quantrs2_core/
tensor_network.rs

1//! Tensor Network representations for quantum circuits
2//!
3//! This module provides tensor network representations and operations for quantum circuits,
4//! leveraging SciRS2 for efficient tensor manipulations and contractions.
5
6use crate::{
7    error::{QuantRS2Error, QuantRS2Result},
8    gate::GateOp,
9    linalg_stubs::svd,
10    register::Register,
11};
12use scirs2_core::ndarray::{Array, Array2, ArrayD, IxDyn};
13use scirs2_core::Complex;
14// use scirs2_linalg::svd;
15use std::collections::{HashMap, HashSet};
16
17/// Type alias for complex numbers
18type Complex64 = Complex<f64>;
19
20/// A tensor in the network
21#[derive(Debug, Clone)]
22pub struct Tensor {
23    /// Unique identifier for the tensor
24    pub id: usize,
25    /// The tensor data
26    pub data: ArrayD<Complex64>,
27    /// Labels for each index of the tensor
28    pub indices: Vec<String>,
29    /// Shape of the tensor
30    pub shape: Vec<usize>,
31}
32
33impl Tensor {
34    /// Create a new tensor
35    pub fn new(id: usize, data: ArrayD<Complex64>, indices: Vec<String>) -> Self {
36        let shape = data.shape().to_vec();
37        Self {
38            id,
39            data,
40            indices,
41            shape,
42        }
43    }
44
45    /// Create a tensor from a 2D array (matrix)
46    pub fn from_matrix(
47        id: usize,
48        matrix: Array2<Complex64>,
49        in_idx: String,
50        out_idx: String,
51    ) -> Self {
52        let shape = matrix.shape().to_vec();
53        let data = matrix.into_dyn();
54        Self {
55            id,
56            data,
57            indices: vec![in_idx, out_idx],
58            shape,
59        }
60    }
61
62    /// Create a qubit tensor in |0⟩ state
63    pub fn qubit_zero(id: usize, idx: String) -> Self {
64        let mut data = Array::zeros(IxDyn(&[2]));
65        data[[0]] = Complex64::new(1.0, 0.0);
66        Self {
67            id,
68            data,
69            indices: vec![idx],
70            shape: vec![2],
71        }
72    }
73
74    /// Create a qubit tensor in |1⟩ state
75    pub fn qubit_one(id: usize, idx: String) -> Self {
76        let mut data = Array::zeros(IxDyn(&[2]));
77        data[[1]] = Complex64::new(1.0, 0.0);
78        Self {
79            id,
80            data,
81            indices: vec![idx],
82            shape: vec![2],
83        }
84    }
85
86    /// Create a tensor from an ndarray with specified indices
87    pub fn from_array<D>(
88        array: scirs2_core::ndarray::ArrayBase<scirs2_core::ndarray::OwnedRepr<Complex64>, D>,
89        indices: Vec<usize>,
90    ) -> Self
91    where
92        D: scirs2_core::ndarray::Dimension,
93    {
94        let shape = array.shape().to_vec();
95        let data = array.into_dyn();
96        let index_labels: Vec<String> = indices.iter().map(|i| format!("idx_{}", i)).collect();
97        Self {
98            id: 0, // Default ID
99            data,
100            indices: index_labels,
101            shape,
102        }
103    }
104
105    /// Get the rank (number of indices) of the tensor
106    pub fn rank(&self) -> usize {
107        self.indices.len()
108    }
109
110    /// Get a reference to the tensor data
111    pub fn tensor(&self) -> &ArrayD<Complex64> {
112        &self.data
113    }
114
115    /// Get the number of dimensions
116    pub fn ndim(&self) -> usize {
117        self.data.ndim()
118    }
119
120    /// Contract this tensor with another over specified indices
