quantrs2_core/qml/
training.rs

1//! Training utilities for quantum machine learning
2//!
3//! This module provides training loops, loss functions, and optimization
4//! strategies for quantum machine learning models.
5
6use super::{natural_gradient, quantum_fisher_information, QMLCircuit};
7use crate::{
8    error::{QuantRS2Error, QuantRS2Result},
9    gpu::GpuBackendFactory,
10};
11use ndarray::Array1;
12use std::collections::HashMap;
13// Note: scirs2_optimize functions would be used here if available
14
15/// Loss functions for QML
16#[derive(Debug, Clone, Copy)]
17pub enum LossFunction {
18    /// Mean squared error
19    MSE,
20    /// Cross entropy loss
21    CrossEntropy,
22    /// Fidelity loss
23    Fidelity,
24    /// Variational loss for VQE
25    Variational,
26    /// Custom loss function
27    Custom,
28}
29
30/// Optimizer for QML models
31#[derive(Debug, Clone)]
32pub enum Optimizer {
33    /// Gradient descent
34    GradientDescent { learning_rate: f64 },
35    /// Adam optimizer
36    Adam {
37        learning_rate: f64,
38        beta1: f64,
39        beta2: f64,
40        epsilon: f64,
41    },
42    /// Natural gradient descent
43    NaturalGradient {
44        learning_rate: f64,
45        regularization: f64,
46    },
47    /// BFGS optimizer
48    BFGS,
49    /// Quantum natural gradient
50    QuantumNatural {
51        learning_rate: f64,
52        regularization: f64,
53    },
54}
55
56/// Training configuration
57#[derive(Debug, Clone)]
58pub struct TrainingConfig {
59    /// Maximum number of epochs
60    pub max_epochs: usize,
61    /// Batch size
62    pub batch_size: usize,
63    /// Convergence tolerance
64    pub tolerance: f64,
65    /// Whether to use GPU acceleration
66    pub use_gpu: bool,
67    /// Validation split ratio
68    pub validation_split: f64,
69    /// Early stopping patience
70    pub early_stopping_patience: Option<usize>,
71    /// Gradient clipping value
72    pub gradient_clip: Option<f64>,
73}
74
75impl Default for TrainingConfig {
76    fn default() -> Self {
77        Self {
78            max_epochs: 100,
79            batch_size: 32,
80            tolerance: 1e-6,
81            use_gpu: true,
82            validation_split: 0.2,
83            early_stopping_patience: Some(10),
84            gradient_clip: Some(1.0),
85        }
86    }
87}
88
89/// Training metrics
90#[derive(Debug, Clone, Default)]
91pub struct TrainingMetrics {
92    /// Loss history
93    pub loss_history: Vec<f64>,
94    /// Validation loss history
95    pub val_loss_history: Vec<f64>,
96    /// Gradient norms
97    pub gradient_norms: Vec<f64>,
98    /// Parameter history
99    pub parameter_history: Vec<Vec<f64>>,
100    /// Best validation loss
101    pub best_val_loss: f64,
102    /// Best parameters
103    pub best_parameters: Vec<f64>,
104}
105
106/// QML trainer
107pub struct QMLTrainer {
108    /// The quantum circuit
109    circuit: QMLCircuit,
110    /// Loss function
111    loss_fn: LossFunction,
112    /// Optimizer
113    optimizer: Optimizer,
114    /// Training configuration
115    config: TrainingConfig,
116    /// Training metrics
117    metrics: TrainingMetrics,
118    /// Adam optimizer state
119    adam_state: Option<AdamState>,
120}
121
122/// Adam optimizer state
123#[derive(Debug, Clone)]
124struct AdamState {
125    m: Vec<f64>, // First moment
126    v: Vec<f64>, // Second moment
127    t: usize,    // Time step
128}
129
130impl QMLTrainer {
131    /// Create a new trainer
132    pub fn new(
133        circuit: QMLCircuit,
134        loss_fn: LossFunction,
135        optimizer: Optimizer,
136        config: TrainingConfig,
137    ) -> Self {
138        let num_params = circuit.num_parameters;
139        let adam_state = match &optimizer {
140            Optimizer::Adam { .. } => Some(AdamState {
141                m: vec![0.0; num_params],
142                v: vec![0.0; num_params],
143                t: 0,
144            }),
145            _ => None,
146        };
