quantrs2_core/
symbolic_optimization.rs

1//! Symbolic optimization module for quantum circuits and algorithms
2//!
3//! This module provides symbolic optimization capabilities for quantum circuits,
4//! including automatic differentiation for variational algorithms, circuit
5//! simplification using symbolic computation, and parameter optimization.
6
7use crate::error::{QuantRS2Error, QuantRS2Result};
8use crate::symbolic_hamiltonian::SymbolicHamiltonian;
9use num_complex::Complex64;
10use std::collections::HashMap;
11
12/// Symbolic optimization configuration
13#[derive(Debug, Clone)]
14pub struct SymbolicOptimizationConfig {
15    /// Maximum number of optimization iterations
16    pub max_iterations: usize,
17    /// Convergence tolerance
18    pub tolerance: f64,
19    /// Learning rate for gradient-based optimization
20    pub learning_rate: f64,
21    /// Whether to use analytical gradients when available
22    pub use_analytical_gradients: bool,
23    /// Finite difference step size for numerical gradients
24    pub finite_difference_step: f64,
25}
26
27impl Default for SymbolicOptimizationConfig {
28    fn default() -> Self {
29        SymbolicOptimizationConfig {
30            max_iterations: 1000,
31            tolerance: 1e-6,
32            learning_rate: 0.01,
33            use_analytical_gradients: true,
34            finite_difference_step: 1e-8,
35        }
36    }
37}
38
39/// Optimization result
40#[derive(Debug, Clone)]
41pub struct OptimizationResult {
42    /// Optimal parameter values
43    pub optimal_parameters: HashMap<String, f64>,
44    /// Final objective function value
45    pub final_value: f64,
46    /// Number of iterations performed
47    pub iterations: usize,
48    /// Whether optimization converged
49    pub converged: bool,
50    /// Optimization history
51    pub history: Vec<(HashMap<String, f64>, f64)>,
52}
53
54/// Symbolic objective function for optimization
55pub trait SymbolicObjective {
56    /// Evaluate the objective function
57    fn evaluate(&self, parameters: &HashMap<String, f64>) -> QuantRS2Result<f64>;
58
59    /// Compute gradients (analytical if available, numerical otherwise)
60    fn gradients(&self, parameters: &HashMap<String, f64>) -> QuantRS2Result<HashMap<String, f64>>;
61
62    /// Get parameter names
63    fn parameter_names(&self) -> Vec<String>;
64
65    /// Get parameter bounds (if any)
66    fn parameter_bounds(&self) -> HashMap<String, (Option<f64>, Option<f64>)> {
67        HashMap::new()
68    }
69}
70
71/// Hamiltonian expectation value objective for VQE
72pub struct HamiltonianExpectation {
73    /// The Hamiltonian
74    pub hamiltonian: SymbolicHamiltonian,
75    /// Parametric quantum circuit (simplified representation)
76    pub circuit_parameters: Vec<String>,
77    /// State preparation function (placeholder)
78    pub state_prep: Option<Box<dyn Fn(&HashMap<String, f64>) -> QuantRS2Result<Vec<Complex64>>>>,
79}
80
81impl std::fmt::Debug for HamiltonianExpectation {
82    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
83        f.debug_struct("HamiltonianExpectation")
84            .field("hamiltonian", &self.hamiltonian)
85            .field("circuit_parameters", &self.circuit_parameters)
86            .field(
87                "state_prep",
88                &self.state_prep.as_ref().map(|_| "<function>"),
89            )
90            .finish()
91    }
92}
93
94impl Clone for HamiltonianExpectation {
95    fn clone(&self) -> Self {
96        Self {
97            hamiltonian: self.hamiltonian.clone(),
98            circuit_parameters: self.circuit_parameters.clone(),
99            state_prep: None, // Cannot clone closures
100        }
101    }
102}
103
104impl HamiltonianExpectation {
105    /// Create a new Hamiltonian expectation objective
106    pub fn new(hamiltonian: SymbolicHamiltonian) -> Self {
107        HamiltonianExpectation {
108            circuit_parameters: hamiltonian.variables(),
109            hamiltonian,
110            state_prep: None,
111        }
112    }
113
114    /// Set the state preparation function
115    pub fn with_state_prep<F>(mut self, state_prep: F) -> Self
116    where
117        F: Fn(&HashMap<String, f64>) -> QuantRS2Result<Vec<Complex64>> + 'static,
118    {
119        self.state_prep = Some(Box::new(state_prep));
120        self
121    }
122}
123
124impl SymbolicObjective for HamiltonianExpectation {
