quantrs2_core/
tensor_network.rs

1//! Tensor Network representations for quantum circuits
2//!
3//! This module provides tensor network representations and operations for quantum circuits,
4//! leveraging SciRS2 for efficient tensor manipulations and contractions.
5
6use crate::{
7    error::{QuantRS2Error, QuantRS2Result},
8    gate::GateOp,
9    register::Register,
10};
11use ndarray::{Array, Array2, ArrayD, IxDyn};
12use num_complex::Complex;
13use scirs2_linalg::svd;
14use std::collections::{HashMap, HashSet};
15
16/// Type alias for complex numbers
17type Complex64 = Complex<f64>;
18
19/// A tensor in the network
20#[derive(Debug, Clone)]
21pub struct Tensor {
22    /// Unique identifier for the tensor
23    pub id: usize,
24    /// The tensor data
25    pub data: ArrayD<Complex64>,
26    /// Labels for each index of the tensor
27    pub indices: Vec<String>,
28    /// Shape of the tensor
29    pub shape: Vec<usize>,
30}
31
32impl Tensor {
33    /// Create a new tensor
34    pub fn new(id: usize, data: ArrayD<Complex64>, indices: Vec<String>) -> Self {
35        let shape = data.shape().to_vec();
36        Self {
37            id,
38            data,
39            indices,
40            shape,
41        }
42    }
43
44    /// Create a tensor from a 2D array (matrix)
45    pub fn from_matrix(
46        id: usize,
47        matrix: Array2<Complex64>,
48        in_idx: String,
49        out_idx: String,
50    ) -> Self {
51        let shape = matrix.shape().to_vec();
52        let data = matrix.into_dyn();
53        Self {
54            id,
55            data,
56            indices: vec![in_idx, out_idx],
57            shape,
58        }
59    }
60
61    /// Create a qubit tensor in |0⟩ state
62    pub fn qubit_zero(id: usize, idx: String) -> Self {
63        let mut data = Array::zeros(IxDyn(&[2]));
64        data[[0]] = Complex64::new(1.0, 0.0);
65        Self {
66            id,
67            data,
68            indices: vec![idx],
69            shape: vec![2],
70        }
71    }
72
73    /// Create a qubit tensor in |1⟩ state
74    pub fn qubit_one(id: usize, idx: String) -> Self {
75        let mut data = Array::zeros(IxDyn(&[2]));
76        data[[1]] = Complex64::new(1.0, 0.0);
77        Self {
78            id,
79            data,
80            indices: vec![idx],
81            shape: vec![2],
82        }
83    }
84
85    /// Create a tensor from an ndarray with specified indices
86    pub fn from_array<D>(
87        array: ndarray::ArrayBase<ndarray::OwnedRepr<Complex64>, D>,
88        indices: Vec<usize>,
89    ) -> Self
90    where
91        D: ndarray::Dimension,
92    {
93        let shape = array.shape().to_vec();
94        let data = array.into_dyn();
95        let index_labels: Vec<String> = indices.iter().map(|i| format!("idx_{}", i)).collect();
96        Self {
97            id: 0, // Default ID
98            data,
99            indices: index_labels,
100            shape,
101        }
102    }
103
104    /// Get the rank (number of indices) of the tensor
105    pub fn rank(&self) -> usize {
106        self.indices.len()
107    }
108
109    /// Get a reference to the tensor data
110    pub fn tensor(&self) -> &ArrayD<Complex64> {
111        &self.data
112    }
113
114    /// Get the number of dimensions
115    pub fn ndim(&self) -> usize {
116        self.data.ndim()
117    }
118
119    /// Contract this tensor with another over specified indices
120    pub fn contract(
121        &self,
122        other: &Tensor,
123        self_idx: &str,
124        other_idx: &str,
125    ) -> QuantRS2Result<Tensor> {
126        // Find the positions of the indices to contract
127        let self_pos = self
128            .indices
129            .iter()
130            .position(|s| s == self_idx)
131            .ok_or_else(|| {
132                QuantRS2Error::InvalidInput(format!("Index {} not found in tensor", self_idx))
133            })?;
134        let other_pos = other
135            .indices
136            .iter()
137            .position(|s| s == other_idx)
138            .ok_or_else(|| {
