quantrs2_core/qml/
generative_adversarial.rs

1//! Quantum Generative Adversarial Networks (QGANs)
2//!
3//! This module implements quantum generative adversarial networks, leveraging
4//! quantum circuits for both generator and discriminator networks to achieve
5//! quantum advantage in generative modeling tasks.
6
7use crate::{
8    error::QuantRS2Result, gate::multi::*, gate::single::*, gate::GateOp, qubit::QubitId,
9    variational::VariationalOptimizer,
10};
11use ndarray::{Array1, Array2, Axis};
12use rand::{rngs::StdRng, Rng, SeedableRng};
13use serde::{Deserialize, Serialize};
14use std::collections::VecDeque;
15
16/// Configuration for Quantum Generative Adversarial Networks
17#[derive(Debug, Clone, Serialize, Deserialize)]
18pub struct QGANConfig {
19    /// Number of qubits for the generator
20    pub generator_qubits: usize,
21    /// Number of qubits for the discriminator
22    pub discriminator_qubits: usize,
23    /// Number of qubits for latent (noise) space
24    pub latent_qubits: usize,
25    /// Number of qubits for data representation
26    pub data_qubits: usize,
27    /// Generator learning rate
28    pub generator_lr: f64,
29    /// Discriminator learning rate
30    pub discriminator_lr: f64,
31    /// Number of generator layers
32    pub generator_depth: usize,
33    /// Number of discriminator layers
34    pub discriminator_depth: usize,
35    /// Batch size for training
36    pub batch_size: usize,
37    /// Training iterations
38    pub max_iterations: usize,
39    /// Generator training frequency (train generator every N discriminator updates)
40    pub generator_frequency: usize,
41    /// Whether to use quantum advantage techniques
42    pub use_quantum_advantage: bool,
43    /// Noise distribution type
44    pub noise_type: NoiseType,
45    /// Regularization strength
46    pub regularization: f64,
47    /// Random seed
48    pub random_seed: Option<u64>,
49}
50
51impl Default for QGANConfig {
52    fn default() -> Self {
53        Self {
54            generator_qubits: 6,
55            discriminator_qubits: 6,
56            latent_qubits: 4,
57            data_qubits: 4,
58            generator_lr: 0.01,
59            discriminator_lr: 0.01,
60            generator_depth: 8,
61            discriminator_depth: 6,
62            batch_size: 16,
63            max_iterations: 1000,
64            generator_frequency: 1,
65            use_quantum_advantage: true,
66            noise_type: NoiseType::Gaussian,
67            regularization: 0.001,
68            random_seed: None,
69        }
70    }
71}
72
73/// Types of noise distributions for the generator
74#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
75pub enum NoiseType {
76    /// Gaussian (normal) distribution
77    Gaussian,
78    /// Uniform distribution
79    Uniform,
80    /// Quantum superposition state
81    QuantumSuperposition,
82    /// Hardware-efficient basis states
83    BasisStates,
84}
85
86/// Quantum Generative Adversarial Network
87pub struct QGAN {
88    /// Configuration
89    config: QGANConfig,
90    /// Generator network
91    generator: QuantumGenerator,
92    /// Discriminator network
93    discriminator: QuantumDiscriminator,
94    /// Training statistics
95    training_stats: QGANTrainingStats,
96    /// Random number generator
97    rng: StdRng,
98    /// Current iteration
99    iteration: usize,
100}
101
102/// Quantum generator network
103pub struct QuantumGenerator {
104    /// Quantum circuit for generation
105    circuit: QuantumGeneratorCircuit,
106    /// Variational parameters
107    parameters: Array1<f64>,
108    /// Optimizer for parameter updates
109    #[allow(dead_code)]
110    optimizer: VariationalOptimizer,
111    /// Parameter gradients history for momentum
112    gradient_history: VecDeque<Array1<f64>>,
113}
114
115/// Quantum discriminator network
116pub struct QuantumDiscriminator {
117    /// Quantum circuit for discrimination
118    circuit: QuantumDiscriminatorCircuit,
119    /// Variational parameters
120    parameters: Array1<f64>,
121    /// Optimizer for parameter updates
122    #[allow(dead_code)]
123    optimizer: VariationalOptimizer,
124    /// Parameter gradients history
125    gradient_history: VecDeque<Array1<f64>>,
126}
127
128/// Quantum circuit for the generator
129#[derive(Debug, Clone)]
130pub struct QuantumGeneratorCircuit {
131    /// Number of latent qubits
132    latent_qubits: usize,
133    /// Number of data qubits
134    data_qubits: usize,
135    /// Circuit depth
136    depth: usize,
137    /// Total number of qubits
138    total_qubits: usize,
139    /// Noise type for initialization
140    noise_type: NoiseType,
141}
142
143/// Quantum circuit for the discriminator
144#[derive(Debug, Clone)]
145pub struct QuantumDiscriminatorCircuit {