147
148        Self {
149            circuit,
150            loss_fn,
151            optimizer,
152            config,
153            metrics: TrainingMetrics::default(),
154            adam_state,
155        }
156    }
157
158    /// Train the model
159    pub fn train(
160        &mut self,
161        train_data: &[(Vec<f64>, Vec<f64>)],
162        val_data: Option<&[(Vec<f64>, Vec<f64>)]>,
163    ) -> QuantRS2Result<TrainingMetrics> {
164        // Initialize GPU if requested
165        let gpu_backend = if self.config.use_gpu {
166            Some(GpuBackendFactory::create_best_available()?)
167        } else {
168            None
169        };
170
171        let mut best_val_loss = f64::INFINITY;
172        let mut patience_counter = 0;
173
174        for epoch in 0..self.config.max_epochs {
175            // Training step
176            let train_loss = self.train_epoch(train_data, &gpu_backend)?;
177            self.metrics.loss_history.push(train_loss);
178
179            // Validation step
180            if let Some(val_data) = val_data {
181                let val_loss = self.evaluate(val_data, &gpu_backend)?;
182                self.metrics.val_loss_history.push(val_loss);
183
184                // Early stopping
185                if val_loss < best_val_loss {
186                    best_val_loss = val_loss;
187                    self.metrics.best_val_loss = val_loss;
188                    self.metrics.best_parameters = self.get_parameters();
189                    patience_counter = 0;
190                } else if let Some(patience) = self.config.early_stopping_patience {
191                    patience_counter += 1;
192                    if patience_counter >= patience {
193                        println!("Early stopping at epoch {}", epoch);
194                        break;
195                    }
196                }
197            }
198
199            // Check convergence
200            if epoch > 0 {
201                let loss_change =
202                    (self.metrics.loss_history[epoch] - self.metrics.loss_history[epoch - 1]).abs();
203                if loss_change < self.config.tolerance {
204                    println!("Converged at epoch {}", epoch);
205                    break;
206                }
207            }
208
209            // Log progress
210            if epoch % 10 == 0 {
211                println!("Epoch {}: train_loss = {:.6}", epoch, train_loss);
212                if let Some(val_loss) = self.metrics.val_loss_history.last() {
213                    println!("         val_loss = {:.6}", val_loss);
214                }
215            }
216        }
217
218        Ok(self.metrics.clone())
219    }
220
221    /// Train for one epoch
222    fn train_epoch(
223        &mut self,
224        data: &[(Vec<f64>, Vec<f64>)],
225        gpu_backend: &Option<std::sync::Arc<dyn crate::gpu::GpuBackend>>,
226    ) -> QuantRS2Result<f64> {
227        let mut epoch_loss = 0.0;
228        let num_batches = (data.len() + self.config.batch_size - 1) / self.config.batch_size;
229
230        for batch_idx in 0..num_batches {
231            let start = batch_idx * self.config.batch_size;
232            let end = (start + self.config.batch_size).min(data.len());
233            let batch = &data[start..end];
234
235            // Compute gradients for batch
236            let (loss, gradients) = self.compute_batch_gradients(batch, gpu_backend)?;
237            epoch_loss += loss;
238
239            // Apply gradient clipping if configured
240            let clipped_gradients = if let Some(clip_value) = self.config.gradient_clip {
241                self.clip_gradients(&gradients, clip_value)
242            } else {
243                gradients
244            };
245
246            // Update parameters
247            self.update_parameters(&clipped_gradients)?;
248
249            // Record gradient norm
250            let grad_norm = clipped_gradients.iter().map(|g| g * g).sum::<f64>().sqrt();
251            self.metrics.gradient_norms.push(grad_norm);
252        }
253
254        Ok(epoch_loss / num_batches as f64)
255    }
256
257    /// Compute gradients for a batch
258    fn compute_batch_gradients(
259        &self,
260        batch: &[(Vec<f64>, Vec<f64>)],
261        gpu_backend: &Option<std::sync::Arc<dyn crate::gpu::GpuBackend>>,
262    ) -> QuantRS2Result<(f64, Vec<f64>)> {
263        let mut total_loss = 0.0;
264        let mut total_gradients = vec![0.0; self.circuit.num_parameters];
265
266        for (input, target) in batch {
267            // Forward pass
268            let output = self.forward(input, gpu_backend)?;
269
270            // Compute loss
271            let loss = self.compute_loss(&output, target)?;
272            total_loss += loss;