139                QuantRS2Error::InvalidInput(format!("Index {} not found in tensor", other_idx))
140            })?;
141
142        // Check dimensions match
143        if self.shape[self_pos] != other.shape[other_pos] {
144            return Err(QuantRS2Error::InvalidInput(format!(
145                "Cannot contract indices with different dimensions: {} vs {}",
146                self.shape[self_pos], other.shape[other_pos]
147            )));
148        }
149
150        // Perform tensor contraction using einsum-like operation
151        let contracted = self.contract_indices(&other, self_pos, other_pos)?;
152
153        // Build new index list
154        let mut new_indices = Vec::new();
155        for (i, idx) in self.indices.iter().enumerate() {
156            if i != self_pos {
157                new_indices.push(idx.clone());
158            }
159        }
160        for (i, idx) in other.indices.iter().enumerate() {
161            if i != other_pos {
162                new_indices.push(idx.clone());
163            }
164        }
165
166        Ok(Tensor::new(
167            self.id.max(other.id) + 1,
168            contracted,
169            new_indices,
170        ))
171    }
172
173    /// Perform the actual index contraction
174    fn contract_indices(
175        &self,
176        other: &Tensor,
177        self_idx: usize,
178        other_idx: usize,
179    ) -> QuantRS2Result<ArrayD<Complex64>> {
180        // Reshape tensors for matrix multiplication
181        let self_shape = self.data.shape();
182        let other_shape = other.data.shape();
183
184        // Calculate dimensions for reshaping
185        let mut self_left_dims = 1;
186        let mut self_right_dims = 1;
187        for i in 0..self_idx {
188            self_left_dims *= self_shape[i];
189        }
190        for i in (self_idx + 1)..self_shape.len() {
191            self_right_dims *= self_shape[i];
192        }
193
194        let mut other_left_dims = 1;
195        let mut other_right_dims = 1;
196        for i in 0..other_idx {
197            other_left_dims *= other_shape[i];
198        }
199        for i in (other_idx + 1)..other_shape.len() {
200            other_right_dims *= other_shape[i];
201        }
202
203        let contract_dim = self_shape[self_idx];
204
205        // Reshape to matrices
206        let self_mat = self
207            .data
208            .view()
209            .into_shape_with_order((self_left_dims, contract_dim * self_right_dims))
210            .map_err(|e| QuantRS2Error::InvalidInput(format!("Shape error: {}", e)))?
211            .to_owned();
212        let other_mat = other
213            .data
214            .view()
215            .into_shape_with_order((other_left_dims * contract_dim, other_right_dims))
216            .map_err(|e| QuantRS2Error::InvalidInput(format!("Shape error: {}", e)))?
217            .to_owned();
218
219        // Perform contraction via matrix multiplication
220        let _result_mat: Array2<Complex64> = Array2::zeros((
221            self_left_dims * self_right_dims,
222            other_left_dims * other_right_dims,
223        ));
224
225        // This is a simplified contraction - a full implementation would be more efficient
226        let mut result_vec = Vec::new();
227        for i in 0..self_left_dims {
228            for j in 0..self_right_dims {
229                for k in 0..other_left_dims {
230                    for l in 0..other_right_dims {
231                        let mut sum = Complex64::new(0.0, 0.0);
232                        for c in 0..contract_dim {
233                            let _self_idx =
234                                i * contract_dim * self_right_dims + c * self_right_dims + j;
235                            let _other_idx =
236                                k * contract_dim * other_right_dims + c * other_right_dims + l;
237                            sum += self_mat[[i, c * self_right_dims + j]]
238                                * other_mat[[k * contract_dim + c, l]];
239                        }
240                        result_vec.push(sum);
241                    }
242                }