146    /// Number of data qubits
147    data_qubits: usize,
148    /// Number of auxiliary qubits for computation
149    aux_qubits: usize,
150    /// Circuit depth
151    depth: usize,
152    /// Total number of qubits
153    total_qubits: usize,
154}
155
156/// Training statistics for QGAN
157#[derive(Debug, Clone, Default)]
158pub struct QGANTrainingStats {
159    /// Generator loss over iterations
160    pub generator_losses: Vec<f64>,
161    /// Discriminator loss over iterations
162    pub discriminator_losses: Vec<f64>,
163    /// Fidelity between generated and real data
164    pub fidelities: Vec<f64>,
165    /// Training time per iteration
166    pub iteration_times: Vec<f64>,
167    /// Convergence metrics
168    pub convergence_metrics: Vec<f64>,
169}
170
171/// Training metrics for a single iteration
172#[derive(Debug, Clone)]
173pub struct QGANIterationMetrics {
174    /// Generator loss
175    pub generator_loss: f64,
176    /// Discriminator loss
177    pub discriminator_loss: f64,
178    /// Real data accuracy (discriminator on real data)
179    pub real_accuracy: f64,
180    /// Fake data accuracy (discriminator on generated data)
181    pub fake_accuracy: f64,
182    /// Fidelity between generated and real distributions
183    pub fidelity: f64,
184    /// Iteration number
185    pub iteration: usize,
186}
187
188impl QGAN {
189    /// Create a new Quantum GAN
190    pub fn new(config: QGANConfig) -> QuantRS2Result<Self> {
191        let rng = match config.random_seed {
192            Some(seed) => StdRng::seed_from_u64(seed),
193            None => StdRng::from_seed([0; 32]), // Use fixed seed for StdRng
194        };
195
196        let generator = QuantumGenerator::new(&config)?;
197        let discriminator = QuantumDiscriminator::new(&config)?;
198
199        Ok(Self {
200            config,
201            generator,
202            discriminator,
203            training_stats: QGANTrainingStats::default(),
204            rng,
205            iteration: 0,
206        })
207    }
208
209    /// Train the QGAN on real data
210    pub fn train(&mut self, real_data: &Array2<f64>) -> QuantRS2Result<QGANIterationMetrics> {
211        let batch_size = self.config.batch_size.min(real_data.nrows());
212
213        // Sample a batch of real data
214        let real_batch = self.sample_real_data_batch(real_data, batch_size)?;
215
216        // Generate fake data
217        let fake_batch = self.generate_fake_data_batch(batch_size)?;
218
219        // Train discriminator
220        let (d_loss_real, d_loss_fake) = self.train_discriminator(&real_batch, &fake_batch)?;
221        let discriminator_loss = d_loss_real + d_loss_fake;
222
223        // Train generator (less frequently to maintain balance)
224        let generator_loss = if self.iteration % self.config.generator_frequency == 0 {
225            self.train_generator(batch_size)?
226        } else {
227            0.0
228        };
229
230        // Compute metrics
231        let real_accuracy = self.compute_discriminator_accuracy(&real_batch, true)?;
232        let fake_accuracy = self.compute_discriminator_accuracy(&fake_batch, false)?;
233        let fidelity = self.compute_fidelity(&real_batch, &fake_batch)?;
234
235        // Update statistics
236        self.training_stats.generator_losses.push(generator_loss);
237        self.training_stats
238            .discriminator_losses
239            .push(discriminator_loss);
240        self.training_stats.fidelities.push(fidelity);
241
242        let metrics = QGANIterationMetrics {
243            generator_loss,
244            discriminator_loss,
245            real_accuracy,
246            fake_accuracy,
247            fidelity,
248            iteration: self.iteration,
249        };
250
251        self.iteration += 1;
252
253        Ok(metrics)
254    }
255
256    /// Generate fake data using the current generator
257    pub fn generate_data(&mut self, num_samples: usize) -> QuantRS2Result<Array2<f64>> {
258        self.generate_fake_data_batch(num_samples)
259    }
260
261    /// Evaluate the discriminator on data
262    pub fn discriminate(&self, data: &Array2<f64>) -> QuantRS2Result<Array1<f64>> {
263        let num_samples = data.nrows();
264        let mut scores = Array1::zeros(num_samples);
265
266        for i in 0..num_samples {
267            let sample = data.row(i).to_owned();
268            scores[i] = self.discriminator.discriminate(&sample)?;
269        }
270
271        Ok(scores)
272    }
273
274    /// Sample real data batch
275    fn sample_real_data_batch(
276        &mut self,
277        real_data: &Array2<f64>,
278        batch_size: usize,
279    ) -> QuantRS2Result<Array2<f64>> {
280        let num_samples = real_data.nrows();
281        let mut batch = Array2::zeros((batch_size, real_data.ncols()));
