quantrs2_core/optimization/
compression.rs

1//! Gate sequence compression using SciRS2 optimization
2//!
3//! This module provides advanced gate sequence compression techniques
4//! leveraging SciRS2's optimization and linear algebra capabilities.
5
6use crate::{
7    error::{QuantRS2Error, QuantRS2Result},
8    gate::GateOp,
9    matrix_ops::matrices_approx_equal,
10    qubit::QubitId,
11};
12use scirs2_core::ndarray::{Array2, ArrayView2};
13use scirs2_core::Complex64;
14// use scirs2_linalg::lowrank::{randomized_svd, truncated_svd};
15// use scirs2_optimize::prelude::DifferentialEvolutionOptions;
16// Tucker decomposition temporarily disabled due to scirs2-linalg compilation issues
17// use scirs2_linalg::tensor_contraction::tucker::{tucker_decomposition, Tucker};
18// use scirs2_optimize::differential_evolution;
19use crate::linalg_stubs::{randomized_svd, truncated_svd};
20use crate::optimization_stubs::{differential_evolution, DifferentialEvolutionOptions};
21use std::any::Any;
22use std::collections::HashMap;
23
24/// Configuration for gate sequence compression
25#[derive(Debug, Clone)]
26pub struct CompressionConfig {
27    /// Maximum allowed error in gate approximation
28    pub tolerance: f64,
29    /// Maximum rank for low-rank approximations
30    pub max_rank: Option<usize>,
31    /// Whether to use randomized algorithms for speed
32    pub use_randomized: bool,
33    /// Maximum optimization iterations
34    pub max_iterations: usize,
35    /// Parallel execution threads
36    pub num_threads: Option<usize>,
37}
38
39impl Default for CompressionConfig {
40    fn default() -> Self {
41        Self {
42            tolerance: 1e-10,
43            max_rank: None,
44            use_randomized: true,
45            max_iterations: 1000,
46            num_threads: None,
47        }
48    }
49}
50
51/// Gate sequence compression optimizer
52pub struct GateSequenceCompressor {
53    config: CompressionConfig,
54    /// Cache of compressed gates
55    compression_cache: HashMap<u64, CompressedGate>,
56}
57
58/// Compressed representation of a gate
59#[derive(Debug, Clone)]
60pub enum CompressedGate {
61    /// Low-rank approximation U ≈ AB†
62    LowRank {
63        left: Array2<Complex64>,
64        right: Array2<Complex64>,
65        rank: usize,
66    },
67    /// Tucker decomposition for multi-qubit gates
68    Tucker {
69        core: Array2<Complex64>,
70        factors: Vec<Array2<Complex64>>,
71    },
72    /// Parameterized gate with optimized parameters
73    Parameterized {
74        gate_type: String,
75        parameters: Vec<f64>,
76        qubits: Vec<QubitId>,
77    },
78    /// Runtime-compressed storage with decompression function
79    RuntimeCompressed {
80        compressed_data: Vec<u8>,
81        compression_type: CompressionType,
82        original_size: usize,
83        gate_metadata: GateMetadata,
84    },
85    /// Original gate (no compression possible)
86    Original(Box<dyn GateOp>),
87}
88
89/// Type of compression used for runtime storage
90#[derive(Debug, Clone, Copy, PartialEq, Eq)]
91pub enum CompressionType {
92    /// No compression
93    None,
94    /// Zlib compression
95    Zlib,
96    /// LZ4 compression (fast)
97    LZ4,
98    /// Huffman coding for sparse matrices
99    Huffman,
100    /// Custom quantum-specific compression
101    QuantumOptimized,
102}
103
104/// Metadata for compressed gates
105#[derive(Debug, Clone)]
106pub struct GateMetadata {
107    /// Gate name
108    pub name: String,
109    /// Number of qubits
110    pub num_qubits: usize,
111    /// Target qubits
112    pub qubits: Vec<QubitId>,
113    /// Matrix dimensions
114    pub matrix_dims: (usize, usize),
115    /// Sparsity ratio (0.0 = dense, 1.0 = all zeros)
116    pub sparsity_ratio: f64,
117    /// Whether the gate is unitary
118    pub is_unitary: bool,
119}
120
121impl GateSequenceCompressor {
122    /// Create a new gate sequence compressor
123    pub fn new(config: CompressionConfig) -> Self {
124        Self {
125            config,
126            compression_cache: HashMap::new(),
127        }
128    }
129
130    /// Compress a single gate using various techniques
131    pub fn compress_gate(&mut self, gate: &dyn GateOp) -> QuantRS2Result<CompressedGate> {
132        let matrix_vec = gate.matrix()?;
133
134        // Convert vector to 2D array
135        let n = (matrix_vec.len() as f64).sqrt() as usize;
136        let mut matrix = Array2::zeros((n, n));
137        for j in 0..n {
138            for i in 0..n {
139                matrix[(i, j)] = matrix_vec[j * n + i];
140            }
141        }
142
143        let matrix_view = matrix.view();
144        let hash = self.compute_matrix_hash(&matrix_view);
145
146        // Check cache
147        if let Some(compressed) = self.compression_cache.get(&hash) {
148            return Ok(compressed.clone());
149        }
150
151        // Try different compression strategies
152        let compressed = if let Some(low_rank) = self.try_low_rank_approximation(&matrix_view)? {
153            low_rank
154        } else if let Some(tucker) = self.try_tucker_decomposition(&matrix_view)? {
155            tucker
156        } else if let Some(param) = self.try_parameterized_compression(gate)? {
157            param
158        } else if let Some(runtime_compressed) = self.try_runtime_compression(gate)? {
159            runtime_compressed
160        } else {
161            CompressedGate::Original(gate.clone_gate())
162        };
163
164        // Cache the result
165        self.compression_cache.insert(hash, compressed.clone());
166
167        Ok(compressed)
168    }
169
170    /// Compress a sequence of gates
171    pub fn compress_sequence(
172        &mut self,
173        gates: &[Box<dyn GateOp>],
174    ) -> QuantRS2Result<Vec<CompressedGate>> {
175        // Set up parallel execution if configured
176        if let Some(threads) = self.config.num_threads {
177            rayon::ThreadPoolBuilder::new()
178                .num_threads(threads)
179                .build_global()
180                .map_err(|e| QuantRS2Error::InvalidInput(e.to_string()))?;
181        }
182
183        // First, try to merge adjacent gates
184        let merged = self.merge_adjacent_gates(gates)?;
185
186        // Then compress each gate individually
187        let compressed: Result<Vec<_>, _> = merged
188            .iter()
189            .map(|gate| self.compress_gate(gate.as_ref()))
190            .collect();
191
192        compressed
193    }
194
195    /// Try low-rank approximation using SVD
196    fn try_low_rank_approximation(
197        &self,
198        matrix: &ArrayView2<Complex64>,
199    ) -> QuantRS2Result<Option<CompressedGate>> {
200        let (rows, cols) = matrix.dim();
201        if rows != cols || rows < 4 {
202            // Only try for larger gates
203            return Ok(None);
204        }
205
206        // Convert to SciRS2 matrix format
207        let real_part = Array2::from_shape_fn((rows, cols), |(i, j)| matrix[(i, j)].re);
208        let imag_part = Array2::from_shape_fn((rows, cols), |(i, j)| matrix[(i, j)].im);
209
210        // Try SVD-based compression
211        let target_rank = self.config.max_rank.unwrap_or(rows / 2);
212
213        // Apply SVD to real and imaginary parts separately
214        let (u_real, s_real, vt_real) = if self.config.use_randomized {
215            randomized_svd(&real_part.view(), target_rank, Some(10), Some(2), None)
216                .map_err(|e| QuantRS2Error::InvalidInput(format!("SVD failed: {}", e)))?