273
274            // Compute gradients (placeholder - would use parameter shift rule)
275            let gradients = vec![0.0; self.circuit.num_parameters]; // Placeholder
276
277            // Accumulate gradients
278            for (i, &grad) in gradients.iter().enumerate() {
279                total_gradients[i] += grad;
280            }
281        }
282
283        // Average over batch
284        let batch_size = batch.len() as f64;
285        total_loss /= batch_size;
286        for grad in &mut total_gradients {
287            *grad /= batch_size;
288        }
289
290        Ok((total_loss, total_gradients))
291    }
292
293    /// Forward pass through the circuit
294    fn forward(
295        &self,
296        input: &[f64],
297        _gpu_backend: &Option<std::sync::Arc<dyn crate::gpu::GpuBackend>>,
298    ) -> QuantRS2Result<Vec<f64>> {
299        // This is a placeholder implementation
300        // In practice, would:
301        // 1. Encode input data
302        // 2. Apply circuit gates
303        // 3. Measure or compute expectation values
304        // 4. Return output
305
306        Ok(vec![0.5; input.len()])
307    }
308
309    /// Compute loss
310    fn compute_loss(&self, output: &[f64], target: &[f64]) -> QuantRS2Result<f64> {
311        if output.len() != target.len() {
312            return Err(QuantRS2Error::InvalidInput(
313                "Output and target dimensions mismatch".to_string(),
314            ));
315        }
316
317        match self.loss_fn {
318            LossFunction::MSE => {
319                let mse = output
320                    .iter()
321                    .zip(target.iter())
322                    .map(|(o, t)| (o - t).powi(2))
323                    .sum::<f64>()
324                    / output.len() as f64;
325                Ok(mse)
326            }
327            LossFunction::CrossEntropy => {
328                let epsilon = 1e-10;
329                let ce = -output
330                    .iter()
331                    .zip(target.iter())
332                    .map(|(o, t)| t * (o + epsilon).ln())
333                    .sum::<f64>()
334                    / output.len() as f64;
335                Ok(ce)
336            }
337            _ => Ok(0.0), // Placeholder for other loss functions
338        }
339    }
340
341    /// Update parameters using the optimizer
342    fn update_parameters(&mut self, gradients: &[f64]) -> QuantRS2Result<()> {
343        let current_params = self.get_parameters();
344        let new_params = match &mut self.optimizer {
345            Optimizer::GradientDescent { learning_rate } => current_params
346                .iter()
347                .zip(gradients.iter())
348                .map(|(p, g)| p - *learning_rate * g)
349                .collect(),
350
351            Optimizer::Adam {
352                learning_rate,
353                beta1,
354                beta2,
355                epsilon,
356            } => {
357                if let Some(state) = &mut self.adam_state {
358                    state.t += 1;
359                    let t = state.t as f64;
360
361                    let mut new_params = vec![0.0; current_params.len()];
362                    for i in 0..current_params.len() {
363                        // Update biased first moment estimate
364                        state.m[i] = *beta1 * state.m[i] + (1.0 - *beta1) * gradients[i];
365
366                        // Update biased second raw moment estimate
367                        state.v[i] = *beta2 * state.v[i] + (1.0 - *beta2) * gradients[i].powi(2);
368
369                        // Compute bias-corrected first moment estimate
370                        let m_hat = state.m[i] / (1.0 - beta1.powf(t));
371
372                        // Compute bias-corrected second raw moment estimate
373                        let v_hat = state.v[i] / (1.0 - beta2.powf(t));
374
375                        // Update parameters
376                        new_params[i] =
377                            current_params[i] - *learning_rate * m_hat / (v_hat.sqrt() + *epsilon);
378                    }
379                    new_params
380                } else {
381                    current_params
382                }
383            }
384
385            Optimizer::QuantumNatural {
386                learning_rate: _,
387                regularization,
388            } => {
389                // Compute quantum Fisher information
390                let state = Array1::zeros(1 << self.circuit.config.num_qubits);
391                let fisher = quantum_fisher_information(&self.circuit, &state)?;
392
393                // Compute natural gradient
394                natural_gradient(gradients, &fisher, *regularization)?