243            }
244        }
245
246        // Build result shape
247        let mut result_shape = Vec::new();
248        for i in 0..self_idx {
249            result_shape.push(self_shape[i]);
250        }
251        for i in (self_idx + 1)..self_shape.len() {
252            result_shape.push(self_shape[i]);
253        }
254        for i in 0..other_idx {
255            result_shape.push(other_shape[i]);
256        }
257        for i in (other_idx + 1)..other_shape.len() {
258            result_shape.push(other_shape[i]);
259        }
260
261        ArrayD::from_shape_vec(IxDyn(&result_shape), result_vec)
262            .map_err(|e| QuantRS2Error::InvalidInput(format!("Shape error: {}", e)))
263    }
264
265    /// Apply SVD decomposition to split tensor along specified index
266    pub fn svd_decompose(
267        &self,
268        idx: usize,
269        max_rank: Option<usize>,
270    ) -> QuantRS2Result<(Tensor, Tensor)> {
271        if idx >= self.rank() {
272            return Err(QuantRS2Error::InvalidInput(format!(
273                "Index {} out of bounds for tensor with rank {}",
274                idx,
275                self.rank()
276            )));
277        }
278
279        // Reshape tensor into matrix
280        let shape = self.data.shape();
281        let mut left_dim = 1;
282        let mut right_dim = 1;
283
284        for i in 0..=idx {
285            left_dim *= shape[i];
286        }
287        for i in (idx + 1)..shape.len() {
288            right_dim *= shape[i];
289        }
290
291        // Convert to matrix
292        let matrix = self
293            .data
294            .view()
295            .into_shape_with_order((left_dim, right_dim))
296            .map_err(|e| QuantRS2Error::InvalidInput(format!("Shape error: {}", e)))?
297            .to_owned();
298
299        // Perform SVD using SciRS2
300        let real_matrix = matrix.mapv(|c| c.re);
301        let (u, s, vt) = svd(&real_matrix.view(), false)
302            .map_err(|e| QuantRS2Error::ComputationError(format!("SVD failed: {:?}", e)))?;
303
304        // Determine rank to keep
305        let rank = if let Some(max_r) = max_rank {
306            max_r.min(s.len())
307        } else {
308            s.len()
309        };
310
311        // Truncate based on rank
312        let u_trunc = u.slice(ndarray::s![.., ..rank]).to_owned();
313        let s_trunc = s.slice(ndarray::s![..rank]).to_owned();
314        let vt_trunc = vt.slice(ndarray::s![..rank, ..]).to_owned();
315
316        // Create S matrix
317        let mut s_mat = Array2::zeros((rank, rank));
318        for i in 0..rank {
319            s_mat[[i, i]] = Complex64::new(s_trunc[i].sqrt(), 0.0);
320        }
321
322        // Multiply U * sqrt(S) and sqrt(S) * V^T
323        let left_data = u_trunc.mapv(|x| Complex64::new(x, 0.0)).dot(&s_mat);
324        let right_data = s_mat.dot(&vt_trunc.mapv(|x| Complex64::new(x, 0.0)));
325
326        // Create new tensors with appropriate shapes and indices
327        let mut left_indices = self.indices[..=idx].to_vec();
328        left_indices.push(format!("bond_{}", self.id));
329
330        let mut right_indices = vec![format!("bond_{}", self.id)];
331        right_indices.extend_from_slice(&self.indices[(idx + 1)..]);
332
333        let left_tensor = Tensor::new(self.id * 2, left_data.into_dyn(), left_indices);
334
335        let right_tensor = Tensor::new(self.id * 2 + 1, right_data.into_dyn(), right_indices);
336
337        Ok((left_tensor, right_tensor))
338    }
339}
340
341/// Edge in the tensor network
342#[derive(Debug, Clone, PartialEq, Eq, Hash)]
343pub struct TensorEdge {
344    /// First tensor ID
345    pub tensor1: usize,
346    /// Index on first tensor
347    pub index1: String,
348    /// Second tensor ID
349    pub tensor2: usize,
350    /// Index on second tensor
351    pub index2: String,
352}
353
354/// Tensor network representation
355#[derive(Debug)]
356pub struct TensorNetwork {
357    /// Tensors in the network
358    pub tensors: HashMap<usize, Tensor>,
359    /// Edges connecting tensors
360    pub edges: Vec<TensorEdge>,