217        } else {
218            truncated_svd(&real_part.view(), target_rank, None)
219                .map_err(|e| QuantRS2Error::InvalidInput(format!("SVD failed: {}", e)))?
220        };
221
222        let (u_imag, s_imag, vt_imag) = if self.config.use_randomized {
223            randomized_svd(&imag_part.view(), target_rank, Some(10), Some(2), None)
224                .map_err(|e| QuantRS2Error::InvalidInput(format!("SVD failed: {}", e)))?
225        } else {
226            truncated_svd(&imag_part.view(), target_rank, None)
227                .map_err(|e| QuantRS2Error::InvalidInput(format!("SVD failed: {}", e)))?
228        };
229
230        // Find effective rank based on singular values
231        let effective_rank = self.find_effective_rank(&s_real, &s_imag)?;
232
233        if effective_rank >= rows * 3 / 4 {
234            // Not worth compressing
235            return Ok(None);
236        }
237
238        // Reconstruct low-rank approximation
239        let left = self.combine_complex(&u_real, &u_imag, effective_rank)?;
240        let right = self.combine_complex_with_singular(
241            &vt_real,
242            &vt_imag,
243            &s_real,
244            &s_imag,
245            effective_rank,
246        )?;
247
248        // Verify approximation quality
249        let approx = left.dot(&right.t());
250        if !matrices_approx_equal(&approx.view(), matrix, self.config.tolerance) {
251            return Ok(None);
252        }
253
254        Ok(Some(CompressedGate::LowRank {
255            left,
256            right,
257            rank: effective_rank,
258        }))
259    }
260
261    /// Try Tucker decomposition for multi-qubit gates
262    fn try_tucker_decomposition(
263        &self,
264        _matrix: &ArrayView2<Complex64>,
265    ) -> QuantRS2Result<Option<CompressedGate>> {
266        // Tucker decomposition temporarily disabled due to scirs2-linalg compilation issues
267        // TODO: Re-enable when scirs2-linalg tensor_contraction feature is fixed
268        Ok(None)
269    }
270
271    /// Try to find parameterized representation
272    fn try_parameterized_compression(
273        &self,
274        gate: &dyn GateOp,
275    ) -> QuantRS2Result<Option<CompressedGate>> {
276        // This would identify if the gate can be represented
277        // as a parameterized gate (e.g., rotation gates)
278
279        // For now, we'll use global optimization to find parameters
280        let matrix_vec = gate.matrix()?;
281        let n = (matrix_vec.len() as f64).sqrt() as usize;
282
283        if n > 4 {
284            // Only try for single and two-qubit gates
285            return Ok(None);
286        }
287
288        // Convert vector to 2D array
289        let mut target_matrix = Array2::zeros((n, n));
290        for j in 0..n {
291            for i in 0..n {
292                target_matrix[(i, j)] = matrix_vec[j * n + i];
293            }
294        }
295
296        let gate_type = self.identify_gate_type(gate);
297
298        // Set up bounds for optimization
299        let dim = match gate_type.as_str() {
300            "rotation" => 3, // Three Euler angles
301            "phase" => 1,    // One phase parameter
302            _ => 6,          // General parameterization
303        };
304        let bounds = vec![(Some(-std::f64::consts::PI), Some(std::f64::consts::PI)); dim];
305
306        // Clone values needed for the closure to avoid borrowing self
307        let target_matrix_clone = target_matrix.clone();
308        let gate_type_clone = gate_type.clone();
309        let _tolerance = self.config.tolerance;
310
311        // Create objective function
312        let objective = move |x: &scirs2_core::ndarray::ArrayView1<f64>| -> f64 {
313            let params: Vec<f64> = x.iter().cloned().collect();
314
315            // Inline the evaluation logic since we can't access self
316            let gate_matrix = match gate_type_clone.as_str() {
317                "rotation" => Array2::eye(target_matrix_clone.dim().0), // Placeholder
318                "phase" => {
319                    let mut matrix = Array2::eye(target_matrix_clone.dim().0);
320                    if !params.is_empty() {
321                        let phase = Complex64::from_polar(1.0, params[0]);
322                        let n = matrix.dim().0;
323                        matrix[(n - 1, n - 1)] = phase;
324                    }
325                    matrix
326                }
327                _ => Array2::eye(target_matrix_clone.dim().0), // Placeholder
328            };
329
330            // Compute Frobenius norm of difference
331            let diff = &target_matrix_clone - &gate_matrix;
332            diff.iter().map(|c| c.norm_sqr()).sum::<f64>().sqrt()
333        };
334
335        // Use differential evolution for global optimization
336        let mut options = DifferentialEvolutionOptions::default();
337        options.popsize = 50;
338        options.maxiter = self.config.max_iterations;
339        options.tol = self.config.tolerance;
340
341        let de_bounds: Vec<(f64, f64)> = bounds
342            .into_iter()
343            .map(|(low, high)| {
344                (
345                    low.unwrap_or(-std::f64::consts::PI),
346                    high.unwrap_or(std::f64::consts::PI),
347                )
348            })
349            .collect();
350
351        let result =
352            differential_evolution(objective, &de_bounds, Some(options), None).map_err(|e| {
353                QuantRS2Error::InvalidInput(format!("Parameter optimization failed: {:?}", e))
354            })?;
355
356        if result.fun > self.config.tolerance {
357            // Optimization didn't converge well enough
358            return Ok(None);
359        }
360
361        Ok(Some(CompressedGate::Parameterized {
362            gate_type,
363            parameters: result.x.to_vec(),
364            qubits: vec![], // Would need to extract from gate
365        }))
366    }
367
368    /// Merge adjacent gates that can be combined
369    fn merge_adjacent_gates(
370        &self,
371        gates: &[Box<dyn GateOp>],
372    ) -> QuantRS2Result<Vec<Box<dyn GateOp>>> {