282
283        for i in 0..batch_size {
284            let idx = self.rng.random_range(0..num_samples);
285            batch.row_mut(i).assign(&real_data.row(idx));
286        }
287
288        Ok(batch)
289    }
290
291    /// Generate fake data batch
292    fn generate_fake_data_batch(&mut self, batch_size: usize) -> QuantRS2Result<Array2<f64>> {
293        let mut fake_batch = Array2::zeros((batch_size, self.config.data_qubits));
294
295        for i in 0..batch_size {
296            let noise = self.sample_noise()?;
297            let generated_sample = self.generator.generate(&noise)?;
298            fake_batch.row_mut(i).assign(&generated_sample);
299        }
300
301        Ok(fake_batch)
302    }
303
304    /// Sample noise vector for generator input
305    fn sample_noise(&mut self) -> QuantRS2Result<Array1<f64>> {
306        let mut noise = Array1::zeros(self.config.latent_qubits);
307
308        match self.config.noise_type {
309            NoiseType::Gaussian => {
310                for i in 0..self.config.latent_qubits {
311                    noise[i] = self.rng.random::<f64>() * 2.0 - 1.0; // Normal-like distribution
312                }
313            }
314            NoiseType::Uniform => {
315                for i in 0..self.config.latent_qubits {
316                    noise[i] = self.rng.random::<f64>() * 2.0 * std::f64::consts::PI
317                        - std::f64::consts::PI;
318                }
319            }
320            NoiseType::QuantumSuperposition => {
321                // Initialize in superposition state
322                for i in 0..self.config.latent_qubits {
323                    noise[i] = std::f64::consts::PI / 2.0; // Hadamard-like angle
324                }
325            }
326            NoiseType::BasisStates => {
327                // Random computational basis state
328                let state = self.rng.random_range(0..(1 << self.config.latent_qubits));
329                for i in 0..self.config.latent_qubits {
330                    noise[i] = if (state >> i) & 1 == 1 {
331                        std::f64::consts::PI
332                    } else {
333                        0.0
334                    };
335                }
336            }
337        }
338
339        Ok(noise)
340    }
341
342    /// Train discriminator on real and fake data
343    fn train_discriminator(
344        &mut self,
345        real_batch: &Array2<f64>,
346        fake_batch: &Array2<f64>,
347    ) -> QuantRS2Result<(f64, f64)> {
348        // Train on real data (target = 1)
349        let d_loss_real = self
350            .discriminator
351            .train_batch(real_batch, &Array1::ones(real_batch.nrows()))?;
352
353        // Train on fake data (target = 0)
354        let d_loss_fake = self
355            .discriminator
356            .train_batch(fake_batch, &Array1::zeros(fake_batch.nrows()))?;
357
358        Ok((d_loss_real, d_loss_fake))
359    }
360
361    /// Train generator to fool discriminator
362    fn train_generator(&mut self, batch_size: usize) -> QuantRS2Result<f64> {
363        // Generate fake data
364        let fake_batch = self.generate_fake_data_batch(batch_size)?;
365
366        // Get discriminator scores for fake data
367        let discriminator_scores = self.discriminate(&fake_batch)?;
368
369        // Generator loss: want discriminator to output 1 for fake data
370        let targets = Array1::ones(batch_size);
371        let generator_loss =
372            self.generator
373                .train_adversarial(&fake_batch, &targets, &discriminator_scores)?;
374
375        Ok(generator_loss)
376    }
377
378    /// Compute discriminator accuracy
379    fn compute_discriminator_accuracy(
380        &self,
381        data: &Array2<f64>,
382        is_real: bool,
383    ) -> QuantRS2Result<f64> {
384        let scores = self.discriminate(data)?;
385        let threshold = 0.5;
386        let _target = if is_real { 1.0 } else { 0.0 };
387
388        let correct = scores
389            .iter()
390            .map(|&score| {
391                if (score > threshold) == is_real {
392                    1.0
393                } else {
394                    0.0
395                }
396            })
397            .sum::<f64>();
398
399        Ok(correct / data.nrows() as f64)
400    }
401
402    /// Compute fidelity between real and generated data distributions
403    fn compute_fidelity(
404        &self,
405        real_batch: &Array2<f64>,
406        fake_batch: &Array2<f64>,
407    ) -> QuantRS2Result<f64> {
408        // Simplified fidelity computation using mean and variance
409        let real_mean = real_batch.mean_axis(Axis(0)).unwrap();
410        let fake_mean = fake_batch.mean_axis(Axis(0)).unwrap();
411