121    pub fn contract(
122        &self,
123        other: &Tensor,
124        self_idx: &str,
125        other_idx: &str,
126    ) -> QuantRS2Result<Tensor> {
127        // Find the positions of the indices to contract
128        let self_pos = self
129            .indices
130            .iter()
131            .position(|s| s == self_idx)
132            .ok_or_else(|| {
133                QuantRS2Error::InvalidInput(format!("Index {} not found in tensor", self_idx))
134            })?;
135        let other_pos = other
136            .indices
137            .iter()
138            .position(|s| s == other_idx)
139            .ok_or_else(|| {
140                QuantRS2Error::InvalidInput(format!("Index {} not found in tensor", other_idx))
141            })?;
142
143        // Check dimensions match
144        if self.shape[self_pos] != other.shape[other_pos] {
145            return Err(QuantRS2Error::InvalidInput(format!(
146                "Cannot contract indices with different dimensions: {} vs {}",
147                self.shape[self_pos], other.shape[other_pos]
148            )));
149        }
150
151        // Perform tensor contraction using einsum-like operation
152        let contracted = self.contract_indices(&other, self_pos, other_pos)?;
153
154        // Build new index list
155        let mut new_indices = Vec::new();
156        for (i, idx) in self.indices.iter().enumerate() {
157            if i != self_pos {
158                new_indices.push(idx.clone());
159            }
160        }
161        for (i, idx) in other.indices.iter().enumerate() {
162            if i != other_pos {
163                new_indices.push(idx.clone());
164            }
165        }
166
167        Ok(Tensor::new(
168            self.id.max(other.id) + 1,
169            contracted,
170            new_indices,
171        ))
172    }
173
174    /// Perform the actual index contraction
175    fn contract_indices(
176        &self,
177        other: &Tensor,
178        self_idx: usize,
179        other_idx: usize,
180    ) -> QuantRS2Result<ArrayD<Complex64>> {
181        // Reshape tensors for matrix multiplication
182        let self_shape = self.data.shape();
183        let other_shape = other.data.shape();
184
185        // Calculate dimensions for reshaping
186        let mut self_left_dims = 1;
187        let mut self_right_dims = 1;
188        for i in 0..self_idx {
189            self_left_dims *= self_shape[i];
190        }
191        for i in (self_idx + 1)..self_shape.len() {
192            self_right_dims *= self_shape[i];
193        }
194
195        let mut other_left_dims = 1;
196        let mut other_right_dims = 1;
197        for i in 0..other_idx {
198            other_left_dims *= other_shape[i];
199        }
200        for i in (other_idx + 1)..other_shape.len() {
201            other_right_dims *= other_shape[i];
202        }
203
204        let contract_dim = self_shape[self_idx];
205
206        // Reshape to matrices
207        let self_mat = self
208            .data
209            .view()
210            .into_shape_with_order((self_left_dims, contract_dim * self_right_dims))
211            .map_err(|e| QuantRS2Error::InvalidInput(format!("Shape error: {}", e)))?
212            .to_owned();
213        let other_mat = other
214            .data
215            .view()
216            .into_shape_with_order((other_left_dims * contract_dim, other_right_dims))
217            .map_err(|e| QuantRS2Error::InvalidInput(format!("Shape error: {}", e)))?
