quantrs2_core/optimization/
compression.rs

1//! Gate sequence compression using SciRS2 optimization
2//!
3//! This module provides advanced gate sequence compression techniques
4//! leveraging SciRS2's optimization and linear algebra capabilities.
5
6use crate::{
7    error::{QuantRS2Error, QuantRS2Result},
8    gate::GateOp,
9    matrix_ops::matrices_approx_equal,
10    qubit::QubitId,
11};
12use ndarray::{Array2, ArrayView2};
13use num_complex::Complex64;
14use scirs2_linalg::lowrank::{randomized_svd, truncated_svd};
15use scirs2_optimize::prelude::DifferentialEvolutionOptions;
16// Tucker decomposition temporarily disabled due to scirs2-linalg compilation issues
17// use scirs2_linalg::tensor_contraction::tucker::{tucker_decomposition, Tucker};
18use scirs2_optimize::differential_evolution;
19use std::any::Any;
20use std::collections::HashMap;
21
22/// Configuration for gate sequence compression
23#[derive(Debug, Clone)]
24pub struct CompressionConfig {
25    /// Maximum allowed error in gate approximation
26    pub tolerance: f64,
27    /// Maximum rank for low-rank approximations
28    pub max_rank: Option<usize>,
29    /// Whether to use randomized algorithms for speed
30    pub use_randomized: bool,
31    /// Maximum optimization iterations
32    pub max_iterations: usize,
33    /// Parallel execution threads
34    pub num_threads: Option<usize>,
35}
36
37impl Default for CompressionConfig {
38    fn default() -> Self {
39        Self {
40            tolerance: 1e-10,
41            max_rank: None,
42            use_randomized: true,
43            max_iterations: 1000,
44            num_threads: None,
45        }
46    }
47}
48
49/// Gate sequence compression optimizer
50pub struct GateSequenceCompressor {
51    config: CompressionConfig,
52    /// Cache of compressed gates
53    compression_cache: HashMap<u64, CompressedGate>,
54}
55
56/// Compressed representation of a gate
57#[derive(Debug, Clone)]
58pub enum CompressedGate {
59    /// Low-rank approximation U ≈ AB†
60    LowRank {
61        left: Array2<Complex64>,
62        right: Array2<Complex64>,
63        rank: usize,
64    },
65    /// Tucker decomposition for multi-qubit gates
66    Tucker {
67        core: Array2<Complex64>,
68        factors: Vec<Array2<Complex64>>,
69    },
70    /// Parameterized gate with optimized parameters
71    Parameterized {
72        gate_type: String,
73        parameters: Vec<f64>,
74        qubits: Vec<QubitId>,
75    },
76    /// Runtime-compressed storage with decompression function
77    RuntimeCompressed {
78        compressed_data: Vec<u8>,
79        compression_type: CompressionType,
80        original_size: usize,
81        gate_metadata: GateMetadata,
82    },
83    /// Original gate (no compression possible)
84    Original(Box<dyn GateOp>),
85}
86
87/// Type of compression used for runtime storage
88#[derive(Debug, Clone, Copy, PartialEq, Eq)]
89pub enum CompressionType {
90    /// No compression
91    None,
92    /// Zlib compression
93    Zlib,
94    /// LZ4 compression (fast)
95    LZ4,
96    /// Huffman coding for sparse matrices
97    Huffman,
98    /// Custom quantum-specific compression
99    QuantumOptimized,
100}
101
102/// Metadata for compressed gates
103#[derive(Debug, Clone)]
104pub struct GateMetadata {
105    /// Gate name
106    pub name: String,
107    /// Number of qubits
108    pub num_qubits: usize,
109    /// Target qubits
110    pub qubits: Vec<QubitId>,
111    /// Matrix dimensions
112    pub matrix_dims: (usize, usize),
113    /// Sparsity ratio (0.0 = dense, 1.0 = all zeros)
114    pub sparsity_ratio: f64,
115    /// Whether the gate is unitary
116    pub is_unitary: bool,
117}
118
119impl GateSequenceCompressor {
120    /// Create a new gate sequence compressor
121    pub fn new(config: CompressionConfig) -> Self {
122        Self {
123            config,
124            compression_cache: HashMap::new(),
125        }
126    }
127
128    /// Compress a single gate using various techniques
129    pub fn compress_gate(&mut self, gate: &dyn GateOp) -> QuantRS2Result<CompressedGate> {
130        let matrix_vec = gate.matrix()?;
131
132        // Convert vector to 2D array
133        let n = (matrix_vec.len() as f64).sqrt() as usize;
134        let mut matrix = Array2::zeros((n, n));
135        for j in 0..n {
136            for i in 0..n {
137                matrix[(i, j)] = matrix_vec[j * n + i];
138            }
139        }
140
141        let matrix_view = matrix.view();
142        let hash = self.compute_matrix_hash(&matrix_view);
143
144        // Check cache
145        if let Some(compressed) = self.compression_cache.get(&hash) {
146            return Ok(compressed.clone());
147        }
148
149        // Try different compression strategies
150        let compressed = if let Some(low_rank) = self.try_low_rank_approximation(&matrix_view)? {
151            low_rank
152        } else if let Some(tucker) = self.try_tucker_decomposition(&matrix_view)? {
153            tucker
154        } else if let Some(param) = self.try_parameterized_compression(gate)? {
155            param
156        } else if let Some(runtime_compressed) = self.try_runtime_compression(gate)? {
157            runtime_compressed
158        } else {
159            CompressedGate::Original(gate.clone_gate())
160        };
161
162        // Cache the result
163        self.compression_cache.insert(hash, compressed.clone());
164
165        Ok(compressed)
166    }
167
168    /// Compress a sequence of gates
169    pub fn compress_sequence(
170        &mut self,
171        gates: &[Box<dyn GateOp>],
172    ) -> QuantRS2Result<Vec<CompressedGate>> {
173        // Set up parallel execution if configured
174        if let Some(threads) = self.config.num_threads {
175            rayon::ThreadPoolBuilder::new()
176                .num_threads(threads)
177                .build_global()
178                .map_err(|e| QuantRS2Error::InvalidInput(e.to_string()))?;
179        }
180
181        // First, try to merge adjacent gates
182        let merged = self.merge_adjacent_gates(gates)?;
183
184        // Then compress each gate individually
185        let compressed: Result<Vec<_>, _> = merged
186            .iter()
187            .map(|gate| self.compress_gate(gate.as_ref()))
188            .collect();
189
190        compressed
191    }
192
193    /// Try low-rank approximation using SVD
194    fn try_low_rank_approximation(
195        &self,
196        matrix: &ArrayView2<Complex64>,
197    ) -> QuantRS2Result<Option<CompressedGate>> {
198        let (rows, cols) = matrix.dim();
199        if rows != cols || rows < 4 {
200            // Only try for larger gates
201            return Ok(None);
202        }
203
204        // Convert to SciRS2 matrix format
205        let real_part = Array2::from_shape_fn((rows, cols), |(i, j)| matrix[(i, j)].re);
206        let imag_part = Array2::from_shape_fn((rows, cols), |(i, j)| matrix[(i, j)].im);
207
208        // Try SVD-based compression
209        let target_rank = self.config.max_rank.unwrap_or(rows / 2);
210
211        // Apply SVD to real and imaginary parts separately
212        let (u_real, s_real, vt_real) = if self.config.use_randomized {
213            randomized_svd(&real_part.view(), target_rank, Some(10), Some(2))
214                .map_err(|e| QuantRS2Error::InvalidInput(format!("SVD failed: {}", e)))?
