array1<f64>,
540 pub memory_time: Duration,
542 pub non_markovianity: f64,
544 pub information_backflow: Array1<f64>,
546}
547
548#[derive(Debug, Clone)]
550pub struct TemporalScaling {
551 pub hurst_exponent: f64,
553 pub scaling_exponents: Array1<f64>,
555 pub multifractal_spectrum: MultifractalSpectrum,
557 pub long_range_correlations: LongRangeCorrelations,
559}
560
561#[derive(Debug, Clone)]
563pub struct MultifractalSpectrum {
564 pub singularity_strengths: Array1<f64>,
566 pub fractal_dimensions: Array1<f64>,
568 pub multifractality_parameter: f64,
570}
571
572#[derive(Debug, Clone)]
574pub struct LongRangeCorrelations {
575 pub correlation_exponent: f64,
577 pub correlation_length: f64,
579 pub power_law_range: (f64, f64),
581 pub crossover_scales: Array1<f64>,
583}
584
585#[derive(Debug, Clone)]
587pub struct BurstStatistics {
588 pub burst_size_distribution: Array1<f64>,
590 pub burst_duration_distribution: Array1<f64>,
592 pub inter_burst_intervals: Array1<f64>,
594 pub burstiness_parameter: f64,
596}
597
598#[derive(Debug, Clone)]
600pub struct SpatialAnalysis {
601 pub spatial_correlations: SpatialCorrelations,
603 pub spatial_coherence: SpatialCoherence,
605 pub spatial_patterns: SpatialPatterns,
607 pub propagation_analysis: PropagationAnalysis,
609}
610
611#[derive(Debug, Clone)]
613pub struct SpatialCorrelations {
614 pub correlationmatrix: Array2<f64>,
616 pub correlation_functions: Array2<f64>,
618 pub distance_matrix: Array2<f64>,
620 pub length_scales: Array1<f64>,
622}
623
624#[derive(Debug, Clone)]
626pub struct SpatialCoherence {
627 pub coherence_matrix: Array2<f64>,
629 pub coherence_length: f64,
631 pub coherence_anisotropy: f64,
633 pub principal_directions: Array2<f64>,
635}
636
637#[derive(Debug, Clone)]
639pub struct SpatialPatterns {
640 pub pattern_types: Vec<SpatialPatternType>,
642 pub pattern_strength: Array1<f64>,
644 pub pattern_wavelengths: Array1<f64>,
646 pub pattern_orientations: Array1<f64>,
648}
649
650#[derive(Debug, Clone, PartialEq)]
652pub enum SpatialPatternType {
653 Uniform,
654 Gradient,
655 Periodic,
656 Random,
657 Clustered,
658 Striped,
659 Spiral,
660 Fractal,
661}
662
663#[derive(Debug, Clone)]
665pub struct PropagationAnalysis {
666 pub propagation_speed: f64,
668 pub propagation_direction: Array1<f64>,
670 pub dispersion_relation: DispersionRelation,
672 pub attenuation: AttenuationCharacteristics,
674}
675
676#[derive(Debug, Clone)]
678pub struct DispersionRelation {
679 pub frequency_wavevector: Array2<f64>,
681 pub group_velocity: f64,
683 pub phase_velocity: f64,
685 pub dispersion_parameter: f64,
687}
688
689#[derive(Debug, Clone)]
691pub struct AttenuationCharacteristics {
692 pub attenuation_coefficient: f64,
694 pub penetration_depth: f64,
696 pub attenuation_anisotropy: f64,
698 pub frequency_dependence: Array1<f64>,
700}
701
702#[derive(Debug, Clone)]
704pub struct NonMarkovianAnalysis {
705 pub non_markovianity_measures: NonMarkovianityMeasures,
707 pub memory_characterization: MemoryCharacterization,
709 pub information_flow: InformationFlowAnalysis,
711 pub non_markovian_models: Vec<NonMarkovianModel>,