361    /// Open indices (not connected to other tensors)
362    pub open_indices: HashMap<usize, Vec<String>>,
363    /// Next available tensor ID
364    next_id: usize,
365}
366
367impl TensorNetwork {
368    /// Create a new empty tensor network
369    pub fn new() -> Self {
370        Self {
371            tensors: HashMap::new(),
372            edges: Vec::new(),
373            open_indices: HashMap::new(),
374            next_id: 0,
375        }
376    }
377
378    /// Add a tensor to the network
379    pub fn add_tensor(&mut self, tensor: Tensor) -> usize {
380        let id = tensor.id;
381        self.open_indices.insert(id, tensor.indices.clone());
382        self.tensors.insert(id, tensor);
383        self.next_id = self.next_id.max(id + 1);
384        id
385    }
386
387    /// Connect two tensor indices
388    pub fn connect(
389        &mut self,
390        tensor1: usize,
391        index1: String,
392        tensor2: usize,
393        index2: String,
394    ) -> QuantRS2Result<()> {
395        // Verify tensors exist
396        if !self.tensors.contains_key(&tensor1) {
397            return Err(QuantRS2Error::InvalidInput(format!(
398                "Tensor {} not found",
399                tensor1
400            )));
401        }
402        if !self.tensors.contains_key(&tensor2) {
403            return Err(QuantRS2Error::InvalidInput(format!(
404                "Tensor {} not found",
405                tensor2
406            )));
407        }
408
409        // Verify indices exist and match dimensions
410        let t1 = &self.tensors[&tensor1];
411        let t2 = &self.tensors[&tensor2];
412
413        let idx1_pos = t1
414            .indices
415            .iter()
416            .position(|s| s == &index1)
417            .ok_or_else(|| {
418                QuantRS2Error::InvalidInput(format!(
419                    "Index {} not found in tensor {}",
420                    index1, tensor1
421                ))
422            })?;
423        let idx2_pos = t2
424            .indices
425            .iter()
426            .position(|s| s == &index2)
427            .ok_or_else(|| {
428                QuantRS2Error::InvalidInput(format!(
429                    "Index {} not found in tensor {}",
430                    index2, tensor2
431                ))
432            })?;
433
434        if t1.shape[idx1_pos] != t2.shape[idx2_pos] {
435            return Err(QuantRS2Error::InvalidInput(format!(
436                "Connected indices must have same dimension: {} vs {}",
437                t1.shape[idx1_pos], t2.shape[idx2_pos]
438            )));
439        }
440
441        // Add edge
442        self.edges.push(TensorEdge {
443            tensor1,
444            index1: index1.clone(),
445            tensor2,
446            index2: index2.clone(),
447        });
448
449        // Remove from open indices
450        if let Some(indices) = self.open_indices.get_mut(&tensor1) {
451            indices.retain(|s| s != &index1);
452        }
453        if let Some(indices) = self.open_indices.get_mut(&tensor2) {
454            indices.retain(|s| s != &index2);
455        }
456
457        Ok(())
458    }
459
460    /// Find optimal contraction order using greedy algorithm
461    pub fn find_contraction_order(&self) -> Vec<(usize, usize)> {
462        // Simple greedy algorithm: contract pairs that minimize intermediate tensor size
463        let mut remaining_tensors: HashSet<_> = self.tensors.keys().cloned().collect();
464        let mut order = Vec::new();
465
466        // Build adjacency list
467        let mut adjacency: HashMap<usize, Vec<usize>> = HashMap::new();
468        for edge in &self.edges {
469            adjacency
470                .entry(edge.tensor1)
471                .or_insert_with(Vec::new)
472                .push(edge.tensor2);
473            adjacency
474                .entry(edge.tensor2)
475                .or_insert_with(Vec::new)
476                .push(edge.tensor1);
477        }
478
479        while remaining_tensors.len() > 1 {
480            let mut best_pair = None;