215        } else {
216            truncated_svd(&real_part.view(), target_rank)
217                .map_err(|e| QuantRS2Error::InvalidInput(format!("SVD failed: {}", e)))?
218        };
219
220        let (u_imag, s_imag, vt_imag) = if self.config.use_randomized {
221            randomized_svd(&imag_part.view(), target_rank, Some(10), Some(2))
222                .map_err(|e| QuantRS2Error::InvalidInput(format!("SVD failed: {}", e)))?
223        } else {
224            truncated_svd(&imag_part.view(), target_rank)
225                .map_err(|e| QuantRS2Error::InvalidInput(format!("SVD failed: {}", e)))?
226        };
227
228        // Find effective rank based on singular values
229        let effective_rank = self.find_effective_rank(&s_real, &s_imag)?;
230
231        if effective_rank >= rows * 3 / 4 {
232            // Not worth compressing
233            return Ok(None);
234        }
235
236        // Reconstruct low-rank approximation
237        let left = self.combine_complex(&u_real, &u_imag, effective_rank)?;
238        let right = self.combine_complex_with_singular(
239            &vt_real,
240            &vt_imag,
241            &s_real,
242            &s_imag,
243            effective_rank,
244        )?;
245
246        // Verify approximation quality
247        let approx = left.dot(&right.t());
248        if !matrices_approx_equal(&approx.view(), matrix, self.config.tolerance) {
249            return Ok(None);
250        }
251
252        Ok(Some(CompressedGate::LowRank {
253            left,
254            right,
255            rank: effective_rank,
256        }))
257    }
258
259    /// Try Tucker decomposition for multi-qubit gates
260    fn try_tucker_decomposition(
261        &self,
262        _matrix: &ArrayView2<Complex64>,
263    ) -> QuantRS2Result<Option<CompressedGate>> {
264        // Tucker decomposition temporarily disabled due to scirs2-linalg compilation issues
265        // TODO: Re-enable when scirs2-linalg tensor_contraction feature is fixed
266        Ok(None)
267    }
268
269    /// Try to find parameterized representation
270    fn try_parameterized_compression(
271        &self,
272        gate: &dyn GateOp,
273    ) -> QuantRS2Result<Option<CompressedGate>> {
274        // This would identify if the gate can be represented
275        // as a parameterized gate (e.g., rotation gates)
276
277        // For now, we'll use global optimization to find parameters
278        let matrix_vec = gate.matrix()?;
279        let n = (matrix_vec.len() as f64).sqrt() as usize;
280
281        if n > 4 {
282            // Only try for single and two-qubit gates
283            return Ok(None);
284        }
285
286        // Convert vector to 2D array
287        let mut target_matrix = Array2::zeros((n, n));
288        for j in 0..n {
289            for i in 0..n {
290                target_matrix[(i, j)] = matrix_vec[j * n + i];
291            }
292        }
293
294        let gate_type = self.identify_gate_type(gate);
295
296        // Set up bounds for optimization
297        let dim = match gate_type.as_str() {
298            "rotation" => 3, // Three Euler angles
299            "phase" => 1,    // One phase parameter
300            _ => 6,          // General parameterization
301        };
302        let bounds = vec![(Some(-std::f64::consts::PI), Some(std::f64::consts::PI)); dim];
303
304        // Clone values needed for the closure to avoid borrowing self
305        let target_matrix_clone = target_matrix.clone();
306        let gate_type_clone = gate_type.clone();
307        let _tolerance = self.config.tolerance;
308
309        // Create objective function
310        let objective = move |x: &ndarray::ArrayView1<f64>| -> f64 {
311            let params: Vec<f64> = x.iter().cloned().collect();
312
313            // Inline the evaluation logic since we can't access self
314            let gate_matrix = match gate_type_clone.as_str() {
315                "rotation" => Array2::eye(target_matrix_clone.dim().0), // Placeholder
316                "phase" => {
317                    let mut matrix = Array2::eye(target_matrix_clone.dim().0);
318                    if !params.is_empty() {
319                        let phase = Complex64::from_polar(1.0, params[0]);
320                        let n = matrix.dim().0;
321                        matrix[(n - 1, n - 1)] = phase;
322                    }
323                    matrix
324                }
325                _ => Array2::eye(target_matrix_clone.dim().0), // Placeholder
326            };
327
328            // Compute Frobenius norm of difference
329            let diff = &target_matrix_clone - &gate_matrix;
330            diff.iter().map(|c| c.norm_sqr()).sum::<f64>().sqrt()
331        };
332
333        // Use differential evolution for global optimization
334        let mut options = DifferentialEvolutionOptions::default();
335        options.popsize = 50;
336        options.maxiter = self.config.max_iterations;
337        options.tol = self.config.tolerance;
338
339        let de_bounds: Vec<(f64, f64)> = bounds
340            .into_iter()
341            .map(|(low, high)| {
342                (
343                    low.unwrap_or(-std::f64::consts::PI),
344                    high.unwrap_or(std::f64::consts::PI),
345                )
346            })
347            .collect();
348
349        let result =
350            differential_evolution(objective, de_bounds, Some(options), None).map_err(|e| {
351                QuantRS2Error::InvalidInput(format!("Parameter optimization failed: {:?}", e))
352            })?;
353
354        if result.fun > self.config.tolerance {
355            // Optimization didn't converge well enough
356            return Ok(None);
357        }
358
359        Ok(Some(CompressedGate::Parameterized {
360            gate_type,
361            parameters: result.x.to_vec(),
362            qubits: vec![], // Would need to extract from gate
363        }))
364    }
365
366    /// Merge adjacent gates that can be combined
367    fn merge_adjacent_gates(
368        &self,
369        gates: &[Box<dyn GateOp>],
370    ) -> QuantRS2Result<Vec<Box<dyn GateOp>>> {
371        let mut merged = Vec::new();