713}
714
715#[derive(Debug, Clone)]
717pub struct NonMarkovianityMeasures {
718 pub blp_measure: f64,
720 pub rhp_measure: f64,
722 pub lli_measure: f64,
724 pub trace_distance_measure: f64,
726 pub volume_measure: f64,
728}
729
730#[derive(Debug, Clone)]
732pub struct MemoryCharacterization {
733 pub memory_kernel: Array1<f64>,
735 pub memory_depth: Duration,
737 pub memory_strength: f64,
739 pub memory_type: MemoryType,
741}
742
743#[derive(Debug, Clone, PartialEq)]
745pub enum MemoryType {
746 ShortTerm,
747 LongTerm,
748 Infinite,
749 Oscillatory,
750 Algebraic,
751 Exponential,
752}
753
754#[derive(Debug, Clone)]
756pub struct InformationFlowAnalysis {
757 pub information_backflow: Array1<f64>,
759 pub transfer_entropy: f64,
761 pub mutual_information: f64,
763 pub causal_relationships: CausalRelationships,
765}
766
767#[derive(Debug, Clone)]
769pub struct CausalRelationships {
770 pub causal_network: Array2<f64>,
772 pub causal_strength: Array2<f64>,
774 pub causal_delays: Array2<f64>,
776 pub feedback_loops: Vec<FeedbackLoop>,
778}
779
780#[derive(Debug, Clone)]
782pub struct FeedbackLoop {
783 pub nodes: Vec<usize>,
785 pub strength: f64,
787 pub delay: Duration,
789 pub stability: f64,
791}
792
793#[derive(Debug, Clone)]
795pub struct NonMarkovianModel {
796 pub model_type: NonMarkovianModelType,
798 pub parameters: Array1<f64>,
800 pub accuracy: f64,
802 pub predictive_power: f64,
804}
805
806#[derive(Debug, Clone, PartialEq)]
808pub enum NonMarkovianModelType {
809 GeneralizedLangevin,
810 FractionalBrownian,
811 MemoryKernel,
812 StochasticDelay,
813 HierarchicalEquations,
814}
815
816#[derive(Debug, Clone)]
818pub struct SuppressionEffectiveness {
819 pub suppression_by_type: HashMap<NoiseType, f64>,
821 pub overall_suppression: f64,
823 pub frequency_suppression: Array1<f64>,
825 pub temporal_suppression: Array1<f64>,
827 pub suppression_mechanisms: Vec<SuppressionMechanism>,
829}
830
831#[derive(Debug, Clone)]
833pub struct SuppressionMechanism {
834 pub mechanism_type: SuppressionMechanismType,
836 pub effectiveness: f64,
838 pub target_noise_types: Vec<NoiseType>,
840 pub frequency_range: (f64, f64),
842}
843
844#[derive(Debug, Clone, PartialEq)]
846pub enum SuppressionMechanismType {
847 Averaging,
848 Decoupling,
849 Refocusing,
850 Cancellation,
851 Filtering,
852 Coherence,
853}
854
855pub struct DDNoiseAnalyzer {
857 pub config: DDNoiseConfig,
858}
859
860impl DDNoiseAnalyzer {
861 pub fn new(config: DDNoiseConfig) -> Self {
863 Self { config }
864 }
865
866 pub fn analyze_noise_characteristics(
868 &self,
869 sequence: &DDSequence,
870 performance_analysis: &DDPerformanceAnalysis,
871 ) -> DeviceResult<DDNoiseAnalysis> {
872 println!("Starting DD noise analysis");
873
874 let noise_characterization = self.characterize_noise(sequence, performance_analysis)?;
875
876 let spectral_analysis = if self.config.spectral_analysis {
877 Some(self.perform_spectral_analysis(sequence)?)
878 } else {
879 None
880 };
881
882 let temporal_analysis = if self.config.temporal_correlation {
883 Some(self.perform_temporal_analysis(sequence)?)
884 } else {
885 None
886 };