125    fn evaluate(&self, parameters: &HashMap<String, f64>) -> QuantRS2Result<f64> {
126        // Get the evaluated Hamiltonian terms
127        let terms = self.hamiltonian.evaluate(parameters)?;
128
129        // For this example, we'll use a simple computational basis state
130        // In practice, you'd use the actual quantum circuit state
131        let n_qubits = self.hamiltonian.n_qubits;
132        let mut state_vector = vec![Complex64::new(0.0, 0.0); 1 << n_qubits];
133
134        if let Some(ref state_prep) = self.state_prep {
135            state_vector = state_prep(parameters)?;
136        } else {
137            // Default to |0...0⟩ state
138            state_vector[0] = Complex64::new(1.0, 0.0);
139        }
140
141        // Compute expectation value
142        let mut expectation = 0.0;
143        for (coeff, pauli_string) in terms {
144            let pauli_expectation = compute_pauli_expectation_real(&pauli_string, &state_vector)?;
145            expectation += coeff * pauli_expectation;
146        }
147
148        Ok(expectation)
149    }
150
151    fn gradients(&self, parameters: &HashMap<String, f64>) -> QuantRS2Result<HashMap<String, f64>> {
152        let mut gradients = HashMap::new();
153
154        #[cfg(feature = "symbolic")]
155        {
156            // Use analytical gradients if available
157            if self
158                .hamiltonian
159                .variables()
160                .iter()
161                .all(|v| parameters.contains_key(v))
162            {
163                let grad_hamiltonians = self.hamiltonian.gradients(&self.parameter_names())?;
164
165                for (param_name, grad_hamiltonian) in grad_hamiltonians {
166                    let grad_obj = HamiltonianExpectation {
167                        hamiltonian: grad_hamiltonian,
168                        circuit_parameters: self.circuit_parameters.clone(),
169                        state_prep: None, // Cannot clone function
170                    };
171
172                    let grad_value = grad_obj.evaluate(parameters)?;
173                    gradients.insert(param_name, grad_value);
174                }
175
176                return Ok(gradients);
177            }
178        }
179
180        // Fallback to numerical gradients
181        let step = 1e-8;
182        let _base_value = self.evaluate(parameters)?;
183
184        for param_name in self.parameter_names() {
185            let mut params_plus = parameters.clone();
186            let mut params_minus = parameters.clone();
187
188            let current_value = parameters.get(&param_name).unwrap_or(&0.0);
189            params_plus.insert(param_name.clone(), current_value + step);
190            params_minus.insert(param_name.clone(), current_value - step);
191
192            let value_plus = self.evaluate(&params_plus)?;
193            let value_minus = self.evaluate(&params_minus)?;
194
195            let gradient = (value_plus - value_minus) / (2.0 * step);
196            gradients.insert(param_name, gradient);
197        }
198
199        Ok(gradients)
200    }
201
202    fn parameter_names(&self) -> Vec<String> {
203        let mut names = self.hamiltonian.variables();
204        names.extend(self.circuit_parameters.iter().cloned());
205        names.sort();
206        names.dedup();
207        names
208    }
209}
210
211/// Quantum circuit cost function for QAOA
212#[derive(Debug, Clone)]
213pub struct QAOACostFunction {
214    /// Cost Hamiltonian
215    pub cost_hamiltonian: SymbolicHamiltonian,
216    /// Mixer Hamiltonian  
217    pub mixer_hamiltonian: SymbolicHamiltonian,
218    /// Number of QAOA layers
219    pub p_layers: usize,
220}
221
222impl QAOACostFunction {
223    /// Create a new QAOA cost function
224    pub fn new(
225        cost_hamiltonian: SymbolicHamiltonian,
226        mixer_hamiltonian: SymbolicHamiltonian,
227        p_layers: usize,
228    ) -> Self {
229        QAOACostFunction {
230            cost_hamiltonian,
231            mixer_hamiltonian,
232            p_layers,
233        }
234    }
235}
236
237impl SymbolicObjective for QAOACostFunction {
238    fn evaluate(&self, parameters: &HashMap<String, f64>) -> QuantRS2Result<f64> {
239        // Simplified QAOA evaluation
240        // In practice, you'd simulate the full QAOA circuit
241
242        // Extract beta and gamma parameters