372        let mut i = 0;
373
374        while i < gates.len() {
375            if i + 1 < gates.len() {
376                // Check if gates can be merged
377                if self.can_merge(gates[i].as_ref(), gates[i + 1].as_ref()) {
378                    // Merge the gates
379                    let combined =
380                        self.merge_two_gates(gates[i].as_ref(), gates[i + 1].as_ref())?;
381                    merged.push(combined);
382                    i += 2;
383                } else {
384                    merged.push(gates[i].clone_gate());
385                    i += 1;
386                }
387            } else {
388                merged.push(gates[i].clone_gate());
389                i += 1;
390            }
391        }
392
393        Ok(merged)
394    }
395
396    /// Check if two gates can be merged
397    fn can_merge(&self, gate1: &dyn GateOp, gate2: &dyn GateOp) -> bool {
398        // Gates can be merged if they:
399        // 1. Act on the same qubits
400        // 2. Are both unitary
401        // 3. Their product is simpler than the individual gates
402
403        // For now, simple check - same type gates on same qubits
404        gate1.name() == gate2.name()
405    }
406
407    /// Merge two gates into one
408    fn merge_two_gates(
409        &self,
410        gate1: &dyn GateOp,
411        gate2: &dyn GateOp,
412    ) -> QuantRS2Result<Box<dyn GateOp>> {
413        // Get matrices
414        let matrix1_vec = gate1.matrix()?;
415        let matrix2_vec = gate2.matrix()?;
416
417        // Convert to 2D arrays
418        let n = (matrix1_vec.len() as f64).sqrt() as usize;
419        let mut matrix1 = Array2::zeros((n, n));
420        let mut matrix2 = Array2::zeros((n, n));
421
422        for j in 0..n {
423            for i in 0..n {
424                matrix1[(i, j)] = matrix1_vec[j * n + i];
425                matrix2[(i, j)] = matrix2_vec[j * n + i];
426            }
427        }
428
429        // Matrix multiplication
430        let combined_matrix = matrix2.dot(&matrix1);
431
432        // Create a custom gate with the combined matrix
433        Ok(Box::new(CustomGate::new(
434            format!("{}_{}_merged", gate1.name(), gate2.name()),
435            combined_matrix,
436        )))
437    }
438
439    /// Compute hash of matrix for caching
440    fn compute_matrix_hash(&self, matrix: &ArrayView2<Complex64>) -> u64 {
441        use std::collections::hash_map::DefaultHasher;
442        use std::hash::{Hash, Hasher};
443
444        let mut hasher = DefaultHasher::new();
445        for elem in matrix.iter() {
446            // Hash real and imaginary parts
447            elem.re.to_bits().hash(&mut hasher);
448            elem.im.to_bits().hash(&mut hasher);
449        }
450        hasher.finish()
451    }
452
453    /// Find effective rank based on singular values
454    fn find_effective_rank(
455        &self,
456        s_real: &ndarray::Array1<f64>,
457        s_imag: &ndarray::Array1<f64>,
458    ) -> QuantRS2Result<usize> {
459        let max_singular = s_real
460            .iter()
461            .chain(s_imag.iter())
462            .map(|s| s.abs())
463            .fold(0.0, f64::max);
464
465        let threshold = max_singular * self.config.tolerance;
466
467        let rank = s_real
468            .iter()
469            .zip(s_imag.iter())
470            .take_while(|(sr, si)| sr.abs() > threshold || si.abs() > threshold)
471            .count();
472
473        Ok(rank.max(1))
474    }
475
476    /// Combine real and imaginary parts into complex matrix
477    fn combine_complex(
478        &self,
479        real: &Array2<f64>,
480        imag: &Array2<f64>,
481        rank: usize,
482    ) -> QuantRS2Result<Array2<Complex64>> {
483        let (rows, _) = real.dim();
484        let result = Array2::from_shape_fn((rows, rank), |(i, j)| {
485            Complex64::new(real[(i, j)], imag[(i, j)])
486        });
487        Ok(result)
488    }
489
490    /// Combine with singular values
491    fn combine_complex_with_singular(
492        &self,
493        vt_real: &Array2<f64>,
494        vt_imag: &Array2<f64>,
495        s_real: &ndarray::Array1<f64>,
496        s_imag: &ndarray::Array1<f64>,
497        rank: usize,
498    ) -> QuantRS2Result<Array2<Complex64>> {
499        let (_, cols) = vt_real.dim();
500        let result = Array2::from_shape_fn((rank, cols), |(i, j)| {
501            let s = Complex64::new(s_real[i], s_imag[i]);
502            let v = Complex64::new(vt_real[(i, j)], vt_imag[(i, j)]);
503            s * v
504        });
505        Ok(result)
506    }
507
508    /// Convert tensor data to complex matrix
509    #[allow(dead_code)]
510    fn tensor_to_complex_matrix(&self, tensor: &[f64]) -> QuantRS2Result<Array2<Complex64>> {
511        let size = (tensor.len() / 2) as f64;
512        let dim = size.sqrt() as usize;
513
514        let mut matrix = Array2::zeros((dim, dim));
515        for i in 0..dim {
516            for j in 0..dim {
517                let idx = (i * dim + j) * 2;
518                matrix[(i, j)] = Complex64::new(tensor[idx], tensor[idx + 1]);
519            }
520        }
521
522        Ok(matrix)
523    }
524
525    /// Convert ArrayD to complex matrix
526    #[allow(dead_code)]
527    fn tensor_to_complex_matrix_from_array(
528        &self,
529        tensor: &ndarray::ArrayD<f64>,
530    ) -> QuantRS2Result<Array2<Complex64>> {
531        // For now, just flatten the tensor and reshape to square matrix
532        let elements: Vec<f64> = tensor.iter().cloned().collect();
533        let size = elements.len() as f64;
534        let dim = size.sqrt() as usize;
535
536        if dim * dim != elements.len() {
537            // If not square, pad with zeros
538            let dim = (size.sqrt().ceil()) as usize;
539            let mut matrix = Array2::zeros((dim, dim));
540            for (idx, &val) in elements.iter().enumerate() {
541                let i = idx / dim;
542                let j = idx % dim;
543                if i < dim && j < dim {
544                    matrix[(i, j)] = Complex64::new(val, 0.0);
545                }
546            }
547            Ok(matrix)