887
888 let spatial_analysis = if self.config.spatial_correlation {
889 Some(self.perform_spatial_analysis(sequence)?)
890 } else {
891 None
892 };
893
894 let non_markovian_analysis = if self.config.non_markovian_modeling {
895 Some(self.perform_non_markovian_analysis(sequence)?)
896 } else {
897 None
898 };
899
900 let suppression_effectiveness = self.analyze_suppression_effectiveness(sequence)?;
901
902 Ok(DDNoiseAnalysis {
903 noise_characterization,
904 spectral_analysis,
905 temporal_analysis,
906 spatial_analysis,
907 non_markovian_analysis,
908 suppression_effectiveness,
909 })
910 }
911
912 fn characterize_noise(
914 &self,
915 sequence: &DDSequence,
916 _performance_analysis: &DDPerformanceAnalysis,
917 ) -> DeviceResult<NoiseCharacterization> {
918 let mut noise_types = HashMap::new();
920
921 for noise_type in &self.config.noise_types {
922 let characteristics = NoiseCharacteristics {
923 strength: 0.1, frequency_profile: FrequencyProfile {
925 power_spectral_density: Array1::zeros(100),
926 frequency_bins: Array1::zeros(100),
927 dominant_frequencies: vec![1e6, 10e6],
928 spectral_shape: SpectralShape::Pink,
929 },
930 temporal_profile: TemporalProfile {
931 autocorrelation: Array1::zeros(100),
932 correlation_time: Duration::from_micros(1),
933 non_gaussianity: NonGaussianityMeasures {
934 skewness: 0.1,
935 kurtosis: 3.2,
936 higher_cumulants: Array1::zeros(5),
937 non_gaussianity_index: 0.05,
938 },
939 intermittency: IntermittencyCharacteristics {
940 burst_durations: Array1::zeros(50),
941 quiet_periods: Array1::zeros(50),
942 intermittency_factor: 0.3,
943 burst_intensity: Array1::zeros(50),
944 },
945 },
946 spatial_profile: None,
947 statistical_properties: NoiseStatistics {
948 mean: 0.0,
949 variance: 0.01,
950 distribution_type: NoiseDistribution::Gaussian,
951 distribution_parameters: Array1::from_vec(vec![0.0, 0.1]),
952 entropy_measures: EntropyMeasures {
953 shannon_entropy: 2.5,
954 renyi_entropy: Array1::from_vec(vec![2.3, 2.5, 2.7]),
955 tsallis_entropy: 2.4,
956 differential_entropy: 1.8,
957 },
958 },
959 };
960 noise_types.insert(noise_type.clone(), characteristics);
961 }
962
963 Ok(NoiseCharacterization {
964 noise_types,
965 dominant_sources: vec![NoiseSource {
966 source_type: NoiseSourceType::ThermalFluctuations,
967 strength: 0.05,
968 location: None,
969 frequency_range: (1e3, 1e9),
970 mitigation_strategies: vec!["Temperature control".to_string()],
971 }],
972 environment_classification: NoiseEnvironmentClassification {
973 environment_type: NoiseEnvironmentType::ComplexMarkovian,
974 complexity_score: 0.6,
975 predictability_score: 0.7,
976 stationarity: StationarityAssessment {
977 is_stationary: true,
978 confidence: 0.85,
979 non_stationary_components: Vec::new(),
980 trend_analysis: TrendAnalysis {
981 linear_slope: 0.001,
982 trend_significance: 0.1,
983 cyclical_components: Vec::new(),
984 change_points: Vec::new(),
985 },
986 },
987 },
988 time_dependent_parameters: TimeDependentNoiseParameters {
989 parameter_evolution: HashMap::new(),
990 time_grid: Array1::zeros(100),
991 parameter_correlations: Array2::eye(3),
992 prediction_model: None,
993 },
994 })
995 }