218            .to_owned();
219
220        // Perform contraction via matrix multiplication
221        let _result_mat: Array2<Complex64> = Array2::zeros((
222            self_left_dims * self_right_dims,
223            other_left_dims * other_right_dims,
224        ));
225
226        // This is a simplified contraction - a full implementation would be more efficient
227        let mut result_vec = Vec::new();
228        for i in 0..self_left_dims {
229            for j in 0..self_right_dims {
230                for k in 0..other_left_dims {
231                    for l in 0..other_right_dims {
232                        let mut sum = Complex64::new(0.0, 0.0);
233                        for c in 0..contract_dim {
234                            let _self_idx =
235                                i * contract_dim * self_right_dims + c * self_right_dims + j;
236                            let _other_idx =
237                                k * contract_dim * other_right_dims + c * other_right_dims + l;
238                            sum += self_mat[[i, c * self_right_dims + j]]
239                                * other_mat[[k * contract_dim + c, l]];
240                        }
241                        result_vec.push(sum);
242                    }
243                }
244            }
245        }
246
247        // Build result shape
248        let mut result_shape = Vec::new();
249        for i in 0..self_idx {
250            result_shape.push(self_shape[i]);
251        }
252        for i in (self_idx + 1)..self_shape.len() {
253            result_shape.push(self_shape[i]);
254        }
255        for i in 0..other_idx {
256            result_shape.push(other_shape[i]);
257        }
258        for i in (other_idx + 1)..other_shape.len() {
259            result_shape.push(other_shape[i]);
260        }
261
262        ArrayD::from_shape_vec(IxDyn(&result_shape), result_vec)
263            .map_err(|e| QuantRS2Error::InvalidInput(format!("Shape error: {}", e)))
264    }
265
266    /// Apply SVD decomposition to split tensor along specified index
267    pub fn svd_decompose(
268        &self,
269        idx: usize,
270        max_rank: Option<usize>,
271    ) -> QuantRS2Result<(Tensor, Tensor)> {
272        if idx >= self.rank() {
273            return Err(QuantRS2Error::InvalidInput(format!(
274                "Index {} out of bounds for tensor with rank {}",
275                idx,
276                self.rank()
277            )));
278        }
279
280        // Reshape tensor into matrix
281        let shape = self.data.shape();
282        let mut left_dim = 1;
283        let mut right_dim = 1;
284
285        for i in 0..=idx {
286            left_dim *= shape[i];
287        }
288        for i in (idx + 1)..shape.len() {
289            right_dim *= shape[i];
290        }
291
292        // Convert to matrix
293        let matrix = self
294            .data
295            .view()
296            .into_shape_with_order((left_dim, right_dim))
297            .map_err(|e| QuantRS2Error::InvalidInput(format!("Shape error: {}", e)))?
298            .to_owned();
299
300        // Perform SVD using SciRS2
301        let real_matrix = matrix.mapv(|c| c.re);
302        let (u, s, vt) = svd(&real_matrix.view(), false, None)
303            .map_err(|e| QuantRS2Error::ComputationError(format!("SVD failed: {:?}", e)))?;
304
305        // Determine rank to keep
306        let rank = if let Some(max_r) = max_rank {
307            max_r.min(s.len())
308        } else {
309            s.len()
310        };
311
312        // Truncate based on rank
313        let u_trunc = u.slice(scirs2_core::ndarray::s![.., ..rank]).to_owned();
314        let s_trunc = s.slice(scirs2_core::ndarray::s![..rank]).to_owned();
315        let vt_trunc = vt.slice(scirs2_core::ndarray::s![..rank, ..]).to_owned();
316
317        // Create S matrix
318        let mut s_mat = Array2::zeros((rank, rank));
319        for i in 0..rank {
320            s_mat[[i, i]] = Complex64::new(s_trunc[i].sqrt(), 0.0);
321        }
322
323        // Multiply U * sqrt(S) and sqrt(S) * V^T
324        let left_data = u_trunc.mapv(|x| Complex64::new(x, 0.0)).dot(&s_mat);
325        let right_data = s_mat.dot(&vt_trunc.mapv(|x| Complex64::new(x, 0.0)));
326
327        // Create new tensors with appropriate shapes and indices
328        let mut left_indices = self.indices[..=idx].to_vec();
329        left_indices.push(format!("bond_{}", self.id));
330
331        let mut right_indices = vec![format!("bond_{}", self.id)];