548        } else {
549            let mut matrix = Array2::zeros((dim, dim));
550            for i in 0..dim {
551                for j in 0..dim {
552                    let idx = i * dim + j;
553                    matrix[(i, j)] = Complex64::new(elements[idx], 0.0);
554                }
555            }
556            Ok(matrix)
557        }
558    }
559
560    /// Identify gate type for parameterization
561    fn identify_gate_type(&self, gate: &dyn GateOp) -> String {
562        // Simple heuristic based on gate name
563        let name = gate.name();
564        if name.contains("rot") || name.contains("Rot") {
565            "rotation".to_string()
566        } else if name.contains("phase") || name.contains("Phase") {
567            "phase".to_string()
568        } else {
569            "general".to_string()
570        }
571    }
572
573    /// Evaluate gate parameters for optimization
574    #[allow(dead_code)]
575    fn evaluate_gate_parameters(
576        &self,
577        target: &Array2<Complex64>,
578        gate_type: &str,
579        params: &[f64],
580    ) -> f64 {
581        // Construct gate from parameters
582        let gate_matrix = match gate_type {
583            "rotation" => self.rotation_matrix_from_params(params, target.dim().0),
584            "phase" => self.phase_matrix_from_params(params, target.dim().0),
585            _ => self.general_matrix_from_params(params, target.dim().0),
586        };
587
588        // Compute Frobenius norm of difference
589        let diff = target - &gate_matrix;
590        diff.iter().map(|c| c.norm_sqr()).sum::<f64>().sqrt()
591    }
592
593    fn rotation_matrix_from_params(&self, _params: &[f64], dim: usize) -> Array2<Complex64> {
594        // Construct rotation matrix from Euler angles
595        // This is a placeholder - would need proper implementation
596        Array2::eye(dim)
597    }
598
599    fn phase_matrix_from_params(&self, params: &[f64], dim: usize) -> Array2<Complex64> {
600        let mut matrix = Array2::eye(dim);
601        if !params.is_empty() {
602            let phase = Complex64::from_polar(1.0, params[0]);
603            matrix[(dim - 1, dim - 1)] = phase;
604        }
605        matrix
606    }
607
608    #[allow(dead_code)]
609    fn general_matrix_from_params(&self, _params: &[f64], dim: usize) -> Array2<Complex64> {
610        // General parameterization - would need proper implementation
611        Array2::eye(dim)
612    }
613
614    /// Try runtime compression using various algorithms
615    fn try_runtime_compression(&self, gate: &dyn GateOp) -> QuantRS2Result<Option<CompressedGate>> {
616        let matrix_vec = gate.matrix()?;
617        let n = (matrix_vec.len() as f64).sqrt() as usize;
618
619        // Create gate metadata
620        let metadata = GateMetadata {
621            name: gate.name().to_string(),
622            num_qubits: gate.num_qubits(),
623            qubits: gate.qubits(),
624            matrix_dims: (n, n),
625            sparsity_ratio: self.calculate_sparsity_ratio(&matrix_vec),
626            is_unitary: self.check_unitary(&matrix_vec, n),
627        };
628
629        // Serialize the matrix to bytes
630        let matrix_bytes = self.serialize_matrix(&matrix_vec)?;
631
632        // Try different compression algorithms
633        let best_compression = self.find_best_compression(&matrix_bytes, &metadata)?;
634
635        // Only compress if we achieve significant compression ratio
636        if best_compression.compression_ratio < 0.8 {
637            Ok(Some(CompressedGate::RuntimeCompressed {
638                compressed_data: best_compression.data,
639                compression_type: best_compression.compression_type,
640                original_size: matrix_bytes.len(),
641                gate_metadata: metadata,
642            }))
643        } else {
644            Ok(None)
645        }
646    }
647
648    /// Calculate sparsity ratio of a matrix
649    fn calculate_sparsity_ratio(&self, matrix: &[Complex64]) -> f64 {
650        let zero_count = matrix
651            .iter()
652            .filter(|&c| c.norm() < self.config.tolerance)
653            .count();
654        zero_count as f64 / matrix.len() as f64
655    }
656
657    /// Check if matrix is unitary
658    fn check_unitary(&self, matrix: &[Complex64], n: usize) -> bool {
659        // Simple check: ||U†U - I||_F < tolerance
660        // This is a simplified implementation
661        if n > 8 {
662            return false; // Skip check for large matrices
663        }
664
665        // Convert to Array2 for easier computation
666        let mut u = Array2::zeros((n, n));
667        for j in 0..n {
668            for i in 0..n {
669                u[(i, j)] = matrix[j * n + i];
670            }
671        }
672
673        // Compute U†U
674        let u_dagger = u.t().mapv(|c| c.conj());
675        let product = u_dagger.dot(&u);
676
677        // Check if close to identity
678        let identity = Array2::<Complex64>::eye(n);
679        let diff = &product - &identity;
680        let frobenius_norm: f64 = diff.iter().map(|c| c.norm_sqr()).sum::<f64>().sqrt();
681
682        frobenius_norm < self.config.tolerance
683    }
684
685    /// Serialize matrix to bytes
686    fn serialize_matrix(&self, matrix: &[Complex64]) -> QuantRS2Result<Vec<u8>> {
687        let mut bytes = Vec::with_capacity(matrix.len() * 16); // 16 bytes per Complex64
688
689        for &complex in matrix {
690            bytes.extend_from_slice(&complex.re.to_le_bytes());
691            bytes.extend_from_slice(&complex.im.to_le_bytes());
692        }
693
694        Ok(bytes)
695    }
696
697    /// Find the best compression algorithm for the data
698    fn find_best_compression(
699        &self,
700        data: &[u8],
701        metadata: &GateMetadata,
702    ) -> QuantRS2Result<CompressionResult> {
703        let mut best_compression = CompressionResult {
704            data: data.to_vec(),
705            compression_type: CompressionType::None,
706            compression_ratio: 1.0,
707        };
708
709        // Try Zlib compression
710        if let Ok(zlib_compressed) = self.compress_zlib(data) {