412        let real_var = real_batch.var_axis(Axis(0), 0.0);
413        let fake_var = fake_batch.var_axis(Axis(0), 0.0);
414
415        // Approximate fidelity based on Gaussian distributions
416        let mean_diff = (&real_mean - &fake_mean).mapv(|x| x.powi(2)).sum().sqrt();
417        let var_diff = (&real_var - &fake_var).mapv(|x| x.powi(2)).sum().sqrt();
418
419        let fidelity = (-0.5 * (mean_diff + var_diff)).exp();
420
421        Ok(fidelity)
422    }
423
424    /// Get training statistics
425    pub fn get_training_stats(&self) -> &QGANTrainingStats {
426        &self.training_stats
427    }
428
429    /// Check if training has converged
430    pub fn has_converged(&self, tolerance: f64, window: usize) -> bool {
431        if self.training_stats.fidelities.len() < window {
432            return false;
433        }
434
435        let recent_fidelities =
436            &self.training_stats.fidelities[self.training_stats.fidelities.len() - window..];
437        let mean_fidelity = recent_fidelities.iter().sum::<f64>() / window as f64;
438
439        mean_fidelity > 1.0 - tolerance
440    }
441}
442
443impl QuantumGenerator {
444    /// Create a new quantum generator
445    fn new(config: &QGANConfig) -> QuantRS2Result<Self> {
446        let circuit = QuantumGeneratorCircuit::new(
447            config.latent_qubits,
448            config.data_qubits,
449            config.generator_depth,
450            config.noise_type,
451        )?;
452
453        let num_parameters = circuit.get_parameter_count();
454        let mut parameters = Array1::zeros(num_parameters);
455
456        // Initialize parameters randomly
457        let mut rng = match config.random_seed {
458            Some(seed) => StdRng::seed_from_u64(seed),
459            None => StdRng::from_seed([0; 32]),
460        };
461
462        for param in parameters.iter_mut() {
463            *param = rng.random_range(-std::f64::consts::PI..std::f64::consts::PI);
464        }
465
466        let optimizer = VariationalOptimizer::new(0.01, 0.9);
467        let gradient_history = VecDeque::with_capacity(10);
468
469        Ok(Self {
470            circuit,
471            parameters,
472            optimizer,
473            gradient_history,
474        })
475    }
476
477    /// Generate data from noise
478    fn generate(&self, noise: &Array1<f64>) -> QuantRS2Result<Array1<f64>> {
479        self.circuit.generate_data(noise, &self.parameters)
480    }
481
482    /// Train generator using adversarial loss
483    fn train_adversarial(
484        &mut self,
485        generated_data: &Array2<f64>,
486        targets: &Array1<f64>,
487        discriminator_scores: &Array1<f64>,
488    ) -> QuantRS2Result<f64> {
489        let batch_size = generated_data.nrows();
490        let mut total_loss = 0.0;
491
492        for i in 0..batch_size {
493            let data_sample = generated_data.row(i).to_owned();
494            let target = targets[i];
495            let score = discriminator_scores[i];
496
497            // Adversarial loss: want discriminator to output 1 (think data is real)
498            let loss = (score - target).powi(2);
499            total_loss += loss;
500
501            // Compute gradients and update parameters
502            let gradients = self.circuit.compute_adversarial_gradients(
503                &data_sample,
504                target,
505                score,
506                &self.parameters,
507            )?;
508            self.update_parameters(&gradients, 0.01)?; // Use config learning rate
509        }
510
511        Ok(total_loss / batch_size as f64)
512    }
513
514    /// Update generator parameters
515    fn update_parameters(
516        &mut self,
517        gradients: &Array1<f64>,
518        learning_rate: f64,
519    ) -> QuantRS2Result<()> {
520        // Apply momentum if we have gradient history
521        let mut effective_gradients = gradients.clone();
522
523        if let Some(prev_gradients) = self.gradient_history.back() {
524            let momentum = 0.9;
525            effective_gradients = &effective_gradients + &(prev_gradients * momentum);
526        }
527
528        // Update parameters
529        for (param, &grad) in self.parameters.iter_mut().zip(effective_gradients.iter()) {
530            *param -= learning_rate * grad;
531        }
532
533        // Store gradients for momentum
534        self.gradient_history.push_back(effective_gradients);
535        if self.gradient_history.len() > 10 {
536            self.gradient_history.pop_front();
537        }
538
539        Ok(())
540    }
541}
542
543impl QuantumDiscriminator {
544    /// Create a new quantum discriminator
545    fn new(config: &QGANConfig) -> QuantRS2Result<Self> {
546        let circuit = QuantumDiscriminatorCircuit::new(