481            let mut min_cost = usize::MAX;
482
483            // Consider all pairs of connected tensors
484            for &t1 in &remaining_tensors {
485                if let Some(neighbors) = adjacency.get(&t1) {
486                    for &t2 in neighbors {
487                        if t2 > t1 && remaining_tensors.contains(&t2) {
488                            // Estimate cost as product of remaining dimensions
489                            let cost = self.estimate_contraction_cost(t1, t2);
490                            if cost < min_cost {
491                                min_cost = cost;
492                                best_pair = Some((t1, t2));
493                            }
494                        }
495                    }
496                }
497            }
498
499            if let Some((t1, t2)) = best_pair {
500                order.push((t1, t2));
501                remaining_tensors.remove(&t1);
502                remaining_tensors.remove(&t2);
503
504                // Add a virtual tensor representing the contraction result
505                let virtual_id = self.next_id + order.len();
506                remaining_tensors.insert(virtual_id);
507
508                // Update adjacency for virtual tensor
509                let mut virtual_neighbors = HashSet::new();
510                if let Some(n1) = adjacency.get(&t1) {
511                    virtual_neighbors.extend(
512                        n1.iter()
513                            .filter(|&&n| n != t2 && remaining_tensors.contains(&n)),
514                    );
515                }
516                if let Some(n2) = adjacency.get(&t2) {
517                    virtual_neighbors.extend(
518                        n2.iter()
519                            .filter(|&&n| n != t1 && remaining_tensors.contains(&n)),
520                    );
521                }
522                adjacency.insert(virtual_id, virtual_neighbors.into_iter().collect());
523            } else {
524                break;
525            }
526        }
527
528        order
529    }
530
531    /// Estimate the computational cost of contracting two tensors
532    fn estimate_contraction_cost(&self, _t1: usize, _t2: usize) -> usize {
533        // Cost is roughly the product of all dimensions in the result
534        // This is a simplified estimate
535        1000 // Placeholder
536    }
537
538    /// Contract the entire network to a single tensor
539    pub fn contract_all(&mut self) -> QuantRS2Result<Tensor> {
540        if self.tensors.is_empty() {
541            return Err(QuantRS2Error::InvalidInput(
542                "Cannot contract empty tensor network".into(),
543            ));
544        }
545
546        if self.tensors.len() == 1 {
547            return Ok(self.tensors.values().next().unwrap().clone());
548        }
549
550        // Find contraction order
551        let order = self.find_contraction_order();
552
553        // Execute contractions
554        let mut tensor_map = self.tensors.clone();
555        let mut next_id = self.next_id;
556
557        for (t1_id, t2_id) in order {
558            // Find the edge connecting these tensors
559            let edge = self
560                .edges
561                .iter()
562                .find(|e| {
563                    (e.tensor1 == t1_id && e.tensor2 == t2_id)
564                        || (e.tensor1 == t2_id && e.tensor2 == t1_id)
565                })
566                .ok_or_else(|| QuantRS2Error::InvalidInput("Tensors not connected".into()))?;
567
568            let t1 = tensor_map
569                .remove(&t1_id)
570                .ok_or_else(|| QuantRS2Error::InvalidInput("Tensor not found".into()))?;
571            let t2 = tensor_map
572                .remove(&t2_id)
573                .ok_or_else(|| QuantRS2Error::InvalidInput("Tensor not found".into()))?;
574
575            // Contract tensors
576            let contracted = if edge.tensor1 == t1_id {
577                t1.contract(&t2, &edge.index1, &edge.index2)?
578            } else {
579                t1.contract(&t2, &edge.index2, &edge.index1)?