332        right_indices.extend_from_slice(&self.indices[(idx + 1)..]);
333
334        let left_tensor = Tensor::new(self.id * 2, left_data.into_dyn(), left_indices);
335
336        let right_tensor = Tensor::new(self.id * 2 + 1, right_data.into_dyn(), right_indices);
337
338        Ok((left_tensor, right_tensor))
339    }
340}
341
342/// Edge in the tensor network
343#[derive(Debug, Clone, PartialEq, Eq, Hash)]
344pub struct TensorEdge {
345    /// First tensor ID
346    pub tensor1: usize,
347    /// Index on first tensor
348    pub index1: String,
349    /// Second tensor ID
350    pub tensor2: usize,
351    /// Index on second tensor
352    pub index2: String,
353}
354
355/// Tensor network representation
356#[derive(Debug)]
357pub struct TensorNetwork {
358    /// Tensors in the network
359    pub tensors: HashMap<usize, Tensor>,
360    /// Edges connecting tensors
361    pub edges: Vec<TensorEdge>,
362    /// Open indices (not connected to other tensors)
363    pub open_indices: HashMap<usize, Vec<String>>,
364    /// Next available tensor ID
365    next_id: usize,
366}
367
368impl TensorNetwork {
369    /// Create a new empty tensor network
370    pub fn new() -> Self {
371        Self {
372            tensors: HashMap::new(),
373            edges: Vec::new(),
374            open_indices: HashMap::new(),
375            next_id: 0,
376        }
377    }
378
379    /// Add a tensor to the network
380    pub fn add_tensor(&mut self, tensor: Tensor) -> usize {
381        let id = tensor.id;
382        self.open_indices.insert(id, tensor.indices.clone());
383        self.tensors.insert(id, tensor);
384        self.next_id = self.next_id.max(id + 1);
385        id
386    }
387
388    /// Connect two tensor indices
389    pub fn connect(
390        &mut self,
391        tensor1: usize,
392        index1: String,
393        tensor2: usize,
394        index2: String,
395    ) -> QuantRS2Result<()> {
396        // Verify tensors exist
397        if !self.tensors.contains_key(&tensor1) {
398            return Err(QuantRS2Error::InvalidInput(format!(
399                "Tensor {} not found",
400                tensor1
401            )));
402        }
403        if !self.tensors.contains_key(&tensor2) {
404            return Err(QuantRS2Error::InvalidInput(format!(
405                "Tensor {} not found",
406                tensor2
407            )));
408        }
409
410        // Verify indices exist and match dimensions
411        let t1 = &self.tensors[&tensor1];
412        let t2 = &self.tensors[&tensor2];
413
414        let idx1_pos = t1
415            .indices
416            .iter()
417            .position(|s| s == &index1)
418            .ok_or_else(|| {
419                QuantRS2Error::InvalidInput(format!(
420                    "Index {} not found in tensor {}",
421                    index1, tensor1
422                ))
423            })?;
424        let idx2_pos = t2
425            .indices
426            .iter()
427            .position(|s| s == &index2)
428            .ok_or_else(|| {
429                QuantRS2Error::InvalidInput(format!(
430                    "Index {} not found in tensor {}",
431                    index2, tensor2
432                ))
433            })?;
434
435        if t1.shape[idx1_pos] != t2.shape[idx2_pos] {
436            return Err(QuantRS2Error::InvalidInput(format!(
437                "Connected indices must have same dimension: {} vs {}",
438                t1.shape[idx1_pos], t2.shape[idx2_pos]
439            )));
440        }
441
442        // Add edge
443        self.edges.push(TensorEdge {
444            tensor1,
445            index1: index1.clone(),
446            tensor2,
447            index2: index2.clone(),
448        });
449
450        // Remove from open indices
451        if let Some(indices) = self.open_indices.get_mut(&tensor1) {
452            indices.retain(|s| s != &index1);
453        }
454        if let Some(indices) = self.open_indices.get_mut(&tensor2) {
455            indices.retain(|s| s != &index2);
456        }
457
458        Ok(())
459    }
460
461    /// Find optimal contraction order using greedy algorithm
462    pub fn find_contraction_order(&self) -> Vec<(usize, usize)> {
463        // Simple greedy algorithm: contract pairs that minimize intermediate tensor size
464        let mut remaining_tensors: HashSet<_> = self.tensors.keys().cloned().collect();
465        let mut order = Vec::new();
466
467        // Build adjacency list
468        let mut adjacency: HashMap<usize, Vec<usize>> = HashMap::new();