711            let ratio = zlib_compressed.len() as f64 / data.len() as f64;
712            if ratio < best_compression.compression_ratio {
713                best_compression = CompressionResult {
714                    data: zlib_compressed,
715                    compression_type: CompressionType::Zlib,
716                    compression_ratio: ratio,
717                };
718            }
719        }
720
721        // Try LZ4 compression (simulated - would use actual LZ4 in real implementation)
722        if let Ok(lz4_compressed) = self.compress_lz4(data) {
723            let ratio = lz4_compressed.len() as f64 / data.len() as f64;
724            if ratio < best_compression.compression_ratio {
725                best_compression = CompressionResult {
726                    data: lz4_compressed,
727                    compression_type: CompressionType::LZ4,
728                    compression_ratio: ratio,
729                };
730            }
731        }
732
733        // Try quantum-optimized compression for sparse matrices
734        if metadata.sparsity_ratio > 0.3 {
735            if let Ok(quantum_compressed) = self.compress_quantum_optimized(data, metadata) {
736                let ratio = quantum_compressed.len() as f64 / data.len() as f64;
737                if ratio < best_compression.compression_ratio {
738                    best_compression = CompressionResult {
739                        data: quantum_compressed,
740                        compression_type: CompressionType::QuantumOptimized,
741                        compression_ratio: ratio,
742                    };
743                }
744            }
745        }
746
747        Ok(best_compression)
748    }
749
750    /// Compress using Zlib
751    fn compress_zlib(&self, _data: &[u8]) -> QuantRS2Result<Vec<u8>> {
752        #[cfg(feature = "compression")]
753        {
754            use std::io::Write;
755            let mut encoder =
756                flate2::write::ZlibEncoder::new(Vec::new(), flate2::Compression::default());
757            encoder.write_all(_data).map_err(|e| {
758                QuantRS2Error::RuntimeError(format!("Zlib compression failed: {}", e))
759            })?;
760
761            encoder
762                .finish()
763                .map_err(|e| QuantRS2Error::RuntimeError(format!("Zlib compression failed: {}", e)))
764        }
765
766        #[cfg(not(feature = "compression"))]
767        {
768            // Fallback: return uncompressed data
769            Ok(_data.to_vec())
770        }
771    }
772
773    /// Compress using LZ4 (simulated)
774    fn compress_lz4(&self, data: &[u8]) -> QuantRS2Result<Vec<u8>> {
775        // This is a simplified simulation of LZ4 compression
776        // In a real implementation, you would use the lz4 crate
777
778        // Simple run-length encoding as a placeholder
779        let mut compressed = Vec::new();
780        let mut i = 0;
781
782        while i < data.len() {
783            let byte = data[i];
784            let mut count = 1;
785
786            while i + count < data.len() && data[i + count] == byte && count < 255 {
787                count += 1;
788            }
789
790            if count > 3 {
791                // Run-length encode
792                compressed.push(0xFF); // Marker for run-length
793                compressed.push(count as u8);
794                compressed.push(byte);
795            } else {
796                // Just copy the bytes
797                for _ in 0..count {
798                    compressed.push(byte);
799                }
800            }
801
802            i += count;
803        }
804
805        Ok(compressed)
806    }
807
808    /// Quantum-optimized compression for sparse matrices
809    fn compress_quantum_optimized(
810        &self,
811        data: &[u8],
812        metadata: &GateMetadata,
813    ) -> QuantRS2Result<Vec<u8>> {
814        // Custom compression for quantum gate matrices
815        let mut compressed = Vec::new();
816
817        // Add metadata header
818        compressed.extend_from_slice(&(metadata.num_qubits as u32).to_le_bytes());
819        compressed.extend_from_slice(&metadata.sparsity_ratio.to_le_bytes());
820
821        // For sparse matrices, store only non-zero elements with their indices
822        if metadata.sparsity_ratio > 0.5 {
823            let complex_data = self.deserialize_matrix_from_bytes(data)?;
824            let _n = metadata.matrix_dims.0;
825
826            // Store as (index, real, imag) triples for non-zero elements
827            let mut non_zero_count = 0u32;
828            let mut non_zero_data = Vec::new();
829
830            for (idx, &complex) in complex_data.iter().enumerate() {
831                if complex.norm() >= self.config.tolerance {
832                    non_zero_data.extend_from_slice(&(idx as u32).to_le_bytes());
833                    non_zero_data.extend_from_slice(&complex.re.to_le_bytes());
834                    non_zero_data.extend_from_slice(&complex.im.to_le_bytes());
835                    non_zero_count += 1;
836                }
837            }
838
839            compressed.extend_from_slice(&non_zero_count.to_le_bytes());
840            compressed.extend_from_slice(&non_zero_data);
841        } else {
842            // For dense matrices, use delta encoding
843            compressed.extend_from_slice(data);
844        }
845
846        Ok(compressed)
847    }
848
849    /// Deserialize matrix from bytes
850    fn deserialize_matrix_from_bytes(&self, bytes: &[u8]) -> QuantRS2Result<Vec<Complex64>> {
851        if bytes.len() % 16 != 0 {
852            return Err(QuantRS2Error::InvalidInput(
853                "Invalid byte length for Complex64 array".to_string(),
854            ));
855        }
856
857        let mut matrix = Vec::with_capacity(bytes.len() / 16);
858
859        for chunk in bytes.chunks_exact(16) {
860            let re = f64::from_le_bytes([
861                chunk[0], chunk[1], chunk[2], chunk[3], chunk[4], chunk[5], chunk[6], chunk[7],
862            ]);
863            let im = f64::from_le_bytes([
864                chunk[8], chunk[9], chunk[10], chunk[11], chunk[12], chunk[13], chunk[14],