243        let mut total_cost = 0.0;
244
245        for layer in 0..self.p_layers {
246            let gamma_key = format!("gamma_{}", layer);
247            let beta_key = format!("beta_{}", layer);
248
249            let gamma = parameters.get(&gamma_key).unwrap_or(&0.0);
250            let beta = parameters.get(&beta_key).unwrap_or(&0.0);
251
252            // Simplified cost calculation
253            total_cost += gamma * gamma + beta * beta;
254        }
255
256        Ok(total_cost)
257    }
258
259    fn gradients(&self, parameters: &HashMap<String, f64>) -> QuantRS2Result<HashMap<String, f64>> {
260        let mut gradients = HashMap::new();
261
262        // Simplified gradients for the example
263        for layer in 0..self.p_layers {
264            let gamma_key = format!("gamma_{}", layer);
265            let beta_key = format!("beta_{}", layer);
266
267            let gamma = parameters.get(&gamma_key).unwrap_or(&0.0);
268            let beta = parameters.get(&beta_key).unwrap_or(&0.0);
269
270            gradients.insert(gamma_key, 2.0 * gamma);
271            gradients.insert(beta_key, 2.0 * beta);
272        }
273
274        Ok(gradients)
275    }
276
277    fn parameter_names(&self) -> Vec<String> {
278        let mut names = Vec::new();
279        for layer in 0..self.p_layers {
280            names.push(format!("gamma_{}", layer));
281            names.push(format!("beta_{}", layer));
282        }
283        names
284    }
285
286    fn parameter_bounds(&self) -> HashMap<String, (Option<f64>, Option<f64>)> {
287        let mut bounds = HashMap::new();
288        for layer in 0..self.p_layers {
289            // QAOA parameters typically bounded by [0, 2π]
290            bounds.insert(
291                format!("gamma_{}", layer),
292                (Some(0.0), Some(2.0 * std::f64::consts::PI)),
293            );
294            bounds.insert(
295                format!("beta_{}", layer),
296                (Some(0.0), Some(std::f64::consts::PI)),
297            );
298        }
299        bounds
300    }
301}
302
303/// Symbolic optimizer
304pub struct SymbolicOptimizer {
305    config: SymbolicOptimizationConfig,
306}
307
308impl SymbolicOptimizer {
309    /// Create a new symbolic optimizer
310    pub fn new(config: SymbolicOptimizationConfig) -> Self {
311        SymbolicOptimizer { config }
312    }
313
314    /// Create with default configuration
315    pub fn default() -> Self {
316        SymbolicOptimizer::new(SymbolicOptimizationConfig::default())
317    }
318
319    /// Optimize using gradient descent
320    pub fn optimize<O: SymbolicObjective>(
321        &self,
322        objective: &O,
323        initial_parameters: HashMap<String, f64>,
324    ) -> QuantRS2Result<OptimizationResult> {
325        let mut parameters = initial_parameters;
326        let mut history = Vec::new();
327        let mut converged = false;
328
329        let mut prev_value = objective.evaluate(&parameters)?;
330        history.push((parameters.clone(), prev_value));
331
332        for iteration in 0..self.config.max_iterations {
333            // Compute gradients
334            let gradients = objective.gradients(&parameters)?;
335
336            // Gradient descent update
337            let mut max_gradient: f64 = 0.0;
338            for param_name in objective.parameter_names() {
339                if let Some(gradient) = gradients.get(&param_name) {
340                    let current_value = parameters.get(&param_name).unwrap_or(&0.0);
341                    let new_value = current_value - self.config.learning_rate * gradient;
342
343                    // Apply bounds if they exist
344                    let bounded_value = if let Some((lower, upper)) =
345                        objective.parameter_bounds().get(&param_name)
346                    {
347                        let mut val = new_value;
348                        if let Some(lower_bound) = lower {
349                            val = val.max(*lower_bound);
350                        }
351                        if let Some(upper_bound) = upper {
352                            val = val.min(*upper_bound);
353                        }
354                        val
355                    } else {
356                        new_value
357                    };
358
359                    parameters.insert(param_name.clone(), bounded_value);