395            }
396
397            _ => current_params, // Placeholder for other optimizers
398        };
399
400        self.circuit.set_parameters(&new_params)?;
401        self.metrics.parameter_history.push(new_params);
402
403        Ok(())
404    }
405
406    /// Clip gradients
407    fn clip_gradients(&self, gradients: &[f64], clip_value: f64) -> Vec<f64> {
408        let norm = gradients.iter().map(|g| g * g).sum::<f64>().sqrt();
409
410        if norm > clip_value {
411            gradients.iter().map(|g| g * clip_value / norm).collect()
412        } else {
413            gradients.to_vec()
414        }
415    }
416
417    /// Evaluate on a dataset
418    fn evaluate(
419        &self,
420        data: &[(Vec<f64>, Vec<f64>)],
421        gpu_backend: &Option<std::sync::Arc<dyn crate::gpu::GpuBackend>>,
422    ) -> QuantRS2Result<f64> {
423        let mut total_loss = 0.0;
424
425        for (input, target) in data {
426            let output = self.forward(input, gpu_backend)?;
427            let loss = self.compute_loss(&output, target)?;
428            total_loss += loss;
429        }
430
431        Ok(total_loss / data.len() as f64)
432    }
433
434    /// Get current parameters
435    fn get_parameters(&self) -> Vec<f64> {
436        self.circuit.parameters().iter().map(|p| p.value).collect()
437    }
438}
439
440/// Hyperparameter optimization for QML
441pub struct HyperparameterOptimizer {
442    /// Search space
443    search_space: HashMap<String, (f64, f64)>,
444    /// Number of trials
445    num_trials: usize,
446    /// Optimization strategy
447    strategy: HPOStrategy,
448}
449
450#[derive(Debug, Clone, Copy)]
451pub enum HPOStrategy {
452    /// Random search
453    Random,
454    /// Grid search
455    Grid,
456    /// Bayesian optimization
457    Bayesian,
458}
459
460impl HyperparameterOptimizer {
461    /// Create a new hyperparameter optimizer
462    pub fn new(
463        search_space: HashMap<String, (f64, f64)>,
464        num_trials: usize,
465        strategy: HPOStrategy,
466    ) -> Self {
467        Self {
468            search_space,
469            num_trials,
470            strategy,
471        }
472    }
473
474    /// Run hyperparameter optimization
475    pub fn optimize<F>(&self, _objective: F) -> QuantRS2Result<HashMap<String, f64>>
476    where
477        F: Fn(&HashMap<String, f64>) -> QuantRS2Result<f64>,
478    {
479        // Placeholder implementation
480        // Would implement actual HPO strategies here
481        Ok(HashMap::new())
482    }
483}
484
485#[cfg(test)]
486mod tests {
487    use super::*;
488    use crate::qml::QMLConfig;
489
490    #[test]
491    fn test_trainer_creation() {
492        let config = QMLConfig::default();
493        let circuit = QMLCircuit::new(config);
494
495        let trainer = QMLTrainer::new(
496            circuit,
497            LossFunction::MSE,
498            Optimizer::Adam {
499                learning_rate: 0.01,
500                beta1: 0.9,
501                beta2: 0.999,
502                epsilon: 1e-8,
503            },
504            TrainingConfig::default(),
505        );
506
507        assert_eq!(trainer.metrics.loss_history.len(), 0);
508    }
509
510    #[test]
511    fn test_gradient_clipping() {
512        let config = QMLConfig::default();
513        let circuit = QMLCircuit::new(config);
514        let trainer = QMLTrainer::new(
515            circuit,
516            LossFunction::MSE,
517            Optimizer::GradientDescent { learning_rate: 0.1 },
518            TrainingConfig::default(),
519        );
520
521        let gradients = vec![3.0, 4.0]; // Norm = 5
522        let clipped = trainer.clip_gradients(&gradients, 1.0);
523
524        let norm = clipped.iter().map(|g| g * g).sum::<f64>().sqrt();
525        assert!((norm - 1.0).abs() < 1e-10);
526    }
527
528    #[test]
529    fn test_loss_computation() {
530        let config = QMLConfig::default();
531        let circuit = QMLCircuit::new(config);
532        let trainer = QMLTrainer::new(
533            circuit,
534            LossFunction::MSE,
535            Optimizer::GradientDescent { learning_rate: 0.1 },
536            TrainingConfig::default(),
537        );
538
539        let output = vec![0.0, 0.5, 1.0];
540        let target = vec![0.0, 0.0, 1.0];
541
542        let loss = trainer.compute_loss(&output, &target).unwrap();
543        assert!((loss - 0.25 / 3.0).abs() < 1e-10); // MSE = (0 + 0.25 + 0) / 3
544    }
545}