373        let mut merged = Vec::new();
374        let mut i = 0;
375
376        while i < gates.len() {
377            if i + 1 < gates.len() {
378                // Check if gates can be merged
379                if self.can_merge(gates[i].as_ref(), gates[i + 1].as_ref()) {
380                    // Merge the gates
381                    let combined =
382                        self.merge_two_gates(gates[i].as_ref(), gates[i + 1].as_ref())?;
383                    merged.push(combined);
384                    i += 2;
385                } else {
386                    merged.push(gates[i].clone_gate());
387                    i += 1;
388                }
389            } else {
390                merged.push(gates[i].clone_gate());
391                i += 1;
392            }
393        }
394
395        Ok(merged)
396    }
397
398    /// Check if two gates can be merged
399    fn can_merge(&self, gate1: &dyn GateOp, gate2: &dyn GateOp) -> bool {
400        // Gates can be merged if they:
401        // 1. Act on the same qubits
402        // 2. Are both unitary
403        // 3. Their product is simpler than the individual gates
404
405        // For now, simple check - same type gates on same qubits
406        gate1.name() == gate2.name()
407    }
408
409    /// Merge two gates into one
410    fn merge_two_gates(
411        &self,
412        gate1: &dyn GateOp,
413        gate2: &dyn GateOp,
414    ) -> QuantRS2Result<Box<dyn GateOp>> {
415        // Get matrices
416        let matrix1_vec = gate1.matrix()?;
417        let matrix2_vec = gate2.matrix()?;
418
419        // Convert to 2D arrays
420        let n = (matrix1_vec.len() as f64).sqrt() as usize;
421        let mut matrix1 = Array2::zeros((n, n));
422        let mut matrix2 = Array2::zeros((n, n));
423
424        for j in 0..n {
425            for i in 0..n {
426                matrix1[(i, j)] = matrix1_vec[j * n + i];
427                matrix2[(i, j)] = matrix2_vec[j * n + i];
428            }
429        }
430
431        // Matrix multiplication
432        let combined_matrix = matrix2.dot(&matrix1);
433
434        // Create a custom gate with the combined matrix
435        Ok(Box::new(CustomGate::new(
436            format!("{}_{}_merged", gate1.name(), gate2.name()),
437            combined_matrix,
438        )))
439    }
440
441    /// Compute hash of matrix for caching
442    fn compute_matrix_hash(&self, matrix: &ArrayView2<Complex64>) -> u64 {
443        use std::collections::hash_map::DefaultHasher;
444        use std::hash::{Hash, Hasher};
445
446        let mut hasher = DefaultHasher::new();
447        for elem in matrix.iter() {
448            // Hash real and imaginary parts
449            elem.re.to_bits().hash(&mut hasher);
450            elem.im.to_bits().hash(&mut hasher);
451        }
452        hasher.finish()
453    }
454
455    /// Find effective rank based on singular values
456    fn find_effective_rank(
457        &self,
458        s_real: &scirs2_core::ndarray::Array1<f64>,
459        s_imag: &scirs2_core::ndarray::Array1<f64>,
460    ) -> QuantRS2Result<usize> {
461        let max_singular = s_real
462            .iter()
463            .chain(s_imag.iter())
464            .map(|s| s.abs())
465            .fold(0.0, f64::max);
466
467        let threshold = max_singular * self.config.tolerance;
468
469        let rank = s_real
470            .iter()
471            .zip(s_imag.iter())
472            .take_while(|(sr, si)| sr.abs() > threshold || si.abs() > threshold)
473            .count();
474
475        Ok(rank.max(1))
476    }
477
478    /// Combine real and imaginary parts into complex matrix
479    fn combine_complex(
480        &self,
481        real: &Array2<f64>,
482        imag: &Array2<f64>,
483        rank: usize,
484    ) -> QuantRS2Result<Array2<Complex64>> {
485        let (rows, _) = real.dim();
486        let result = Array2::from_shape_fn((rows, rank), |(i, j)| {
487            Complex64::new(real[(i, j)], imag[(i, j)])
488        });
489        Ok(result)
490    }
491
492    /// Combine with singular values
493    fn combine_complex_with_singular(
494        &self,
495        vt_real: &Array2<f64>,
496        vt_imag: &Array2<f64>,
497        s_real: &scirs2_core::ndarray::Array1<f64>,
498        s_imag: &scirs2_core::ndarray::Array1<f64>,
499        rank: usize,
500    ) -> QuantRS2Result<Array2<Complex64>> {
501        let (_, cols) = vt_real.dim();
502        let result = Array2::from_shape_fn((rank, cols), |(i, j)| {
503            let s = Complex64::new(s_real[i], s_imag[i]);
504            let v = Complex64::new(vt_real[(i, j)], vt_imag[(i, j)]);
505            s * v
506        });
507        Ok(result)
508    }
509
510    /// Convert tensor data to complex matrix
511    #[allow(dead_code)]
512    fn tensor_to_complex_matrix(&self, tensor: &[f64]) -> QuantRS2Result<Array2<Complex64>> {
513        let size = (tensor.len() / 2) as f64;
514        let dim = size.sqrt() as usize;
515
516        let mut matrix = Array2::zeros((dim, dim));
517        for i in 0..dim {
518            for j in 0..dim {
519                let idx = (i * dim + j) * 2;
520                matrix[(i, j)] = Complex64::new(tensor[idx], tensor[idx + 1]);
521            }
522        }
523
524        Ok(matrix)
525    }
526
527    /// Convert ArrayD to complex matrix
528    #[allow(dead_code)]
529    fn tensor_to_complex_matrix_from_array(
530        &self,
531        tensor: &scirs2_core::ndarray::ArrayD<f64>,
532    ) -> QuantRS2Result<Array2<Complex64>> {
533        // For now, just flatten the tensor and reshape to square matrix
534        let elements: Vec<f64> = tensor.iter().cloned().collect();
535        let size = elements.len() as f64;
536        let dim = size.sqrt() as usize;
537
538        if dim * dim != elements.len() {
539            // If not square, pad with zeros
540            let dim = (size.sqrt().ceil()) as usize;
541            let mut matrix = Array2::zeros((dim, dim));
542            for (idx, &val) in elements.iter().enumerate() {
543                let i = idx / dim;
544                let j = idx % dim;
545                if i < dim && j < dim {
546                    matrix[(i, j)] = Complex64::new(val, 0.0);