547            config.data_qubits,
548            config.discriminator_qubits - config.data_qubits,
549            config.discriminator_depth,
550        )?;
551
552        let num_parameters = circuit.get_parameter_count();
553        let mut parameters = Array1::zeros(num_parameters);
554
555        // Initialize parameters randomly
556        let mut rng = match config.random_seed {
557            Some(seed) => StdRng::seed_from_u64(seed),
558            None => StdRng::from_seed([0; 32]),
559        };
560
561        for param in parameters.iter_mut() {
562            *param = rng.random_range(-std::f64::consts::PI..std::f64::consts::PI);
563        }
564
565        let optimizer = VariationalOptimizer::new(0.01, 0.9);
566        let gradient_history = VecDeque::with_capacity(10);
567
568        Ok(Self {
569            circuit,
570            parameters,
571            optimizer,
572            gradient_history,
573        })
574    }
575
576    /// Discriminate between real and fake data
577    fn discriminate(&self, data: &Array1<f64>) -> QuantRS2Result<f64> {
578        self.circuit.discriminate_data(data, &self.parameters)
579    }
580
581    /// Train discriminator on a batch of data
582    fn train_batch(
583        &mut self,
584        data_batch: &Array2<f64>,
585        targets: &Array1<f64>,
586    ) -> QuantRS2Result<f64> {
587        let batch_size = data_batch.nrows();
588        let mut total_loss = 0.0;
589
590        for i in 0..batch_size {
591            let data_sample = data_batch.row(i).to_owned();
592            let target = targets[i];
593
594            // Get current prediction
595            let prediction = self.discriminate(&data_sample)?;
596
597            // Binary cross-entropy loss
598            let loss = -(target * prediction.ln() + (1.0 - target) * (1.0 - prediction).ln());
599            total_loss += loss;
600
601            // Compute gradients and update parameters
602            let gradients = self.circuit.compute_discriminator_gradients(
603                &data_sample,
604                target,
605                prediction,
606                &self.parameters,
607            )?;
608            self.update_parameters(&gradients, 0.01)?; // Use config learning rate
609        }
610
611        Ok(total_loss / batch_size as f64)
612    }
613
614    /// Update discriminator parameters
615    fn update_parameters(
616        &mut self,
617        gradients: &Array1<f64>,
618        learning_rate: f64,
619    ) -> QuantRS2Result<()> {
620        // Apply momentum if we have gradient history
621        let mut effective_gradients = gradients.clone();
622
623        if let Some(prev_gradients) = self.gradient_history.back() {
624            let momentum = 0.9;
625            effective_gradients = &effective_gradients + &(prev_gradients * momentum);
626        }
627
628        // Update parameters
629        for (param, &grad) in self.parameters.iter_mut().zip(effective_gradients.iter()) {
630            *param -= learning_rate * grad;
631        }
632
633        // Store gradients for momentum
634        self.gradient_history.push_back(effective_gradients);
635        if self.gradient_history.len() > 10 {
636            self.gradient_history.pop_front();
637        }
638
639        Ok(())
640    }
641}
642
643impl QuantumGeneratorCircuit {
644    /// Create a new quantum generator circuit
645    fn new(
646        latent_qubits: usize,
647        data_qubits: usize,
648        depth: usize,
649        noise_type: NoiseType,
650    ) -> QuantRS2Result<Self> {
651        let total_qubits = latent_qubits + data_qubits;
652
653        Ok(Self {
654            latent_qubits,
655            data_qubits,
656            depth,
657            total_qubits,
658            noise_type,
659        })
660    }
661
662    /// Get number of parameters in the circuit
663    fn get_parameter_count(&self) -> usize {
664        let total_qubits = self.latent_qubits + self.data_qubits;
665        // Each layer: rotation gates (3 per qubit) + entangling gates
666        let rotations_per_layer = total_qubits * 3;
667        let entangling_per_layer = total_qubits; // Simplified
668        self.depth * (rotations_per_layer + entangling_per_layer)
669    }
670
671    /// Generate data from noise input
672    fn generate_data(
673        &self,
674        noise: &Array1<f64>,
675        parameters: &Array1<f64>,
676    ) -> QuantRS2Result<Array1<f64>> {
677        // Build quantum circuit
678        let mut gates = Vec::new();
679
680        // Initialize noise qubits
681        for i in 0..self.latent_qubits {
682            let noise_value = if i < noise.len() { noise[i] } else { 0.0 };
683            gates.push(Box::new(RotationY {
684                target: QubitId(i as u32),