360                    max_gradient = max_gradient.max(gradient.abs());
361                }
362            }
363
364            // Evaluate new objective value
365            let current_value = objective.evaluate(&parameters)?;
366            history.push((parameters.clone(), current_value));
367
368            // Check convergence
369            let value_change = (current_value - prev_value).abs();
370            if value_change < self.config.tolerance && max_gradient < self.config.tolerance {
371                converged = true;
372                break;
373            }
374
375            prev_value = current_value;
376
377            // Optional: Print progress
378            if iteration % 100 == 0 {
379                println!(
380                    "Iteration {}: objective = {:.6e}, max_grad = {:.6e}",
381                    iteration, current_value, max_gradient
382                );
383            }
384        }
385
386        Ok(OptimizationResult {
387            optimal_parameters: parameters,
388            final_value: prev_value,
389            iterations: history.len() - 1,
390            converged,
391            history,
392        })
393    }
394
395    /// Optimize using BFGS (simplified implementation)
396    pub fn optimize_bfgs<O: SymbolicObjective>(
397        &self,
398        objective: &O,
399        initial_parameters: HashMap<String, f64>,
400    ) -> QuantRS2Result<OptimizationResult> {
401        // For now, fall back to gradient descent
402        // A full BFGS implementation would maintain an approximation to the inverse Hessian
403        self.optimize(objective, initial_parameters)
404    }
405}
406
407/// Circuit parameter optimization utilities
408pub mod circuit_optimization {
409    use super::*;
410    use crate::parametric::ParametricGate;
411
412    /// Optimize a parametric quantum circuit
413    pub fn optimize_parametric_circuit<O: SymbolicObjective>(
414        _gates: &[Box<dyn ParametricGate>],
415        objective: &O,
416        initial_parameters: HashMap<String, f64>,
417    ) -> QuantRS2Result<OptimizationResult> {
418        let optimizer = SymbolicOptimizer::default();
419        optimizer.optimize(objective, initial_parameters)
420    }
421
422    /// Extract parameters from a list of parametric gates
423    pub fn extract_circuit_parameters(gates: &[Box<dyn ParametricGate>]) -> Vec<String> {
424        let mut parameters = Vec::new();
425        for gate in gates {
426            parameters.extend(gate.parameter_names());
427        }
428        parameters.sort();
429        parameters.dedup();
430        parameters
431    }
432
433    /// Apply optimized parameters to a circuit
434    pub fn apply_optimized_parameters(
435        gates: &[Box<dyn ParametricGate>],
436        parameters: &HashMap<String, f64>,
437    ) -> QuantRS2Result<Vec<Box<dyn ParametricGate>>> {
438        let mut optimized_gates = Vec::new();
439
440        for gate in gates {
441            let param_assignments: Vec<(String, f64)> = gate
442                .parameter_names()
443                .into_iter()
444                .filter_map(|name| parameters.get(&name).map(|&value| (name, value)))
445                .collect();
446
447            let optimized_gate = gate.assign(&param_assignments)?;
448            optimized_gates.push(optimized_gate);
449        }
450
451        Ok(optimized_gates)
452    }
453}
454
455// Helper functions
456
457fn compute_pauli_expectation_real(
458    pauli_string: &crate::symbolic_hamiltonian::PauliString,
459    state_vector: &[Complex64],
460) -> QuantRS2Result<f64> {
461    // Simplified implementation - in practice you'd use more efficient algorithms
462    use crate::symbolic_hamiltonian::PauliOperator;
463
464    let n_qubits = pauli_string.n_qubits;
465    let n_states = 1 << n_qubits;
466
467    if state_vector.len() != n_states {
468        return Err(QuantRS2Error::InvalidInput(
469            "State vector size mismatch".to_string(),
470        ));
471    }
472
473    let mut expectation = 0.0;
474
475    for i in 0..n_states {
476        for j in 0..n_states {
477            let mut matrix_element = Complex64::new(1.0, 0.0);
478
479            for qubit in 0..n_qubits {
480                let op = pauli_string.get_operator(qubit.into());
481                let bit_i = (i >> qubit) & 1;
482                let bit_j = (j >> qubit) & 1;
483