547                }
548            }
549            Ok(matrix)
550        } else {
551            let mut matrix = Array2::zeros((dim, dim));
552            for i in 0..dim {
553                for j in 0..dim {
554                    let idx = i * dim + j;
555                    matrix[(i, j)] = Complex64::new(elements[idx], 0.0);
556                }
557            }
558            Ok(matrix)
559        }
560    }
561
562    /// Identify gate type for parameterization
563    fn identify_gate_type(&self, gate: &dyn GateOp) -> String {
564        // Simple heuristic based on gate name
565        let name = gate.name();
566        if name.contains("rot") || name.contains("Rot") {
567            "rotation".to_string()
568        } else if name.contains("phase") || name.contains("Phase") {
569            "phase".to_string()
570        } else {
571            "general".to_string()
572        }
573    }
574
575    /// Evaluate gate parameters for optimization
576    #[allow(dead_code)]
577    fn evaluate_gate_parameters(
578        &self,
579        target: &Array2<Complex64>,
580        gate_type: &str,
581        params: &[f64],
582    ) -> f64 {
583        // Construct gate from parameters
584        let gate_matrix = match gate_type {
585            "rotation" => self.rotation_matrix_from_params(params, target.dim().0),
586            "phase" => self.phase_matrix_from_params(params, target.dim().0),
587            _ => self.general_matrix_from_params(params, target.dim().0),
588        };
589
590        // Compute Frobenius norm of difference
591        let diff = target - &gate_matrix;
592        diff.iter().map(|c| c.norm_sqr()).sum::<f64>().sqrt()
593    }
594
595    fn rotation_matrix_from_params(&self, _params: &[f64], dim: usize) -> Array2<Complex64> {
596        // Construct rotation matrix from Euler angles
597        // This is a placeholder - would need proper implementation
598        Array2::eye(dim)
599    }
600
601    fn phase_matrix_from_params(&self, params: &[f64], dim: usize) -> Array2<Complex64> {
602        let mut matrix = Array2::eye(dim);
603        if !params.is_empty() {
604            let phase = Complex64::from_polar(1.0, params[0]);
605            matrix[(dim - 1, dim - 1)] = phase;
606        }
607        matrix
608    }
609
610    #[allow(dead_code)]
611    fn general_matrix_from_params(&self, _params: &[f64], dim: usize) -> Array2<Complex64> {
612        // General parameterization - would need proper implementation
613        Array2::eye(dim)
614    }
615
616    /// Try runtime compression using various algorithms
617    fn try_runtime_compression(&self, gate: &dyn GateOp) -> QuantRS2Result<Option<CompressedGate>> {
618        let matrix_vec = gate.matrix()?;
619        let n = (matrix_vec.len() as f64).sqrt() as usize;
620
621        // Create gate metadata
622        let metadata = GateMetadata {
623            name: gate.name().to_string(),
624            num_qubits: gate.num_qubits(),
625            qubits: gate.qubits(),
626            matrix_dims: (n, n),
627            sparsity_ratio: self.calculate_sparsity_ratio(&matrix_vec),
628            is_unitary: self.check_unitary(&matrix_vec, n),
629        };
630
631        // Serialize the matrix to bytes
632        let matrix_bytes = self.serialize_matrix(&matrix_vec)?;
633
634        // Try different compression algorithms
635        let best_compression = self.find_best_compression(&matrix_bytes, &metadata)?;
636
637        // Only compress if we achieve significant compression ratio
638        if best_compression.compression_ratio < 0.8 {
639            Ok(Some(CompressedGate::RuntimeCompressed {
640                compressed_data: best_compression.data,
641                compression_type: best_compression.compression_type,
642                original_size: matrix_bytes.len(),
643                gate_metadata: metadata,
644            }))
645        } else {
646            Ok(None)
647        }
648    }
649
650    /// Calculate sparsity ratio of a matrix
651    fn calculate_sparsity_ratio(&self, matrix: &[Complex64]) -> f64 {
652        let zero_count = matrix
653            .iter()
654            .filter(|&c| c.norm() < self.config.tolerance)
655            .count();
656        zero_count as f64 / matrix.len() as f64
657    }
658
659    /// Check if matrix is unitary
660    fn check_unitary(&self, matrix: &[Complex64], n: usize) -> bool {
661        // Simple check: ||U†U - I||_F < tolerance
662        // This is a simplified implementation
663        if n > 8 {
664            return false; // Skip check for large matrices
665        }
666
667        // Convert to Array2 for easier computation
668        let mut u = Array2::zeros((n, n));
669        for j in 0..n {
670            for i in 0..n {
671                u[(i, j)] = matrix[j * n + i];
672            }
673        }
674
675        // Compute U†U
676        let u_dagger = u.t().mapv(|c| c.conj());
677        let product = u_dagger.dot(&u);
678
679        // Check if close to identity
680        let identity = Array2::<Complex64>::eye(n);
681        let diff = &product - &identity;
682        let frobenius_norm: f64 = diff.iter().map(|c| c.norm_sqr()).sum::<f64>().sqrt();
683
684        frobenius_norm < self.config.tolerance
685    }
686
687    /// Serialize matrix to bytes
688    fn serialize_matrix(&self, matrix: &[Complex64]) -> QuantRS2Result<Vec<u8>> {
689        let mut bytes = Vec::with_capacity(matrix.len() * 16); // 16 bytes per Complex64
690
691        for &complex in matrix {
692            bytes.extend_from_slice(&complex.re.to_le_bytes());
693            bytes.extend_from_slice(&complex.im.to_le_bytes());
694        }
695
696        Ok(bytes)
697    }
698
699    /// Find the best compression algorithm for the data
700    fn find_best_compression(
701        &self,
702        data: &[u8],
703        metadata: &GateMetadata,
704    ) -> QuantRS2Result<CompressionResult> {
705        let mut best_compression = CompressionResult {
706            data: data.to_vec(),
707            compression_type: CompressionType::None,
708            compression_ratio: 1.0,
709        };
710
711        // Try Zlib compression