685                theta: noise_value,
686            }) as Box<dyn GateOp>);
687        }
688
689        // Apply variational layers
690        let mut param_idx = 0;
691        for _layer in 0..self.depth {
692            // Rotation layer
693            for qubit in 0..self.latent_qubits + self.data_qubits {
694                if param_idx + 2 < parameters.len() {
695                    gates.push(Box::new(RotationX {
696                        target: QubitId(qubit as u32),
697                        theta: parameters[param_idx],
698                    }) as Box<dyn GateOp>);
699                    param_idx += 1;
700
701                    gates.push(Box::new(RotationY {
702                        target: QubitId(qubit as u32),
703                        theta: parameters[param_idx],
704                    }) as Box<dyn GateOp>);
705                    param_idx += 1;
706
707                    gates.push(Box::new(RotationZ {
708                        target: QubitId(qubit as u32),
709                        theta: parameters[param_idx],
710                    }) as Box<dyn GateOp>);
711                    param_idx += 1;
712                }
713            }
714
715            // Entangling layer
716            for qubit in 0..self.latent_qubits + self.data_qubits - 1 {
717                if param_idx < parameters.len() {
718                    gates.push(Box::new(CRZ {
719                        control: QubitId(qubit as u32),
720                        target: QubitId((qubit + 1) as u32),
721                        theta: parameters[param_idx],
722                    }) as Box<dyn GateOp>);
723                    param_idx += 1;
724                }
725            }
726        }
727
728        // Simulate circuit and extract data qubits
729        let generated_data = self.simulate_generation_circuit(&gates)?;
730
731        Ok(generated_data)
732    }
733
734    /// Simulate generation circuit
735    fn simulate_generation_circuit(
736        &self,
737        gates: &[Box<dyn GateOp>],
738    ) -> QuantRS2Result<Array1<f64>> {
739        // Simplified simulation: hash-based mock generation
740        let mut data = Array1::zeros(self.data_qubits);
741
742        let mut hash_value = 0u64;
743        for gate in gates {
744            if let Ok(matrix) = gate.matrix() {
745                for complex in &matrix {
746                    hash_value = hash_value.wrapping_add((complex.re * 1000.0) as u64);
747                }
748            }
749        }
750
751        // Convert hash to data values
752        for i in 0..self.data_qubits {
753            let qubit_hash = hash_value.wrapping_add(i as u64);
754            data[i] = ((qubit_hash % 1000) as f64 / 1000.0) * 2.0 - 1.0; // [-1, 1]
755        }
756
757        Ok(data)
758    }
759
760    /// Compute adversarial gradients
761    fn compute_adversarial_gradients(
762        &self,
763        _data_sample: &Array1<f64>,
764        target: f64,
765        score: f64,
766        parameters: &Array1<f64>,
767    ) -> QuantRS2Result<Array1<f64>> {
768        let mut gradients = Array1::zeros(parameters.len());
769        let shift = std::f64::consts::PI / 2.0;
770
771        for i in 0..parameters.len() {
772            // Parameter-shift rule for quantum gradients
773            let mut params_plus = parameters.clone();
774            params_plus[i] += shift;
775            let data_plus = self.generate_data(&Array1::zeros(self.latent_qubits), &params_plus)?;
776
777            let mut params_minus = parameters.clone();
778            params_minus[i] -= shift;
779            let data_minus =
780                self.generate_data(&Array1::zeros(self.latent_qubits), &params_minus)?;
781
782            // Gradient of adversarial loss
783            let loss_gradient = 2.0 * (score - target);
784
785            // Data difference (approximation of parameter gradient)
786            let data_diff = (&data_plus - &data_minus).sum() / 2.0;
787
788            gradients[i] = loss_gradient * data_diff;
789        }
790
791        Ok(gradients)
792    }
793}
794
795impl QuantumDiscriminatorCircuit {
796    /// Create a new quantum discriminator circuit
797    fn new(data_qubits: usize, aux_qubits: usize, depth: usize) -> QuantRS2Result<Self> {
798        let total_qubits = data_qubits + aux_qubits;
799
800        Ok(Self {
801            data_qubits,
802            aux_qubits,
803            depth,
804            total_qubits,
805        })
806    }
807
808    /// Get number of parameters
809    fn get_parameter_count(&self) -> usize {
810        let total_qubits = self.data_qubits + self.aux_qubits;
811        let rotations_per_layer = total_qubits * 3;
812        let entangling_per_layer = total_qubits;
813        self.depth * (rotations_per_layer + entangling_per_layer)