580            };
581
582            // Add result back
583            let mut new_tensor = contracted;
584            new_tensor.id = next_id;
585            tensor_map.insert(next_id, new_tensor);
586            next_id += 1;
587        }
588
589        // Return the final tensor
590        tensor_map
591            .into_values()
592            .next()
593            .ok_or_else(|| QuantRS2Error::InvalidInput("Contraction failed".into()))
594    }
595
596    /// Apply Matrix Product State (MPS) decomposition
597    pub fn to_mps(&self, _max_bond_dim: Option<usize>) -> QuantRS2Result<Vec<Tensor>> {
598        // This would decompose the network into a chain of tensors
599        // For now, return a placeholder
600        Ok(vec![])
601    }
602
603    /// Apply Matrix Product Operator (MPO) representation
604    pub fn apply_mpo(&mut self, _mpo: &[Tensor], _qubits: &[usize]) -> QuantRS2Result<()> {
605        // Apply an MPO to specified qubits
606        Ok(())
607    }
608
609    /// Get a reference to the tensors in the network
610    pub fn tensors(&self) -> Vec<&Tensor> {
611        self.tensors.values().collect()
612    }
613
614    /// Get a reference to a tensor by ID
615    pub fn tensor(&self, id: usize) -> Option<&Tensor> {
616        self.tensors.get(&id)
617    }
618}
619
620/// Builder for quantum circuits as tensor networks
621pub struct TensorNetworkBuilder {
622    network: TensorNetwork,
623    qubit_indices: HashMap<usize, String>,
624    current_indices: HashMap<usize, String>,
625}
626
627impl TensorNetworkBuilder {
628    /// Create a new tensor network builder for n qubits
629    pub fn new(num_qubits: usize) -> Self {
630        let mut network = TensorNetwork::new();
631        let mut qubit_indices = HashMap::new();
632        let mut current_indices = HashMap::new();
633
634        // Initialize qubits in |0⟩ state
635        for i in 0..num_qubits {
636            let idx = format!("q{}_0", i);
637            let tensor = Tensor::qubit_zero(i, idx.clone());
638            network.add_tensor(tensor);
639            qubit_indices.insert(i, idx.clone());
640            current_indices.insert(i, idx);
641        }
642
643        Self {
644            network,
645            qubit_indices,
646            current_indices,
647        }
648    }
649
650    /// Apply a single-qubit gate
651    pub fn apply_single_qubit_gate(
652        &mut self,
653        gate: &dyn GateOp,
654        qubit: usize,
655    ) -> QuantRS2Result<()> {
656        let matrix_vec = gate.matrix()?;
657        let matrix = Array2::from_shape_vec((2, 2), matrix_vec)
658            .map_err(|e| QuantRS2Error::InvalidInput(format!("Shape error: {}", e)))?;
659
660        // Create gate tensor
661        let in_idx = self.current_indices[&qubit].clone();
662        let out_idx = format!("q{}_{}", qubit, self.network.next_id);
663        let gate_tensor = Tensor::from_matrix(
664            self.network.next_id,
665            matrix,
666            in_idx.clone(),
667            out_idx.clone(),
668        );
669
670        // Add to network
671        let gate_id = self.network.add_tensor(gate_tensor);
672
673        // Connect to previous tensor on this qubit
674        if let Some(prev_tensor) = self.find_tensor_with_index(&in_idx) {
675            self.network
676                .connect(prev_tensor, in_idx.clone(), gate_id, in_idx)?;
677        }
678
679        // Update current index
680        self.current_indices.insert(qubit, out_idx);
681
682        Ok(())
683    }
684
685    /// Apply a two-qubit gate
686    pub fn apply_two_qubit_gate(
687        &mut self,
688        gate: &dyn GateOp,
689        qubit1: usize,
690        qubit2: usize,
691    ) -> QuantRS2Result<()> {
692        let matrix_vec = gate.matrix()?;
693        let matrix = Array2::from_shape_vec((4, 4), matrix_vec)
694            .map_err(|e| QuantRS2Error::InvalidInput(format!("Shape error: {}", e)))?;
695
696        // Reshape to rank-4 tensor
697        let tensor_data = matrix
698            .into_shape_with_order((2, 2, 2, 2))
699            .map_err(|e| QuantRS2Error::InvalidInput(format!("Shape error: {}", e)))?