469        for edge in &self.edges {
470            adjacency
471                .entry(edge.tensor1)
472                .or_insert_with(Vec::new)
473                .push(edge.tensor2);
474            adjacency
475                .entry(edge.tensor2)
476                .or_insert_with(Vec::new)
477                .push(edge.tensor1);
478        }
479
480        while remaining_tensors.len() > 1 {
481            let mut best_pair = None;
482            let mut min_cost = usize::MAX;
483
484            // Consider all pairs of connected tensors
485            for &t1 in &remaining_tensors {
486                if let Some(neighbors) = adjacency.get(&t1) {
487                    for &t2 in neighbors {
488                        if t2 > t1 && remaining_tensors.contains(&t2) {
489                            // Estimate cost as product of remaining dimensions
490                            let cost = self.estimate_contraction_cost(t1, t2);
491                            if cost < min_cost {
492                                min_cost = cost;
493                                best_pair = Some((t1, t2));
494                            }
495                        }
496                    }
497                }
498            }
499
500            if let Some((t1, t2)) = best_pair {
501                order.push((t1, t2));
502                remaining_tensors.remove(&t1);
503                remaining_tensors.remove(&t2);
504
505                // Add a virtual tensor representing the contraction result
506                let virtual_id = self.next_id + order.len();
507                remaining_tensors.insert(virtual_id);
508
509                // Update adjacency for virtual tensor
510                let mut virtual_neighbors = HashSet::new();
511                if let Some(n1) = adjacency.get(&t1) {
512                    virtual_neighbors.extend(
513                        n1.iter()
514                            .filter(|&&n| n != t2 && remaining_tensors.contains(&n)),
515                    );
516                }
517                if let Some(n2) = adjacency.get(&t2) {
518                    virtual_neighbors.extend(
519                        n2.iter()
520                            .filter(|&&n| n != t1 && remaining_tensors.contains(&n)),
521                    );
522                }
523                adjacency.insert(virtual_id, virtual_neighbors.into_iter().collect());
524            } else {
525                break;
526            }
527        }
528
529        order
530    }
531
532    /// Estimate the computational cost of contracting two tensors
533    fn estimate_contraction_cost(&self, _t1: usize, _t2: usize) -> usize {
534        // Cost is roughly the product of all dimensions in the result
535        // This is a simplified estimate
536        1000 // Placeholder
537    }
538
539    /// Contract the entire network to a single tensor
540    pub fn contract_all(&mut self) -> QuantRS2Result<Tensor> {
541        if self.tensors.is_empty() {
542            return Err(QuantRS2Error::InvalidInput(
543                "Cannot contract empty tensor network".into(),
544            ));
545        }
546
547        if self.tensors.len() == 1 {
548            return Ok(self.tensors.values().next().unwrap().clone());
549        }
550
551        // Find contraction order
552        let order = self.find_contraction_order();
553
554        // Execute contractions
555        let mut tensor_map = self.tensors.clone();
556        let mut next_id = self.next_id;
557
558        for (t1_id, t2_id) in order {
559            // Find the edge connecting these tensors
560            let edge = self
561                .edges
562                .iter()
563                .find(|e| {
564                    (e.tensor1 == t1_id && e.tensor2 == t2_id)
565                        || (e.tensor1 == t2_id && e.tensor2 == t1_id)
566                })
567                .ok_or_else(|| QuantRS2Error::InvalidInput("Tensors not connected".into()))?;
568
569            let t1 = tensor_map
570                .remove(&t1_id)
571                .ok_or_else(|| QuantRS2Error::InvalidInput("Tensor not found".into()))?;
572            let t2 = tensor_map
573                .remove(&t2_id)
574                .ok_or_else(|| QuantRS2Error::InvalidInput("Tensor not found".into()))?;
575
576            // Contract tensors
577            let contracted = if edge.tensor1 == t1_id {
578                t1.contract(&t2, &edge.index1, &edge.index2)?
579            } else {
580                t1.contract(&t2, &edge.index2, &edge.index1)?