865                chunk[15],
866            ]);
867
868            matrix.push(Complex64::new(re, im));
869        }
870
871        Ok(matrix)
872    }
873
874    /// Decompress runtime-compressed gate
875    pub fn decompress_gate(&self, compressed: &CompressedGate) -> QuantRS2Result<Box<dyn GateOp>> {
876        match compressed {
877            CompressedGate::RuntimeCompressed {
878                compressed_data,
879                compression_type,
880                original_size,
881                gate_metadata,
882            } => {
883                // Decompress the data
884                let decompressed_bytes = self.decompress_data(
885                    compressed_data,
886                    *compression_type,
887                    *original_size,
888                    gate_metadata,
889                )?;
890
891                // Deserialize back to matrix
892                let matrix = self.deserialize_matrix_from_bytes(&decompressed_bytes)?;
893
894                // Create a custom gate with the decompressed matrix
895                let n = gate_metadata.matrix_dims.0;
896                let mut matrix_2d = Array2::zeros((n, n));
897                for j in 0..n {
898                    for i in 0..n {
899                        matrix_2d[(i, j)] = matrix[j * n + i];
900                    }
901                }
902
903                Ok(Box::new(CustomGate::with_qubits(
904                    gate_metadata.name.clone(),
905                    matrix_2d,
906                    gate_metadata.qubits.clone(),
907                )))
908            }
909            CompressedGate::LowRank { left, right, .. } => {
910                // Reconstruct from low-rank approximation
911                let reconstructed = left.dot(&right.t());
912                Ok(Box::new(CustomGate::new(
913                    "LowRank".to_string(),
914                    reconstructed,
915                )))
916            }
917            CompressedGate::Tucker { core, factors: _ } => {
918                // Reconstruct from Tucker decomposition
919                // Simplified reconstruction - would need proper tensor contraction
920                Ok(Box::new(CustomGate::new(
921                    "Tucker".to_string(),
922                    core.clone(),
923                )))
924            }
925            CompressedGate::Parameterized {
926                gate_type,
927                parameters,
928                qubits,
929            } => {
930                // Reconstruct parameterized gate
931                self.reconstruct_parameterized_gate(gate_type, parameters, qubits)
932            }
933            CompressedGate::Original(gate) => Ok(gate.clone_gate()),
934        }
935    }
936
937    /// Decompress data based on compression type
938    fn decompress_data(
939        &self,
940        compressed_data: &[u8],
941        compression_type: CompressionType,
942        original_size: usize,
943        metadata: &GateMetadata,
944    ) -> QuantRS2Result<Vec<u8>> {
945        match compression_type {
946            CompressionType::None => Ok(compressed_data.to_vec()),
947            CompressionType::Zlib => self.decompress_zlib(compressed_data),
948            CompressionType::LZ4 => self.decompress_lz4(compressed_data, original_size),
949            CompressionType::QuantumOptimized => {
950                self.decompress_quantum_optimized(compressed_data, metadata)
951            }
952            CompressionType::Huffman => {
953                // Placeholder for Huffman decompression
954                Ok(compressed_data.to_vec())
955            }
956        }
957    }
958
959    /// Decompress Zlib data
960    fn decompress_zlib(&self, compressed_data: &[u8]) -> QuantRS2Result<Vec<u8>> {
961        #[cfg(feature = "compression")]
962        {
963            use std::io::Read;
964
965            let mut decoder = flate2::read::ZlibDecoder::new(compressed_data);
966            let mut decompressed = Vec::new();
967
968            decoder.read_to_end(&mut decompressed).map_err(|e| {
969                QuantRS2Error::RuntimeError(format!("Zlib decompression failed: {}", e))
970            })?;
971
972            Ok(decompressed)
973        }
974
975        #[cfg(not(feature = "compression"))]
976        {
977            // Fallback: return compressed data as-is (since we didn't really compress it)
978            Ok(compressed_data.to_vec())
979        }
980    }
981
982    /// Decompress LZ4 data (simulated)
983    fn decompress_lz4(
984        &self,
985        compressed_data: &[u8],
986        original_size: usize,
987    ) -> QuantRS2Result<Vec<u8>> {
988        // Reverse of the simple run-length encoding
989        let mut decompressed = Vec::with_capacity(original_size);
990        let mut i = 0;
991
992        while i < compressed_data.len() {
993            if compressed_data[i] == 0xFF && i + 2 < compressed_data.len() {
994                // Run-length encoded
995                let count = compressed_data[i + 1] as usize;
996                let byte = compressed_data[i + 2];
997
998                for _ in 0..count {
999                    decompressed.push(byte);
1000                }
1001
1002                i += 3;
1003            } else {
1004                // Regular byte
1005                decompressed.push(compressed_data[i]);
1006                i += 1;
1007            }
1008        }
1009
1010        Ok(decompressed)
1011    }
1012
1013    /// Decompress quantum-optimized data
1014    fn decompress_quantum_optimized(
1015        &self,
1016        compressed_data: &[u8],
1017        metadata: &GateMetadata,
1018    ) -> QuantRS2Result<Vec<u8>> {
1019        if compressed_data.len() < 12 {
1020            return Err(QuantRS2Error::InvalidInput(
1021                "Invalid quantum-optimized compressed data".to_string(),
1022            ));
1023        }
1024
1025        let mut cursor = 0;
1026
1027        // Read header
1028        let _num_qubits = u32::from_le_bytes([
1029            compressed_data[cursor],
1030            compressed_data[cursor + 1],
1031            compressed_data[cursor + 2],
1032            compressed_data[cursor + 3],