700            .into_dyn();
701
702        // Create indices
703        let in1_idx = self.current_indices[&qubit1].clone();
704        let in2_idx = self.current_indices[&qubit2].clone();
705        let out1_idx = format!("q{}_{}", qubit1, self.network.next_id);
706        let out2_idx = format!("q{}_{}", qubit2, self.network.next_id);
707
708        let gate_tensor = Tensor::new(
709            self.network.next_id,
710            tensor_data,
711            vec![
712                in1_idx.clone(),
713                in2_idx.clone(),
714                out1_idx.clone(),
715                out2_idx.clone(),
716            ],
717        );
718
719        // Add to network
720        let gate_id = self.network.add_tensor(gate_tensor);
721
722        // Connect to previous tensors
723        if let Some(prev1) = self.find_tensor_with_index(&in1_idx) {
724            self.network
725                .connect(prev1, in1_idx.clone(), gate_id, in1_idx)?;
726        }
727        if let Some(prev2) = self.find_tensor_with_index(&in2_idx) {
728            self.network
729                .connect(prev2, in2_idx.clone(), gate_id, in2_idx)?;
730        }
731
732        // Update current indices
733        self.current_indices.insert(qubit1, out1_idx);
734        self.current_indices.insert(qubit2, out2_idx);
735
736        Ok(())
737    }
738
739    /// Find tensor that has the given index as output
740    fn find_tensor_with_index(&self, index: &str) -> Option<usize> {
741        for (id, tensor) in &self.network.tensors {
742            if tensor.indices.iter().any(|idx| idx == index) {
743                return Some(*id);
744            }
745        }
746        None
747    }
748
749    /// Build the final tensor network
750    pub fn build(self) -> TensorNetwork {
751        self.network
752    }
753
754    /// Contract the network and return the quantum state
755    pub fn to_statevector(&mut self) -> QuantRS2Result<Vec<Complex64>> {
756        let final_tensor = self.network.contract_all()?;
757        Ok(final_tensor.data.into_raw_vec_and_offset().0)
758    }
759}
760
761/// Quantum circuit simulation using tensor networks
762pub struct TensorNetworkSimulator {
763    /// Maximum bond dimension for MPS
764    max_bond_dim: usize,
765    /// Use SVD compression
766    use_compression: bool,
767    /// Parallelization threshold
768    parallel_threshold: usize,
769}
770
771impl TensorNetworkSimulator {
772    /// Create a new tensor network simulator
773    pub fn new() -> Self {
774        Self {
775            max_bond_dim: 64,
776            use_compression: true,
777            parallel_threshold: 1000,
778        }
779    }
780
781    /// Set maximum bond dimension
782    pub fn with_max_bond_dim(mut self, dim: usize) -> Self {
783        self.max_bond_dim = dim;
784        self
785    }
786
787    /// Enable or disable compression
788    pub fn with_compression(mut self, compress: bool) -> Self {
789        self.use_compression = compress;
790        self
791    }
792
793    /// Simulate a quantum circuit
794    pub fn simulate<const N: usize>(
795        &self,
796        gates: &[Box<dyn GateOp>],
797    ) -> QuantRS2Result<Register<N>> {
798        let mut builder = TensorNetworkBuilder::new(N);
799
800        // Apply gates
801        for gate in gates {
802            let qubits = gate.qubits();
803            match qubits.len() {
804                1 => builder.apply_single_qubit_gate(gate.as_ref(), qubits[0].0 as usize)?,
805                2 => builder.apply_two_qubit_gate(
806                    gate.as_ref(),
807                    qubits[0].0 as usize,
808                    qubits[1].0 as usize,
809                )?,
810                _ => {
811                    return Err(QuantRS2Error::UnsupportedOperation(format!(
812                        "Gates with {} qubits not supported in tensor network",
813                        qubits.len()
814                    )))
815                }
816            }
817        }
818
819        // Contract to get statevector
820        let amplitudes = builder.to_statevector()?;
821        Register::with_amplitudes(amplitudes)
822    }
823}
824
825/// Optimized contraction strategies
826pub mod contraction_optimization {
827    use super::*;
828
829    /// Dynamic programming algorithm for optimal contraction order
830    pub struct DynamicProgrammingOptimizer {