996
997 fn perform_spectral_analysis(&self, _sequence: &DDSequence) -> DeviceResult<SpectralAnalysis> {
999 Ok(SpectralAnalysis {
1000 psd_analysis: PSDAnalysis {
1001 psd_estimate: Array1::zeros(100),
1002 frequency_bins: Array1::zeros(100),
1003 confidence_intervals: Array2::zeros((100, 2)),
1004 peaks: Vec::new(),
1005 },
1006 cross_spectral_analysis: CrossSpectralAnalysis {
1007 cross_psd: Array2::zeros((100, 100)),
1008 phase_relationships: Array2::zeros((100, 100)),
1009 frequency_coupling: Array2::zeros((100, 100)),
1010 coherence_function: Array1::zeros(100),
1011 },
1012 coherence_analysis: CoherenceAnalysis {
1013 coherence_matrix: Array2::eye(10),
1014 significant_coherences: Vec::new(),
1015 coherence_network: CoherenceNetwork {
1016 adjacency_matrix: Array2::eye(10),
1017 network_metrics: NetworkMetrics {
1018 clustering_coefficient: 0.3,
1019 average_path_length: 2.5,
1020 density: 0.2,
1021 small_world_index: 1.2,
1022 },
1023 communities: Vec::new(),
1024 },
1025 },
1026 spectral_features: SpectralFeatures {
1027 spectral_centroid: 1e6,
1028 spectral_bandwidth: 0.5e6,
1029 spectral_rolloff: 0.85,
1030 spectral_flatness: 0.3,
1031 spectral_entropy: 3.2,
1032 },
1033 })
1034 }
1035
1036 fn perform_temporal_analysis(&self, _sequence: &DDSequence) -> DeviceResult<TemporalAnalysis> {
1038 Ok(TemporalAnalysis {
1039 autocorrelation_analysis: AutocorrelationAnalysis {
1040 autocorrelation_function: Array1::zeros(100),
1041 time_lags: Array1::zeros(100),
1042 decay_constants: Array1::from_vec(vec![1e-6, 10e-6]),
1043 oscillatory_components: Vec::new(),
1044 },
1045 memory_effects: MemoryEffects {
1046 memory_kernel: Array1::zeros(100),
1047 memory_time: Duration::from_micros(1),
1048 non_markovianity: 0.2,
1049 information_backflow: Array1::zeros(100),
1050 },
1051 temporal_scaling: TemporalScaling {
1052 hurst_exponent: 0.55,
1053 scaling_exponents: Array1::from_vec(vec![0.5, 0.6, 0.7]),
1054 multifractal_spectrum: MultifractalSpectrum {
1055 singularity_strengths: Array1::zeros(20),
1056 fractal_dimensions: Array1::zeros(20),
1057 multifractality_parameter: 0.1,
1058 },
1059 long_range_correlations: LongRangeCorrelations {
1060 correlation_exponent: 0.8,
1061 correlation_length: 1e-5,
1062 power_law_range: (1e-9, 1e-6),
1063 crossover_scales: Array1::from_vec(vec![1e-8, 1e-7]),
1064 },
1065 },
1066 burst_statistics: BurstStatistics {
1067 burst_size_distribution: Array1::zeros(50),
1068 burst_duration_distribution: Array1::zeros(50),
1069 inter_burst_intervals: Array1::zeros(50),
1070 burstiness_parameter: 0.4,
1071 },
1072 })
1073 }
1074
1075 fn perform_spatial_analysis(&self, _sequence: &DDSequence) -> DeviceResult<SpatialAnalysis> {
1077 let n_qubits = 10; Ok(SpatialAnalysis {
1080 spatial_correlations: SpatialCorrelations {
1081 correlationmatrix: Array2::eye(n_qubits),
1082 correlation_functions: Array2::zeros((n_qubits, 100)),
1083 distance_matrix: Array2::zeros((n_qubits, n_qubits)),
1084 length_scales: Array1::from_vec(vec![1e-3, 5e-3, 1e-2]),
1085 },
1086 spatial_coherence: SpatialCoherence {
1087 coherence_matrix: Array2::eye(n_qubits),
1088 coherence_length: 2e-3,
1089 coherence_anisotropy: 0.1,