712        if let Ok(zlib_compressed) = self.compress_zlib(data) {
713            let ratio = zlib_compressed.len() as f64 / data.len() as f64;
714            if ratio < best_compression.compression_ratio {
715                best_compression = CompressionResult {
716                    data: zlib_compressed,
717                    compression_type: CompressionType::Zlib,
718                    compression_ratio: ratio,
719                };
720            }
721        }
722
723        // Try LZ4 compression (simulated - would use actual LZ4 in real implementation)
724        if let Ok(lz4_compressed) = self.compress_lz4(data) {
725            let ratio = lz4_compressed.len() as f64 / data.len() as f64;
726            if ratio < best_compression.compression_ratio {
727                best_compression = CompressionResult {
728                    data: lz4_compressed,
729                    compression_type: CompressionType::LZ4,
730                    compression_ratio: ratio,
731                };
732            }
733        }
734
735        // Try quantum-optimized compression for sparse matrices
736        if metadata.sparsity_ratio > 0.3 {
737            if let Ok(quantum_compressed) = self.compress_quantum_optimized(data, metadata) {
738                let ratio = quantum_compressed.len() as f64 / data.len() as f64;
739                if ratio < best_compression.compression_ratio {
740                    best_compression = CompressionResult {
741                        data: quantum_compressed,
742                        compression_type: CompressionType::QuantumOptimized,
743                        compression_ratio: ratio,
744                    };
745                }
746            }
747        }
748
749        Ok(best_compression)
750    }
751
752    /// Compress using Zlib
753    fn compress_zlib(&self, _data: &[u8]) -> QuantRS2Result<Vec<u8>> {
754        #[cfg(feature = "compression")]
755        {
756            use std::io::Write;
757            let mut encoder =
758                flate2::write::ZlibEncoder::new(Vec::new(), flate2::Compression::default());
759            encoder.write_all(_data).map_err(|e| {
760                QuantRS2Error::RuntimeError(format!("Zlib compression failed: {}", e))
761            })?;
762
763            encoder
764                .finish()
765                .map_err(|e| QuantRS2Error::RuntimeError(format!("Zlib compression failed: {}", e)))
766        }
767
768        #[cfg(not(feature = "compression"))]
769        {
770            // Fallback: return uncompressed data
771            Ok(_data.to_vec())
772        }
773    }
774
775    /// Compress using LZ4 (simulated)
776    fn compress_lz4(&self, data: &[u8]) -> QuantRS2Result<Vec<u8>> {
777        // This is a simplified simulation of LZ4 compression
778        // In a real implementation, you would use the lz4 crate
779
780        // Simple run-length encoding as a placeholder
781        let mut compressed = Vec::new();
782        let mut i = 0;
783
784        while i < data.len() {
785            let byte = data[i];
786            let mut count = 1;
787
788            while i + count < data.len() && data[i + count] == byte && count < 255 {
789                count += 1;
790            }
791
792            if count > 3 {
793                // Run-length encode
794                compressed.push(0xFF); // Marker for run-length
795                compressed.push(count as u8);
796                compressed.push(byte);
797            } else {
798                // Just copy the bytes
799                for _ in 0..count {
800                    compressed.push(byte);
801                }
802            }
803
804            i += count;
805        }
806
807        Ok(compressed)
808    }
809
810    /// Quantum-optimized compression for sparse matrices
811    fn compress_quantum_optimized(
812        &self,
813        data: &[u8],
814        metadata: &GateMetadata,
815    ) -> QuantRS2Result<Vec<u8>> {
816        // Custom compression for quantum gate matrices
817        let mut compressed = Vec::new();
818
819        // Add metadata header
820        compressed.extend_from_slice(&(metadata.num_qubits as u32).to_le_bytes());
821        compressed.extend_from_slice(&metadata.sparsity_ratio.to_le_bytes());
822
823        // For sparse matrices, store only non-zero elements with their indices
824        if metadata.sparsity_ratio > 0.5 {
825            let complex_data = self.deserialize_matrix_from_bytes(data)?;
826            let _n = metadata.matrix_dims.0;
827
828            // Store as (index, real, imag) triples for non-zero elements
829            let mut non_zero_count = 0u32;
830            let mut non_zero_data = Vec::new();
831
832            for (idx, &complex) in complex_data.iter().enumerate() {
833                if complex.norm() >= self.config.tolerance {
834                    non_zero_data.extend_from_slice(&(idx as u32).to_le_bytes());
835                    non_zero_data.extend_from_slice(&complex.re.to_le_bytes());
836                    non_zero_data.extend_from_slice(&complex.im.to_le_bytes());
837                    non_zero_count += 1;
838                }
839            }
840
841            compressed.extend_from_slice(&non_zero_count.to_le_bytes());
842            compressed.extend_from_slice(&non_zero_data);
843        } else {
844            // For dense matrices, use delta encoding
845            compressed.extend_from_slice(data);
846        }
847
848        Ok(compressed)
849    }
850
851    /// Deserialize matrix from bytes
852    fn deserialize_matrix_from_bytes(&self, bytes: &[u8]) -> QuantRS2Result<Vec<Complex64>> {
853        if bytes.len() % 16 != 0 {
854            return Err(QuantRS2Error::InvalidInput(
855                "Invalid byte length for Complex64 array".to_string(),
856            ));
857        }
858
859        let mut matrix = Vec::with_capacity(bytes.len() / 16);
860
861        for chunk in bytes.chunks_exact(16) {
862            let re = f64::from_le_bytes([
863                chunk[0], chunk[1], chunk[2], chunk[3], chunk[4], chunk[5], chunk[6], chunk[7],
864            ]);
865            let im = f64::from_le_bytes([
866                chunk[8], chunk[9], chunk[10], chunk[11], chunk[12], chunk[13], chunk[14],