814    }
815
816    /// Discriminate data (return probability it's real)
817    fn discriminate_data(
818        &self,
819        data: &Array1<f64>,
820        parameters: &Array1<f64>,
821    ) -> QuantRS2Result<f64> {
822        // Build discriminator circuit
823        let mut gates = Vec::new();
824
825        // Encode input data
826        for i in 0..self.data_qubits {
827            let data_value = if i < data.len() { data[i] } else { 0.0 };
828            gates.push(Box::new(RotationY {
829                target: QubitId(i as u32),
830                theta: data_value * std::f64::consts::PI,
831            }) as Box<dyn GateOp>);
832        }
833
834        // Apply variational layers
835        let mut param_idx = 0;
836        for _layer in 0..self.depth {
837            // Rotation layer
838            for qubit in 0..self.data_qubits + self.aux_qubits {
839                if param_idx + 2 < parameters.len() {
840                    gates.push(Box::new(RotationX {
841                        target: QubitId(qubit as u32),
842                        theta: parameters[param_idx],
843                    }) as Box<dyn GateOp>);
844                    param_idx += 1;
845
846                    gates.push(Box::new(RotationY {
847                        target: QubitId(qubit as u32),
848                        theta: parameters[param_idx],
849                    }) as Box<dyn GateOp>);
850                    param_idx += 1;
851
852                    gates.push(Box::new(RotationZ {
853                        target: QubitId(qubit as u32),
854                        theta: parameters[param_idx],
855                    }) as Box<dyn GateOp>);
856                    param_idx += 1;
857                }
858            }
859
860            // Entangling layer
861            for qubit in 0..self.data_qubits + self.aux_qubits - 1 {
862                if param_idx < parameters.len() {
863                    gates.push(Box::new(CRZ {
864                        control: QubitId(qubit as u32),
865                        target: QubitId((qubit + 1) as u32),
866                        theta: parameters[param_idx],
867                    }) as Box<dyn GateOp>);
868                    param_idx += 1;
869                }
870            }
871        }
872
873        // Simulate circuit and return probability
874        let probability = self.simulate_discrimination_circuit(&gates)?;
875
876        Ok(probability)
877    }
878
879    /// Simulate discrimination circuit
880    fn simulate_discrimination_circuit(&self, gates: &[Box<dyn GateOp>]) -> QuantRS2Result<f64> {
881        // Simplified simulation: hash-based mock probability
882        let mut hash_value = 0u64;
883
884        for gate in gates {
885            if let Ok(matrix) = gate.matrix() {
886                for complex in &matrix {
887                    hash_value = hash_value.wrapping_add((complex.re * 1000.0) as u64);
888                    hash_value = hash_value.wrapping_add((complex.im * 1000.0) as u64);
889                }
890            }
891        }
892
893        // Convert to probability [0, 1]
894        let probability = ((hash_value % 1000) as f64) / 1000.0;
895
896        Ok(probability)
897    }
898
899    /// Compute discriminator gradients
900    fn compute_discriminator_gradients(
901        &self,
902        data_sample: &Array1<f64>,
903        target: f64,
904        prediction: f64,
905        parameters: &Array1<f64>,
906    ) -> QuantRS2Result<Array1<f64>> {
907        let mut gradients = Array1::zeros(parameters.len());
908        let shift = std::f64::consts::PI / 2.0;
909
910        for i in 0..parameters.len() {
911            // Parameter-shift rule
912            let mut params_plus = parameters.clone();
913            params_plus[i] += shift;
914            let pred_plus = self.discriminate_data(data_sample, &params_plus)?;
915
916            let mut params_minus = parameters.clone();
917            params_minus[i] -= shift;
918            let pred_minus = self.discriminate_data(data_sample, &params_minus)?;
919
920            // Binary cross-entropy gradient
921            let pred_gradient = if prediction > 0.0 && prediction < 1.0 {
922                -target / prediction + (1.0 - target) / (1.0 - prediction)
923            } else {
924                0.0 // Avoid division by zero
925            };
926
927            gradients[i] = pred_gradient * (pred_plus - pred_minus) / 2.0;
928        }
929
930        Ok(gradients)
931    }
932}
933
934#[cfg(test)]
935mod tests {
936    use super::*;
937
938    #[test]
939    fn test_qgan_creation() {
940        let config = QGANConfig::default();
941        let qgan = QGAN::new(config).unwrap();
942
943        assert_eq!(qgan.iteration, 0);
944        assert_eq!(qgan.training_stats.generator_losses.len(), 0);