1090 principal_directions: Array2::eye(3),
1091 },
1092 spatial_patterns: SpatialPatterns {
1093 pattern_types: vec![SpatialPatternType::Random, SpatialPatternType::Clustered],
1094 pattern_strength: Array1::from_vec(vec![0.3, 0.5]),
1095 pattern_wavelengths: Array1::from_vec(vec![1e-3, 2e-3]),
1096 pattern_orientations: Array1::from_vec(vec![0.0, 1.57]),
1097 },
1098 propagation_analysis: PropagationAnalysis {
1099 propagation_speed: 1e8,
1100 propagation_direction: Array1::from_vec(vec![1.0, 0.0, 0.0]),
1101 dispersion_relation: DispersionRelation {
1102 frequency_wavevector: Array2::zeros((100, 2)),
1103 group_velocity: 0.8e8,
1104 phase_velocity: 1e8,
1105 dispersion_parameter: 0.1,
1106 },
1107 attenuation: AttenuationCharacteristics {
1108 attenuation_coefficient: 0.01,
1109 penetration_depth: 1e-2,
1110 attenuation_anisotropy: 0.05,
1111 frequency_dependence: Array1::zeros(100),
1112 },
1113 },
1114 })
1115 }
1116
1117 fn perform_non_markovian_analysis(
1119 &self,
1120 _sequence: &DDSequence,
1121 ) -> DeviceResult<NonMarkovianAnalysis> {
1122 Ok(NonMarkovianAnalysis {
1123 non_markovianity_measures: NonMarkovianityMeasures {
1124 blp_measure: 0.15,
1125 rhp_measure: 0.12,
1126 lli_measure: 0.18,
1127 trace_distance_measure: 0.14,
1128 volume_measure: 0.16,
1129 },
1130 memory_characterization: MemoryCharacterization {
1131 memory_kernel: Array1::zeros(100),
1132 memory_depth: Duration::from_micros(5),
1133 memory_strength: 0.3,
1134 memory_type: MemoryType::Exponential,
1135 },
1136 information_flow: InformationFlowAnalysis {
1137 information_backflow: Array1::zeros(100),
1138 transfer_entropy: 0.25,
1139 mutual_information: 0.8,
1140 causal_relationships: CausalRelationships {
1141 causal_network: Array2::zeros((10, 10)),
1142 causal_strength: Array2::zeros((10, 10)),
1143 causal_delays: Array2::zeros((10, 10)),
1144 feedback_loops: Vec::new(),
1145 },
1146 },
1147 non_markovian_models: vec![NonMarkovianModel {
1148 model_type: NonMarkovianModelType::GeneralizedLangevin,
1149 parameters: Array1::from_vec(vec![0.1, 0.5, 1.0]),
1150 accuracy: 0.85,
1151 predictive_power: 0.75,
1152 }],
1153 })
1154 }
1155
1156 fn analyze_suppression_effectiveness(
1158 &self,
1159 sequence: &DDSequence,
1160 ) -> DeviceResult<SuppressionEffectiveness> {
1161 let suppression_by_type = sequence.properties.noise_suppression.clone();
1162
1163 let overall_suppression =
1164 suppression_by_type.values().sum::<f64>() / suppression_by_type.len() as f64;
1165
1166 Ok(SuppressionEffectiveness {
1167 suppression_by_type,
1168 overall_suppression,
1169 frequency_suppression: Array1::zeros(100),
1170 temporal_suppression: Array1::zeros(100),
1171 suppression_mechanisms: vec![
1172 SuppressionMechanism {
1173 mechanism_type: SuppressionMechanismType::Decoupling,
1174 effectiveness: 0.8,
1175 target_noise_types: vec![NoiseType::PhaseDamping],
1176 frequency_range: (1e3, 1e9),
1177 },
1178 SuppressionMechanism {
1179 mechanism_type: SuppressionMechanismType::Refocusing,
1180 effectiveness: 0.6,
1181 target_noise_types: vec![NoiseType::AmplitudeDamping],
1182 frequency_range: (1e6, 1e8),
1183 },
1184 ],
1185 })
1186 }
1187}