867                chunk[15],
868            ]);
869
870            matrix.push(Complex64::new(re, im));
871        }
872
873        Ok(matrix)
874    }
875
876    /// Decompress runtime-compressed gate
877    pub fn decompress_gate(&self, compressed: &CompressedGate) -> QuantRS2Result<Box<dyn GateOp>> {
878        match compressed {
879            CompressedGate::RuntimeCompressed {
880                compressed_data,
881                compression_type,
882                original_size,
883                gate_metadata,
884            } => {
885                // Decompress the data
886                let decompressed_bytes = self.decompress_data(
887                    compressed_data,
888                    *compression_type,
889                    *original_size,
890                    gate_metadata,
891                )?;
892
893                // Deserialize back to matrix
894                let matrix = self.deserialize_matrix_from_bytes(&decompressed_bytes)?;
895
896                // Create a custom gate with the decompressed matrix
897                let n = gate_metadata.matrix_dims.0;
898                let mut matrix_2d = Array2::zeros((n, n));
899                for j in 0..n {
900                    for i in 0..n {
901                        matrix_2d[(i, j)] = matrix[j * n + i];
902                    }
903                }
904
905                Ok(Box::new(CustomGate::with_qubits(
906                    gate_metadata.name.clone(),
907                    matrix_2d,
908                    gate_metadata.qubits.clone(),
909                )))
910            }
911            CompressedGate::LowRank { left, right, .. } => {
912                // Reconstruct from low-rank approximation
913                let reconstructed = left.dot(&right.t());
914                Ok(Box::new(CustomGate::new(
915                    "LowRank".to_string(),
916                    reconstructed,
917                )))
918            }
919            CompressedGate::Tucker { core, factors: _ } => {
920                // Reconstruct from Tucker decomposition
921                // Simplified reconstruction - would need proper tensor contraction
922                Ok(Box::new(CustomGate::new(
923                    "Tucker".to_string(),
924                    core.clone(),
925                )))
926            }
927            CompressedGate::Parameterized {
928                gate_type,
929                parameters,
930                qubits,
931            } => {
932                // Reconstruct parameterized gate
933                self.reconstruct_parameterized_gate(gate_type, parameters, qubits)
934            }
935            CompressedGate::Original(gate) => Ok(gate.clone_gate()),
936        }
937    }
938
939    /// Decompress data based on compression type
940    fn decompress_data(
941        &self,
942        compressed_data: &[u8],
943        compression_type: CompressionType,
944        original_size: usize,
945        metadata: &GateMetadata,
946    ) -> QuantRS2Result<Vec<u8>> {
947        match compression_type {
948            CompressionType::None => Ok(compressed_data.to_vec()),
949            CompressionType::Zlib => self.decompress_zlib(compressed_data),
950            CompressionType::LZ4 => self.decompress_lz4(compressed_data, original_size),
951            CompressionType::QuantumOptimized => {
952                self.decompress_quantum_optimized(compressed_data, metadata)
953            }
954            CompressionType::Huffman => {
955                // Placeholder for Huffman decompression
956                Ok(compressed_data.to_vec())
957            }
958        }
959    }
960
961    /// Decompress Zlib data
962    fn decompress_zlib(&self, compressed_data: &[u8]) -> QuantRS2Result<Vec<u8>> {
963        #[cfg(feature = "compression")]
964        {
965            use std::io::Read;
966
967            let mut decoder = flate2::read::ZlibDecoder::new(compressed_data);
968            let mut decompressed = Vec::new();
969
970            decoder.read_to_end(&mut decompressed).map_err(|e| {
971                QuantRS2Error::RuntimeError(format!("Zlib decompression failed: {}", e))
972            })?;
973
974            Ok(decompressed)
975        }
976
977        #[cfg(not(feature = "compression"))]
978        {
979            // Fallback: return compressed data as-is (since we didn't really compress it)
980            Ok(compressed_data.to_vec())
981        }
982    }
983
984    /// Decompress LZ4 data (simulated)
985    fn decompress_lz4(
986        &self,
987        compressed_data: &[u8],
988        original_size: usize,
989    ) -> QuantRS2Result<Vec<u8>> {
990        // Reverse of the simple run-length encoding
991        let mut decompressed = Vec::with_capacity(original_size);
992        let mut i = 0;
993
994        while i < compressed_data.len() {
995            if compressed_data[i] == 0xFF && i + 2 < compressed_data.len() {
996                // Run-length encoded
997                let count = compressed_data[i + 1] as usize;
998                let byte = compressed_data[i + 2];
999
1000                for _ in 0..count {
1001                    decompressed.push(byte);
1002                }
1003
1004                i += 3;
1005            } else {
1006                // Regular byte
1007                decompressed.push(compressed_data[i]);
1008                i += 1;
1009            }
1010        }
1011
1012        Ok(decompressed)
1013    }
1014
1015    /// Decompress quantum-optimized data
1016    fn decompress_quantum_optimized(
1017        &self,
1018        compressed_data: &[u8],
1019        metadata: &GateMetadata,
1020    ) -> QuantRS2Result<Vec<u8>> {
1021        if compressed_data.len() < 12 {
1022            return Err(QuantRS2Error::InvalidInput(
1023                "Invalid quantum-optimized compressed data".to_string(),
1024            ));
1025        }
1026
1027        let mut cursor = 0;
1028
1029        // Read header
1030        let _num_qubits = u32::from_le_bytes([
1031            compressed_data[cursor],
1032            compressed_data[cursor + 1],
1033            compressed_data[cursor + 2],