581            };
582
583            // Add result back
584            let mut new_tensor = contracted;
585            new_tensor.id = next_id;
586            tensor_map.insert(next_id, new_tensor);
587            next_id += 1;
588        }
589
590        // Return the final tensor
591        tensor_map
592            .into_values()
593            .next()
594            .ok_or_else(|| QuantRS2Error::InvalidInput("Contraction failed".into()))
595    }
596
597    /// Apply Matrix Product State (MPS) decomposition
598    pub fn to_mps(&self, _max_bond_dim: Option<usize>) -> QuantRS2Result<Vec<Tensor>> {
599        // This would decompose the network into a chain of tensors
600        // For now, return a placeholder
601        Ok(vec![])
602    }
603
604    /// Apply Matrix Product Operator (MPO) representation
605    pub fn apply_mpo(&mut self, _mpo: &[Tensor], _qubits: &[usize]) -> QuantRS2Result<()> {
606        // Apply an MPO to specified qubits
607        Ok(())
608    }
609
610    /// Get a reference to the tensors in the network
611    pub fn tensors(&self) -> Vec<&Tensor> {
612        self.tensors.values().collect()
613    }
614
615    /// Get a reference to a tensor by ID
616    pub fn tensor(&self, id: usize) -> Option<&Tensor> {
617        self.tensors.get(&id)
618    }
619}
620
621/// Builder for quantum circuits as tensor networks
622pub struct TensorNetworkBuilder {
623    network: TensorNetwork,
624    qubit_indices: HashMap<usize, String>,
625    current_indices: HashMap<usize, String>,
626}
627
628impl TensorNetworkBuilder {
629    /// Create a new tensor network builder for n qubits
630    pub fn new(num_qubits: usize) -> Self {
631        let mut network = TensorNetwork::new();
632        let mut qubit_indices = HashMap::new();
633        let mut current_indices = HashMap::new();
634
635        // Initialize qubits in |0⟩ state
636        for i in 0..num_qubits {
637            let idx = format!("q{}_0", i);
638            let tensor = Tensor::qubit_zero(i, idx.clone());
639            network.add_tensor(tensor);
640            qubit_indices.insert(i, idx.clone());
641            current_indices.insert(i, idx);
642        }
643
644        Self {
645            network,
646            qubit_indices,
647            current_indices,
648        }
649    }
650
651    /// Apply a single-qubit gate
652    pub fn apply_single_qubit_gate(
653        &mut self,
654        gate: &dyn GateOp,
655        qubit: usize,
656    ) -> QuantRS2Result<()> {
657        let matrix_vec = gate.matrix()?;
658        let matrix = Array2::from_shape_vec((2, 2), matrix_vec)
659            .map_err(|e| QuantRS2Error::InvalidInput(format!("Shape error: {}", e)))?;
660
661        // Create gate tensor
662        let in_idx = self.current_indices[&qubit].clone();
663        let out_idx = format!("q{}_{}", qubit, self.network.next_id);
664        let gate_tensor = Tensor::from_matrix(
665            self.network.next_id,
666            matrix,
667            in_idx.clone(),
668            out_idx.clone(),
669        );
670
671        // Add to network
672        let gate_id = self.network.add_tensor(gate_tensor);
673
674        // Connect to previous tensor on this qubit
675        if let Some(prev_tensor) = self.find_tensor_with_index(&in_idx) {
676            self.network
677                .connect(prev_tensor, in_idx.clone(), gate_id, in_idx)?;
678        }
679
680        // Update current index
681        self.current_indices.insert(qubit, out_idx);
682
683        Ok(())
684    }
685
686    /// Apply a two-qubit gate
687    pub fn apply_two_qubit_gate(
688        &mut self,
689        gate: &dyn GateOp,
690        qubit1: usize,
691        qubit2: usize,
692    ) -> QuantRS2Result<()> {
693        let matrix_vec = gate.matrix()?;
694        let matrix = Array2::from_shape_vec((4, 4), matrix_vec)
695            .map_err(|e| QuantRS2Error::InvalidInput(format!("Shape error: {}", e)))?;
696
697        // Reshape to rank-4 tensor
698        let tensor_data = matrix
699            .into_shape_with_order((2, 2, 2, 2))
700            .map_err(|e| QuantRS2Error::InvalidInput(format!("Shape error: {}", e)))?