945    }
946
947    #[test]
948    fn test_noise_generation() {
949        let config = QGANConfig::default();
950        let mut qgan = QGAN::new(config).unwrap();
951
952        let noise = qgan.sample_noise().unwrap();
953        assert_eq!(noise.len(), qgan.config.latent_qubits);
954
955        // Test different noise types
956        qgan.config.noise_type = NoiseType::Uniform;
957        let uniform_noise = qgan.sample_noise().unwrap();
958        assert_eq!(uniform_noise.len(), qgan.config.latent_qubits);
959
960        qgan.config.noise_type = NoiseType::QuantumSuperposition;
961        let quantum_noise = qgan.sample_noise().unwrap();
962        assert_eq!(quantum_noise.len(), qgan.config.latent_qubits);
963    }
964
965    #[test]
966    fn test_data_generation() {
967        let config = QGANConfig::default();
968        let mut qgan = QGAN::new(config).unwrap();
969
970        let generated_data = qgan.generate_data(5).unwrap();
971        assert_eq!(generated_data.nrows(), 5);
972        assert_eq!(generated_data.ncols(), qgan.config.data_qubits);
973    }
974
975    #[test]
976    fn test_discrimination() {
977        let config = QGANConfig::default();
978        let qgan = QGAN::new(config).unwrap();
979
980        // Create some mock data
981        let data = Array2::from_shape_fn((3, qgan.config.data_qubits), |(i, j)| {
982            (i as f64 + j as f64) / 10.0
983        });
984
985        let scores = qgan.discriminate(&data).unwrap();
986        assert_eq!(scores.len(), 3);
987
988        // Check scores are in [0, 1]
989        for &score in scores.iter() {
990            assert!(score >= 0.0 && score <= 1.0);
991        }
992    }
993
994    #[test]
995    fn test_qgan_training_step() {
996        let config = QGANConfig {
997            batch_size: 4,
998            ..Default::default()
999        };
1000        let mut qgan = QGAN::new(config).unwrap();
1001
1002        // Create some mock real data
1003        let real_data = Array2::from_shape_fn((10, qgan.config.data_qubits), |(i, j)| {
1004            ((i + j) as f64).sin()
1005        });
1006
1007        let metrics = qgan.train(&real_data).unwrap();
1008
1009        assert_eq!(metrics.iteration, 0);
1010        assert!(metrics.fidelity >= 0.0 && metrics.fidelity <= 1.0);
1011        assert_eq!(qgan.iteration, 1);
1012        assert_eq!(qgan.training_stats.generator_losses.len(), 1);
1013        assert_eq!(qgan.training_stats.discriminator_losses.len(), 1);
1014    }
1015
1016    #[test]
1017    fn test_convergence_check() {
1018        let config = QGANConfig::default();
1019        let mut qgan = QGAN::new(config).unwrap();
1020
1021        // Simulate high fidelity values for convergence
1022        for _ in 0..10 {
1023            qgan.training_stats.fidelities.push(0.95);
1024        }
1025
1026        assert!(qgan.has_converged(0.1, 5)); // Should converge with tolerance 0.1
1027        assert!(!qgan.has_converged(0.01, 5)); // Should not converge with stricter tolerance
1028    }
1029
1030    #[test]
1031    fn test_quantum_generator_circuit() {
1032        let circuit = QuantumGeneratorCircuit::new(3, 2, 4, NoiseType::Gaussian).unwrap();
1033        let param_count = circuit.get_parameter_count();
1034        assert!(param_count > 0);
1035
1036        let noise = Array1::from_vec(vec![0.5, -0.5, 0.0]);
1037        let parameters = Array1::zeros(param_count);
1038
1039        let generated_data = circuit.generate_data(&noise, &parameters).unwrap();
1040        assert_eq!(generated_data.len(), 2);
1041    }
1042
1043    #[test]
1044    fn test_quantum_discriminator_circuit() {
1045        let circuit = QuantumDiscriminatorCircuit::new(3, 2, 4).unwrap();
1046        let param_count = circuit.get_parameter_count();
1047        assert!(param_count > 0);
1048
1049        let data = Array1::from_vec(vec![0.5, -0.5, 0.0]);
1050        let parameters = Array1::zeros(param_count);
1051
1052        let score = circuit.discriminate_data(&data, &parameters).unwrap();
1053        assert!(score >= 0.0 && score <= 1.0);
1054    }
1055
1056    #[test]
1057    fn test_fidelity_computation() {
1058        let config = QGANConfig::default();
1059        let qgan = QGAN::new(config).unwrap();
1060
1061        // Identical distributions should have high fidelity
1062        let data1 = Array2::ones((5, 3));
1063        let data2 = Array2::ones((5, 3));
1064        let fidelity = qgan.compute_fidelity(&data1, &data2).unwrap();
1065        assert!(fidelity > 0.9);
1066
1067        // Very different distributions should have low fidelity
1068        let data3 = Array2::zeros((5, 3));
1069        let fidelity2 = qgan.compute_fidelity(&data1, &data3).unwrap();
1070        assert!(fidelity2 < fidelity);
1071    }
1072}