1033        ]);
1034        cursor += 4;
1035
1036        let sparsity_ratio = f64::from_le_bytes([
1037            compressed_data[cursor],
1038            compressed_data[cursor + 1],
1039            compressed_data[cursor + 2],
1040            compressed_data[cursor + 3],
1041            compressed_data[cursor + 4],
1042            compressed_data[cursor + 5],
1043            compressed_data[cursor + 6],
1044            compressed_data[cursor + 7],
1045        ]);
1046        cursor += 8;
1047
1048        if sparsity_ratio > 0.5 {
1049            // Sparse format: reconstruct from (index, real, imag) triples
1050            let non_zero_count = u32::from_le_bytes([
1051                compressed_data[cursor],
1052                compressed_data[cursor + 1],
1053                compressed_data[cursor + 2],
1054                compressed_data[cursor + 3],
1055            ]);
1056            cursor += 4;
1057
1058            let matrix_size = metadata.matrix_dims.0 * metadata.matrix_dims.1;
1059            let mut matrix = vec![Complex64::new(0.0, 0.0); matrix_size];
1060
1061            for _ in 0..non_zero_count {
1062                let index = u32::from_le_bytes([
1063                    compressed_data[cursor],
1064                    compressed_data[cursor + 1],
1065                    compressed_data[cursor + 2],
1066                    compressed_data[cursor + 3],
1067                ]) as usize;
1068                cursor += 4;
1069
1070                let re = f64::from_le_bytes([
1071                    compressed_data[cursor],
1072                    compressed_data[cursor + 1],
1073                    compressed_data[cursor + 2],
1074                    compressed_data[cursor + 3],
1075                    compressed_data[cursor + 4],
1076                    compressed_data[cursor + 5],
1077                    compressed_data[cursor + 6],
1078                    compressed_data[cursor + 7],
1079                ]);
1080                cursor += 8;
1081
1082                let im = f64::from_le_bytes([
1083                    compressed_data[cursor],
1084                    compressed_data[cursor + 1],
1085                    compressed_data[cursor + 2],
1086                    compressed_data[cursor + 3],
1087                    compressed_data[cursor + 4],
1088                    compressed_data[cursor + 5],
1089                    compressed_data[cursor + 6],
1090                    compressed_data[cursor + 7],
1091                ]);
1092                cursor += 8;
1093
1094                if index < matrix_size {
1095                    matrix[index] = Complex64::new(re, im);
1096                }
1097            }
1098
1099            // Serialize back to bytes
1100            self.serialize_matrix(&matrix)
1101        } else {
1102            // Dense format: just return the remaining data
1103            Ok(compressed_data[cursor..].to_vec())
1104        }
1105    }
1106
1107    /// Reconstruct parameterized gate
1108    fn reconstruct_parameterized_gate(
1109        &self,
1110        gate_type: &str,
1111        parameters: &[f64],
1112        qubits: &[QubitId],
1113    ) -> QuantRS2Result<Box<dyn GateOp>> {
1114        match gate_type {
1115            "rotation" => {
1116                if parameters.len() >= 3 && !qubits.is_empty() {
1117                    // Create a rotation gate from Euler angles
1118                    let matrix = self.rotation_matrix_from_params(parameters, 2);
1119                    Ok(Box::new(CustomGate::with_qubits(
1120                        "Rotation".to_string(),
1121                        matrix,
1122                        qubits.to_vec(),
1123                    )))
1124                } else {
1125                    Err(QuantRS2Error::InvalidInput(
1126                        "Invalid rotation parameters".to_string(),
1127                    ))
1128                }
1129            }
1130            "phase" => {
1131                if !parameters.is_empty() && !qubits.is_empty() {
1132                    let matrix = self.phase_matrix_from_params(parameters, 2);
1133                    Ok(Box::new(CustomGate::with_qubits(
1134                        "Phase".to_string(),
1135                        matrix,
1136                        qubits.to_vec(),
1137                    )))
1138                } else {
1139                    Err(QuantRS2Error::InvalidInput(
1140                        "Invalid phase parameters".to_string(),
1141                    ))
1142                }
1143            }
1144            _ => {
1145                // General case - create identity for now
1146                let dim = 1 << qubits.len();
1147                let matrix = Array2::eye(dim);
1148                Ok(Box::new(CustomGate::with_qubits(
1149                    gate_type.to_string(),
1150                    matrix,
1151                    qubits.to_vec(),
1152                )))
1153            }
1154        }
1155    }
1156}
1157
1158/// Result of compression operation
1159struct CompressionResult {
1160    data: Vec<u8>,
1161    compression_type: CompressionType,
1162    compression_ratio: f64,
1163}
1164
1165/// Custom gate implementation for compressed gates
1166#[derive(Debug, Clone)]
1167pub struct CustomGate {
1168    name: String,
1169    matrix: Array2<Complex64>,
1170    qubits: Vec<QubitId>,
1171}
1172
1173impl CustomGate {
1174    pub fn new(name: String, matrix: Array2<Complex64>) -> Self {
1175        // Determine number of qubits from matrix size
1176        let n_qubits = (matrix.dim().0 as f64).log2() as usize;
1177        let qubits = (0..n_qubits).map(|i| QubitId::new(i as u32)).collect();
1178        Self {
1179            name,
1180            matrix,
1181            qubits,
1182        }
1183    }
1184
1185    pub fn with_qubits(name: String, matrix: Array2<Complex64>, qubits: Vec<QubitId>) -> Self {
1186        Self {
1187            name,
1188            matrix,
1189            qubits,
1190        }
1191    }
1192}
1193
1194impl GateOp for CustomGate {
1195    fn name(&self) -> &'static str {
1196        // Since we need 'static, we leak the string
1197        Box::leak(self.name.clone().into_boxed_str())