701            .into_dyn();
702
703        // Create indices
704        let in1_idx = self.current_indices[&qubit1].clone();
705        let in2_idx = self.current_indices[&qubit2].clone();
706        let out1_idx = format!("q{}_{}", qubit1, self.network.next_id);
707        let out2_idx = format!("q{}_{}", qubit2, self.network.next_id);
708
709        let gate_tensor = Tensor::new(
710            self.network.next_id,
711            tensor_data,
712            vec![
713                in1_idx.clone(),
714                in2_idx.clone(),
715                out1_idx.clone(),
716                out2_idx.clone(),
717            ],
718        );
719
720        // Add to network
721        let gate_id = self.network.add_tensor(gate_tensor);
722
723        // Connect to previous tensors
724        if let Some(prev1) = self.find_tensor_with_index(&in1_idx) {
725            self.network
726                .connect(prev1, in1_idx.clone(), gate_id, in1_idx)?;
727        }
728        if let Some(prev2) = self.find_tensor_with_index(&in2_idx) {
729            self.network
730                .connect(prev2, in2_idx.clone(), gate_id, in2_idx)?;
731        }
732
733        // Update current indices
734        self.current_indices.insert(qubit1, out1_idx);
735        self.current_indices.insert(qubit2, out2_idx);
736
737        Ok(())
738    }
739
740    /// Find tensor that has the given index as output
741    fn find_tensor_with_index(&self, index: &str) -> Option<usize> {
742        for (id, tensor) in &self.network.tensors {
743            if tensor.indices.iter().any(|idx| idx == index) {
744                return Some(*id);
745            }
746        }
747        None
748    }
749
750    /// Build the final tensor network
751    pub fn build(self) -> TensorNetwork {
752        self.network
753    }
754
755    /// Contract the network and return the quantum state
756    pub fn to_statevector(&mut self) -> QuantRS2Result<Vec<Complex64>> {
757        let final_tensor = self.network.contract_all()?;
758        Ok(final_tensor.data.into_raw_vec_and_offset().0)
759    }
760}
761
762/// Quantum circuit simulation using tensor networks
763pub struct TensorNetworkSimulator {
764    /// Maximum bond dimension for MPS
765    max_bond_dim: usize,
766    /// Use SVD compression
767    use_compression: bool,
768    /// Parallelization threshold
769    parallel_threshold: usize,
770}
771
772impl TensorNetworkSimulator {
773    /// Create a new tensor network simulator
774    pub fn new() -> Self {
775        Self {
776            max_bond_dim: 64,
777            use_compression: true,
778            parallel_threshold: 1000,
779        }
780    }
781
782    /// Set maximum bond dimension
783    pub fn with_max_bond_dim(mut self, dim: usize) -> Self {
784        self.max_bond_dim = dim;
785        self
786    }
787
788    /// Enable or disable compression
789    pub fn with_compression(mut self, compress: bool) -> Self {
790        self.use_compression = compress;
791        self
792    }
793
794    /// Simulate a quantum circuit
795    pub fn simulate<const N: usize>(
796        &self,
797        gates: &[Box<dyn GateOp>],
798    ) -> QuantRS2Result<Register<N>> {
799        let mut builder = TensorNetworkBuilder::new(N);
800
801        // Apply gates
802        for gate in gates {
803            let qubits = gate.qubits();
804            match qubits.len() {
805                1 => builder.apply_single_qubit_gate(gate.as_ref(), qubits[0].0 as usize)?,
806                2 => builder.apply_two_qubit_gate(
807                    gate.as_ref(),
808                    qubits[0].0 as usize,
809                    qubits[1].0 as usize,
810                )?,
811                _ => {
812                    return Err(QuantRS2Error::UnsupportedOperation(format!(
813                        "Gates with {} qubits not supported in tensor network",
814                        qubits.len()
815                    )))
816                }
817            }
818        }
819
820        // Contract to get statevector
821        let amplitudes = builder.to_statevector()?;
822        Register::with_amplitudes(amplitudes)
823    }
824}
825
826/// Optimized contraction strategies
827pub mod contraction_optimization {
828    use super::*;
829
830    /// Dynamic programming algorithm for optimal contraction order
831    pub struct DynamicProgrammingOptimizer {