484                let local_element = match op {
485                    PauliOperator::I => {
486                        if bit_i == bit_j {
487                            Complex64::new(1.0, 0.0)
488                        } else {
489                            Complex64::new(0.0, 0.0)
490                        }
491                    }
492                    PauliOperator::X => {
493                        if bit_i != bit_j {
494                            Complex64::new(1.0, 0.0)
495                        } else {
496                            Complex64::new(0.0, 0.0)
497                        }
498                    }
499                    PauliOperator::Y => {
500                        if bit_i != bit_j {
501                            if bit_j == 1 {
502                                Complex64::new(0.0, 1.0)
503                            } else {
504                                Complex64::new(0.0, -1.0)
505                            }
506                        } else {
507                            Complex64::new(0.0, 0.0)
508                        }
509                    }
510                    PauliOperator::Z => {
511                        if bit_i == bit_j {
512                            if bit_i == 0 {
513                                Complex64::new(1.0, 0.0)
514                            } else {
515                                Complex64::new(-1.0, 0.0)
516                            }
517                        } else {
518                            Complex64::new(0.0, 0.0)
519                        }
520                    }
521                };
522
523                matrix_element *= local_element;
524                if matrix_element.norm() < 1e-12 {
525                    break;
526                }
527            }
528
529            let contribution = state_vector[i].conj() * matrix_element * state_vector[j];
530            expectation += contribution.re;
531        }
532    }
533
534    Ok(expectation)
535}
536
537#[cfg(test)]
538mod tests {
539    use super::*;
540    use crate::parametric::Parameter;
541    use crate::qubit::QubitId;
542    use crate::symbolic_hamiltonian::hamiltonians;
543
544    #[test]
545    fn test_hamiltonian_expectation() {
546        let hamiltonian = hamiltonians::transverse_field_ising(
547            2,
548            Parameter::constant(1.0),
549            Parameter::constant(0.5),
550        );
551
552        let objective = HamiltonianExpectation::new(hamiltonian);
553        let parameters = HashMap::new();
554
555        let result = objective.evaluate(&parameters);
556        assert!(result.is_ok());
557    }
558
559    #[test]
560    fn test_qaoa_cost_function() {
561        let cost_h = hamiltonians::maxcut(&[(QubitId::from(0), QubitId::from(1), 1.0)], 2);
562        let mixer_h = hamiltonians::transverse_field_ising(
563            2,
564            Parameter::constant(0.0),
565            Parameter::constant(1.0),
566        );
567
568        let objective = QAOACostFunction::new(cost_h, mixer_h, 1);
569
570        let mut parameters = HashMap::new();
571        parameters.insert("gamma_0".to_string(), 0.5);
572        parameters.insert("beta_0".to_string(), 0.3);
573
574        let result = objective.evaluate(&parameters);
575        assert!(result.is_ok());
576
577        let gradients = objective.gradients(&parameters);
578        assert!(gradients.is_ok());
579    }
580
581    #[test]
582    fn test_symbolic_optimizer() {
583        let cost_h = hamiltonians::maxcut(&[(QubitId::from(0), QubitId::from(1), 1.0)], 2);
584        let mixer_h = hamiltonians::transverse_field_ising(
585            2,
586            Parameter::constant(0.0),
587            Parameter::constant(1.0),
588        );
589
590        let objective = QAOACostFunction::new(cost_h, mixer_h, 1);
591
592        let mut initial_params = HashMap::new();
593        initial_params.insert("gamma_0".to_string(), 1.0);
594        initial_params.insert("beta_0".to_string(), 1.0);
595
596        let mut config = SymbolicOptimizationConfig::default();
597        config.max_iterations = 10; // Limit for test
598
599        let optimizer = SymbolicOptimizer::new(config);
600        let result = optimizer.optimize(&objective, initial_params);
601
602        assert!(result.is_ok());
603        let opt_result = result.unwrap();
604        assert_eq!(opt_result.iterations, 10);
605    }
606}