831        memo: HashMap<Vec<usize>, (usize, Vec<(usize, usize)>)>,
832    }
833
834    impl DynamicProgrammingOptimizer {
835        pub fn new() -> Self {
836            Self {
837                memo: HashMap::new(),
838            }
839        }
840
841        /// Find optimal contraction order using dynamic programming
842        pub fn optimize(&mut self, network: &TensorNetwork) -> Vec<(usize, usize)> {
843            let tensor_ids: Vec<_> = network.tensors.keys().cloned().collect();
844            self.find_optimal_order(&tensor_ids, network).1
845        }
846
847        fn find_optimal_order(
848            &mut self,
849            tensors: &[usize],
850            network: &TensorNetwork,
851        ) -> (usize, Vec<(usize, usize)>) {
852            if tensors.len() <= 1 {
853                return (0, vec![]);
854            }
855
856            let key = tensors.to_vec();
857            if let Some(result) = self.memo.get(&key) {
858                return result.clone();
859            }
860
861            let mut best_cost = usize::MAX;
862            let mut best_order = vec![];
863
864            // Try all possible pairings
865            for i in 0..tensors.len() {
866                for j in (i + 1)..tensors.len() {
867                    // Check if tensors are connected
868                    if self.are_connected(tensors[i], tensors[j], network) {
869                        let cost = network.estimate_contraction_cost(tensors[i], tensors[j]);
870
871                        // Remaining tensors after contraction
872                        let mut remaining = vec![];
873                        for (k, &t) in tensors.iter().enumerate() {
874                            if k != i && k != j {
875                                remaining.push(t);
876                            }
877                        }
878                        remaining.push(network.next_id + remaining.len()); // Virtual tensor
879
880                        let (sub_cost, sub_order) = self.find_optimal_order(&remaining, network);
881                        let total_cost = cost + sub_cost;
882
883                        if total_cost < best_cost {
884                            best_cost = total_cost;
885                            best_order = vec![(tensors[i], tensors[j])];
886                            best_order.extend(sub_order);
887                        }
888                    }
889                }
890            }
891
892            self.memo.insert(key, (best_cost, best_order.clone()));
893            (best_cost, best_order)
894        }
895
896        fn are_connected(&self, t1: usize, t2: usize, network: &TensorNetwork) -> bool {
897            network.edges.iter().any(|e| {
898                (e.tensor1 == t1 && e.tensor2 == t2) || (e.tensor1 == t2 && e.tensor2 == t1)
899            })
900        }
901    }
902}
903
904#[cfg(test)]
905mod tests {
906    use super::*;
907
908    #[test]
909    fn test_tensor_creation() {
910        let data = ArrayD::zeros(IxDyn(&[2, 2]));
911        let tensor = Tensor::new(0, data, vec!["in".to_string(), "out".to_string()]);
912        assert_eq!(tensor.rank(), 2);
913        assert_eq!(tensor.shape, vec![2, 2]);
914    }
915
916    #[test]
917    fn test_qubit_tensors() {
918        let t0 = Tensor::qubit_zero(0, "q0".to_string());
919        assert_eq!(t0.data[[0]], Complex64::new(1.0, 0.0));
920        assert_eq!(t0.data[[1]], Complex64::new(0.0, 0.0));
921
922        let t1 = Tensor::qubit_one(1, "q1".to_string());
923        assert_eq!(t1.data[[0]], Complex64::new(0.0, 0.0));
924        assert_eq!(t1.data[[1]], Complex64::new(1.0, 0.0));
925    }
926
927    #[test]
928    fn test_tensor_network_builder() {
929        let builder = TensorNetworkBuilder::new(2);
930        assert_eq!(builder.network.tensors.len(), 2);
931    }
932
933    #[test]
934    fn test_network_connection() {
935        let mut network = TensorNetwork::new();
936
937        let t1 = Tensor::qubit_zero(0, "q0".to_string());
938        let t2 = Tensor::qubit_zero(1, "q1".to_string());
939
940        let id1 = network.add_tensor(t1);
941        let id2 = network.add_tensor(t2);
942
943        // Should fail - indices don't exist on these tensors
944        assert!(network
945            .connect(id1, "bond".to_string(), id2, "bond".to_string())
946            .is_err());
947    }
948}