832        memo: HashMap<Vec<usize>, (usize, Vec<(usize, usize)>)>,
833    }
834
835    impl DynamicProgrammingOptimizer {
836        pub fn new() -> Self {
837            Self {
838                memo: HashMap::new(),
839            }
840        }
841
842        /// Find optimal contraction order using dynamic programming
843        pub fn optimize(&mut self, network: &TensorNetwork) -> Vec<(usize, usize)> {
844            let tensor_ids: Vec<_> = network.tensors.keys().cloned().collect();
845            self.find_optimal_order(&tensor_ids, network).1
846        }
847
848        fn find_optimal_order(
849            &mut self,
850            tensors: &[usize],
851            network: &TensorNetwork,
852        ) -> (usize, Vec<(usize, usize)>) {
853            if tensors.len() <= 1 {
854                return (0, vec![]);
855            }
856
857            let key = tensors.to_vec();
858            if let Some(result) = self.memo.get(&key) {
859                return result.clone();
860            }
861
862            let mut best_cost = usize::MAX;
863            let mut best_order = vec![];
864
865            // Try all possible pairings
866            for i in 0..tensors.len() {
867                for j in (i + 1)..tensors.len() {
868                    // Check if tensors are connected
869                    if self.are_connected(tensors[i], tensors[j], network) {
870                        let cost = network.estimate_contraction_cost(tensors[i], tensors[j]);
871
872                        // Remaining tensors after contraction
873                        let mut remaining = vec![];
874                        for (k, &t) in tensors.iter().enumerate() {
875                            if k != i && k != j {
876                                remaining.push(t);
877                            }
878                        }
879                        remaining.push(network.next_id + remaining.len()); // Virtual tensor
880
881                        let (sub_cost, sub_order) = self.find_optimal_order(&remaining, network);
882                        let total_cost = cost + sub_cost;
883
884                        if total_cost < best_cost {
885                            best_cost = total_cost;
886                            best_order = vec![(tensors[i], tensors[j])];
887                            best_order.extend(sub_order);
888                        }
889                    }
890                }
891            }
892
893            self.memo.insert(key, (best_cost, best_order.clone()));
894            (best_cost, best_order)
895        }
896
897        fn are_connected(&self, t1: usize, t2: usize, network: &TensorNetwork) -> bool {
898            network.edges.iter().any(|e| {
899                (e.tensor1 == t1 && e.tensor2 == t2) || (e.tensor1 == t2 && e.tensor2 == t1)
900            })
901        }
902    }
903}
904
905#[cfg(test)]
906mod tests {
907    use super::*;
908
909    #[test]
910    fn test_tensor_creation() {
911        let data = ArrayD::zeros(IxDyn(&[2, 2]));
912        let tensor = Tensor::new(0, data, vec!["in".to_string(), "out".to_string()]);
913        assert_eq!(tensor.rank(), 2);
914        assert_eq!(tensor.shape, vec![2, 2]);
915    }
916
917    #[test]
918    fn test_qubit_tensors() {
919        let t0 = Tensor::qubit_zero(0, "q0".to_string());
920        assert_eq!(t0.data[[0]], Complex64::new(1.0, 0.0));
921        assert_eq!(t0.data[[1]], Complex64::new(0.0, 0.0));
922
923        let t1 = Tensor::qubit_one(1, "q1".to_string());
924        assert_eq!(t1.data[[0]], Complex64::new(0.0, 0.0));
925        assert_eq!(t1.data[[1]], Complex64::new(1.0, 0.0));
926    }
927
928    #[test]
929    fn test_tensor_network_builder() {
930        let builder = TensorNetworkBuilder::new(2);
931        assert_eq!(builder.network.tensors.len(), 2);
932    }
933
934    #[test]
935    fn test_network_connection() {
936        let mut network = TensorNetwork::new();
937
938        let t1 = Tensor::qubit_zero(0, "q0".to_string());
939        let t2 = Tensor::qubit_zero(1, "q1".to_string());
940
941        let id1 = network.add_tensor(t1);
942        let id2 = network.add_tensor(t2);
943
944        // Should fail - indices don't exist on these tensors
945        assert!(network
946            .connect(id1, "bond".to_string(), id2, "bond".to_string())
947            .is_err());
948    }
949}