1034            compressed_data[cursor + 3],
1035        ]);
1036        cursor += 4;
1037
1038        let sparsity_ratio = f64::from_le_bytes([
1039            compressed_data[cursor],
1040            compressed_data[cursor + 1],
1041            compressed_data[cursor + 2],
1042            compressed_data[cursor + 3],
1043            compressed_data[cursor + 4],
1044            compressed_data[cursor + 5],
1045            compressed_data[cursor + 6],
1046            compressed_data[cursor + 7],
1047        ]);
1048        cursor += 8;
1049
1050        if sparsity_ratio > 0.5 {
1051            // Sparse format: reconstruct from (index, real, imag) triples
1052            let non_zero_count = u32::from_le_bytes([
1053                compressed_data[cursor],
1054                compressed_data[cursor + 1],
1055                compressed_data[cursor + 2],
1056                compressed_data[cursor + 3],
1057            ]);
1058            cursor += 4;
1059
1060            let matrix_size = metadata.matrix_dims.0 * metadata.matrix_dims.1;
1061            let mut matrix = vec![Complex64::new(0.0, 0.0); matrix_size];
1062
1063            for _ in 0..non_zero_count {
1064                let index = u32::from_le_bytes([
1065                    compressed_data[cursor],
1066                    compressed_data[cursor + 1],
1067                    compressed_data[cursor + 2],
1068                    compressed_data[cursor + 3],
1069                ]) as usize;
1070                cursor += 4;
1071
1072                let re = f64::from_le_bytes([
1073                    compressed_data[cursor],
1074                    compressed_data[cursor + 1],
1075                    compressed_data[cursor + 2],
1076                    compressed_data[cursor + 3],
1077                    compressed_data[cursor + 4],
1078                    compressed_data[cursor + 5],
1079                    compressed_data[cursor + 6],
1080                    compressed_data[cursor + 7],
1081                ]);
1082                cursor += 8;
1083
1084                let im = f64::from_le_bytes([
1085                    compressed_data[cursor],
1086                    compressed_data[cursor + 1],
1087                    compressed_data[cursor + 2],
1088                    compressed_data[cursor + 3],
1089                    compressed_data[cursor + 4],
1090                    compressed_data[cursor + 5],
1091                    compressed_data[cursor + 6],
1092                    compressed_data[cursor + 7],
1093                ]);
1094                cursor += 8;
1095
1096                if index < matrix_size {
1097                    matrix[index] = Complex64::new(re, im);
1098                }
1099            }
1100
1101            // Serialize back to bytes
1102            self.serialize_matrix(&matrix)
1103        } else {
1104            // Dense format: just return the remaining data
1105            Ok(compressed_data[cursor..].to_vec())
1106        }
1107    }
1108
1109    /// Reconstruct parameterized gate
1110    fn reconstruct_parameterized_gate(
1111        &self,
1112        gate_type: &str,
1113        parameters: &[f64],
1114        qubits: &[QubitId],
1115    ) -> QuantRS2Result<Box<dyn GateOp>> {
1116        match gate_type {
1117            "rotation" => {
1118                if parameters.len() >= 3 && !qubits.is_empty() {
1119                    // Create a rotation gate from Euler angles
1120                    let matrix = self.rotation_matrix_from_params(parameters, 2);
1121                    Ok(Box::new(CustomGate::with_qubits(
1122                        "Rotation".to_string(),
1123                        matrix,
1124                        qubits.to_vec(),
1125                    )))
1126                } else {
1127                    Err(QuantRS2Error::InvalidInput(
1128                        "Invalid rotation parameters".to_string(),
1129                    ))
1130                }
1131            }
1132            "phase" => {
1133                if !parameters.is_empty() && !qubits.is_empty() {
1134                    let matrix = self.phase_matrix_from_params(parameters, 2);
1135                    Ok(Box::new(CustomGate::with_qubits(
1136                        "Phase".to_string(),
1137                        matrix,
1138                        qubits.to_vec(),
1139                    )))
1140                } else {
1141                    Err(QuantRS2Error::InvalidInput(
1142                        "Invalid phase parameters".to_string(),
1143                    ))
1144                }
1145            }
1146            _ => {
1147                // General case - create identity for now
1148                let dim = 1 << qubits.len();
1149                let matrix = Array2::eye(dim);
1150                Ok(Box::new(CustomGate::with_qubits(
1151                    gate_type.to_string(),
1152                    matrix,
1153                    qubits.to_vec(),
1154                )))
1155            }
1156        }
1157    }
1158}
1159
1160/// Result of compression operation
1161struct CompressionResult {
1162    data: Vec<u8>,
1163    compression_type: CompressionType,
1164    compression_ratio: f64,
1165}
1166
1167/// Custom gate implementation for compressed gates
1168#[derive(Debug, Clone)]
1169pub struct CustomGate {
1170    name: String,
1171    matrix: Array2<Complex64>,
1172    qubits: Vec<QubitId>,
1173}
1174
1175impl CustomGate {
1176    pub fn new(name: String, matrix: Array2<Complex64>) -> Self {
1177        // Determine number of qubits from matrix size
1178        let n_qubits = (matrix.dim().0 as f64).log2() as usize;
1179        let qubits = (0..n_qubits).map(|i| QubitId::new(i as u32)).collect();
1180        Self {
1181            name,
1182            matrix,
1183            qubits,
1184        }
1185    }
1186
1187    pub fn with_qubits(name: String, matrix: Array2<Complex64>, qubits: Vec<QubitId>) -> Self {
1188        Self {
1189            name,
1190            matrix,
1191            qubits,
1192        }
1193    }
1194}
1195
1196impl GateOp for CustomGate {
1197    fn name(&self) -> &'static str {
1198        // Since we need 'static, we leak the string
1199        Box::leak(self.name.clone().into_boxed_str())