1198    }
1199
1200    fn qubits(&self) -> Vec<QubitId> {
1201        self.qubits.clone()
1202    }
1203
1204    fn matrix(&self) -> QuantRS2Result<Vec<Complex64>> {
1205        // Flatten the matrix to a vector in column-major order
1206        let mut result = Vec::with_capacity(self.matrix.len());
1207        let (rows, cols) = self.matrix.dim();
1208        for j in 0..cols {
1209            for i in 0..rows {
1210                result.push(self.matrix[(i, j)]);
1211            }
1212        }
1213        Ok(result)
1214    }
1215
1216    fn as_any(&self) -> &dyn Any {
1217        self
1218    }
1219
1220    fn clone_gate(&self) -> Box<dyn GateOp> {
1221        Box::new(self.clone())
1222    }
1223}
1224
1225/// Compression statistics
1226#[derive(Debug, Clone, Default)]
1227pub struct CompressionStats {
1228    pub original_gates: usize,
1229    pub compressed_gates: usize,
1230    pub low_rank_compressions: usize,
1231    pub tucker_compressions: usize,
1232    pub parameterized_compressions: usize,
1233    pub compression_ratio: f64,
1234    pub total_parameters_before: usize,
1235    pub total_parameters_after: usize,
1236}
1237
1238impl GateSequenceCompressor {
1239    /// Get compression statistics
1240    pub fn get_stats(
1241        &self,
1242        original: &[Box<dyn GateOp>],
1243        compressed: &[CompressedGate],
1244    ) -> CompressionStats {
1245        let mut stats = CompressionStats::default();
1246        stats.original_gates = original.len();
1247        stats.compressed_gates = compressed.len();
1248
1249        for gate in compressed {
1250            match gate {
1251                CompressedGate::LowRank { left, right, .. } => {
1252                    stats.low_rank_compressions += 1;
1253                    stats.total_parameters_after += (left.len() + right.len()) * 2;
1254                }
1255                CompressedGate::Tucker { core, factors } => {
1256                    stats.tucker_compressions += 1;
1257                    stats.total_parameters_after += core.len() * 2;
1258                    stats.total_parameters_after +=
1259                        factors.iter().map(|f| f.len() * 2).sum::<usize>();
1260                }
1261                CompressedGate::Parameterized { parameters, .. } => {
1262                    stats.parameterized_compressions += 1;
1263                    stats.total_parameters_after += parameters.len();
1264                }
1265                CompressedGate::RuntimeCompressed {
1266                    compressed_data, ..
1267                } => {
1268                    // For runtime compressed gates, count the compressed data size
1269                    stats.total_parameters_after += compressed_data.len();
1270                }
1271                CompressedGate::Original(gate) => {
1272                    if let Ok(matrix_vec) = gate.matrix() {
1273                        let size = (matrix_vec.len() as f64).sqrt() as usize;
1274                        stats.total_parameters_after += size * size * 2;
1275                    }
1276                }
1277            }
1278        }
1279
1280        for gate in original {
1281            if let Ok(matrix_vec) = gate.matrix() {
1282                let size = (matrix_vec.len() as f64).sqrt() as usize;
1283                stats.total_parameters_before += size * size * 2;
1284            }
1285        }
1286
1287        stats.compression_ratio = if stats.total_parameters_before > 0 {
1288            stats.total_parameters_after as f64 / stats.total_parameters_before as f64
1289        } else {
1290            1.0
1291        };
1292
1293        stats
1294    }
1295}
1296
1297#[cfg(test)]
1298mod tests {
1299    use super::*;
1300    use crate::gate::single::{Hadamard, PauliX, PauliZ};
1301    use crate::qubit::QubitId;
1302
1303    #[test]
1304    fn test_gate_compression() {
1305        let config = CompressionConfig::default();
1306        let mut compressor = GateSequenceCompressor::new(config);
1307
1308        // Test single gate compression
1309        let h_gate = Hadamard {
1310            target: QubitId::new(0),
1311        };
1312        let compressed = compressor.compress_gate(&h_gate).unwrap();
1313
1314        match compressed {
1315            CompressedGate::Original(_) => {
1316                // H gate is already minimal, shouldn't compress
1317            }
1318            CompressedGate::RuntimeCompressed { .. } => {
1319                // H gate might be runtime compressed, which is acceptable
1320            }
1321            _ => panic!("H gate shouldn't be significantly compressed"),
1322        }
1323    }
1324
1325    #[test]
1326    fn test_sequence_compression() {
1327        let config = CompressionConfig::default();
1328        let mut compressor = GateSequenceCompressor::new(config);
1329
1330        // Create a sequence of gates
1331        let gates: Vec<Box<dyn GateOp>> = vec![
1332            Box::new(Hadamard {
1333                target: QubitId::new(0),
1334            }),
1335            Box::new(PauliX {
1336                target: QubitId::new(0),
1337            }),
1338            Box::new(Hadamard {
1339                target: QubitId::new(0),
1340            }),
1341        ];
1342
1343        let compressed = compressor.compress_sequence(&gates).unwrap();
1344        assert!(compressed.len() <= gates.len());
1345    }
1346
1347    #[test]
1348    fn test_compression_stats() {
1349        let config = CompressionConfig::default();
1350        let mut compressor = GateSequenceCompressor::new(config);
1351
1352        let gates: Vec<Box<dyn GateOp>> = vec![
1353            Box::new(Hadamard {
1354                target: QubitId::new(0),
1355            }),
1356            Box::new(PauliZ {
1357                target: QubitId::new(0),
1358            }),
1359        ];
1360
1361        let compressed = compressor.compress_sequence(&gates).unwrap();
1362        let stats = compressor.get_stats(&gates, &compressed);
1363
1364        assert_eq!(stats.original_gates, 2);
1365        // Compression ratio can be > 1.0 for small gates due to overhead
1366        assert!(stats.compression_ratio >= 0.0);
1367    }
1368}