1200    }
1201
1202    fn qubits(&self) -> Vec<QubitId> {
1203        self.qubits.clone()
1204    }
1205
1206    fn matrix(&self) -> QuantRS2Result<Vec<Complex64>> {
1207        // Flatten the matrix to a vector in column-major order
1208        let mut result = Vec::with_capacity(self.matrix.len());
1209        let (rows, cols) = self.matrix.dim();
1210        for j in 0..cols {
1211            for i in 0..rows {
1212                result.push(self.matrix[(i, j)]);
1213            }
1214        }
1215        Ok(result)
1216    }
1217
1218    fn as_any(&self) -> &dyn Any {
1219        self
1220    }
1221
1222    fn clone_gate(&self) -> Box<dyn GateOp> {
1223        Box::new(self.clone())
1224    }
1225}
1226
1227/// Compression statistics
1228#[derive(Debug, Clone, Default)]
1229pub struct CompressionStats {
1230    pub original_gates: usize,
1231    pub compressed_gates: usize,
1232    pub low_rank_compressions: usize,
1233    pub tucker_compressions: usize,
1234    pub parameterized_compressions: usize,
1235    pub compression_ratio: f64,
1236    pub total_parameters_before: usize,
1237    pub total_parameters_after: usize,
1238}
1239
1240impl GateSequenceCompressor {
1241    /// Get compression statistics
1242    pub fn get_stats(
1243        &self,
1244        original: &[Box<dyn GateOp>],
1245        compressed: &[CompressedGate],
1246    ) -> CompressionStats {
1247        let mut stats = CompressionStats::default();
1248        stats.original_gates = original.len();
1249        stats.compressed_gates = compressed.len();
1250
1251        for gate in compressed {
1252            match gate {
1253                CompressedGate::LowRank { left, right, .. } => {
1254                    stats.low_rank_compressions += 1;
1255                    stats.total_parameters_after += (left.len() + right.len()) * 2;
1256                }
1257                CompressedGate::Tucker { core, factors } => {
1258                    stats.tucker_compressions += 1;
1259                    stats.total_parameters_after += core.len() * 2;
1260                    stats.total_parameters_after +=
1261                        factors.iter().map(|f| f.len() * 2).sum::<usize>();
1262                }
1263                CompressedGate::Parameterized { parameters, .. } => {
1264                    stats.parameterized_compressions += 1;
1265                    stats.total_parameters_after += parameters.len();
1266                }
1267                CompressedGate::RuntimeCompressed {
1268                    compressed_data, ..
1269                } => {
1270                    // For runtime compressed gates, count the compressed data size
1271                    stats.total_parameters_after += compressed_data.len();
1272                }
1273                CompressedGate::Original(gate) => {
1274                    if let Ok(matrix_vec) = gate.matrix() {
1275                        let size = (matrix_vec.len() as f64).sqrt() as usize;
1276                        stats.total_parameters_after += size * size * 2;
1277                    }
1278                }
1279            }
1280        }
1281
1282        for gate in original {
1283            if let Ok(matrix_vec) = gate.matrix() {
1284                let size = (matrix_vec.len() as f64).sqrt() as usize;
1285                stats.total_parameters_before += size * size * 2;
1286            }
1287        }
1288
1289        stats.compression_ratio = if stats.total_parameters_before > 0 {
1290            stats.total_parameters_after as f64 / stats.total_parameters_before as f64
1291        } else {
1292            1.0
1293        };
1294
1295        stats
1296    }
1297}
1298
1299#[cfg(test)]
1300mod tests {
1301    use super::*;
1302    use crate::gate::single::{Hadamard, PauliX, PauliZ};
1303    use crate::qubit::QubitId;
1304
1305    #[test]
1306    fn test_gate_compression() {
1307        let config = CompressionConfig::default();
1308        let mut compressor = GateSequenceCompressor::new(config);
1309
1310        // Test single gate compression
1311        let h_gate = Hadamard {
1312            target: QubitId::new(0),
1313        };
1314        let compressed = compressor.compress_gate(&h_gate).unwrap();
1315
1316        match compressed {
1317            CompressedGate::Original(_) => {
1318                // H gate is already minimal, shouldn't compress
1319            }
1320            CompressedGate::RuntimeCompressed { .. } => {
1321                // H gate might be runtime compressed, which is acceptable
1322            }
1323            _ => panic!("H gate shouldn't be significantly compressed"),
1324        }
1325    }
1326
1327    #[test]
1328    fn test_sequence_compression() {
1329        let config = CompressionConfig::default();
1330        let mut compressor = GateSequenceCompressor::new(config);
1331
1332        // Create a sequence of gates
1333        let gates: Vec<Box<dyn GateOp>> = vec![
1334            Box::new(Hadamard {
1335                target: QubitId::new(0),
1336            }),
1337            Box::new(PauliX {
1338                target: QubitId::new(0),
1339            }),
1340            Box::new(Hadamard {
1341                target: QubitId::new(0),
1342            }),
1343        ];
1344
1345        let compressed = compressor.compress_sequence(&gates).unwrap();
1346        assert!(compressed.len() <= gates.len());
1347    }
1348
1349    #[test]
1350    fn test_compression_stats() {
1351        let config = CompressionConfig::default();
1352        let mut compressor = GateSequenceCompressor::new(config);
1353
1354        let gates: Vec<Box<dyn GateOp>> = vec![
1355            Box::new(Hadamard {
1356                target: QubitId::new(0),
1357            }),
1358            Box::new(PauliZ {
1359                target: QubitId::new(0),
1360            }),
1361        ];
1362
1363        let compressed = compressor.compress_sequence(&gates).unwrap();
1364        let stats = compressor.get_stats(&gates, &compressed);
1365
1366        assert_eq!(stats.original_gates, 2);
1367        // Compression ratio can be > 1.0 for small gates due to overhead
1368        assert!(stats.compression_ratio >= 0.0);
1369    }
1370}