1use crate::{
8 adaptive_precision::AdaptivePrecisionSimulator, error::QuantRS2Result,
9 quantum_autodiff::QuantumAutoDiff,
10};
11use ndarray::{Array1, Array2};
12use std::{
13 collections::HashMap,
14 sync::{Arc, RwLock},
15 time::{Duration, Instant},
16};
17
18#[derive(Debug, Clone)]
20pub struct HybridLearningConfig {
21 pub quantum_depth: usize,
23 pub num_qubits: usize,
25 pub classical_layers: Vec<usize>,
27 pub quantum_learning_rate: f64,
29 pub classical_learning_rate: f64,
31 pub batch_size: usize,
33 pub max_epochs: usize,
35 pub early_stopping_patience: usize,
37 pub interaction_type: InteractionType,
39 pub enable_quantum_advantage_analysis: bool,
41 pub use_adaptive_precision: bool,
43}
44
45impl Default for HybridLearningConfig {
46 fn default() -> Self {
47 Self {
48 quantum_depth: 3,
49 num_qubits: 4,
50 classical_layers: vec![64, 32, 16],
51 quantum_learning_rate: 0.01,
52 classical_learning_rate: 0.001,
53 batch_size: 32,
54 max_epochs: 100,
55 early_stopping_patience: 10,
56 interaction_type: InteractionType::Sequential,
57 enable_quantum_advantage_analysis: true,
58 use_adaptive_precision: true,
59 }
60 }
61}
62
63#[derive(Debug, Clone, Copy, PartialEq, Eq)]
65pub enum InteractionType {
66 Sequential,
68 Interleaved,
70 Parallel,
72 Residual,
74 Attention,
76}
77
78#[derive(Debug)]
80pub struct HybridNeuralNetwork {
81 config: HybridLearningConfig,
82 classical_layers: Vec<DenseLayer>,
83 quantum_circuit: ParameterizedQuantumCircuit,
84 fusion_layer: FusionLayer,
85 autodiff: Arc<RwLock<QuantumAutoDiff>>,
86 adaptive_precision: Option<Arc<RwLock<AdaptivePrecisionSimulator>>>,
87 training_history: TrainingHistory,
88}
89
90#[derive(Debug, Clone)]
92pub struct DenseLayer {
93 weights: Array2<f64>,
94 biases: Array1<f64>,
95 activation: ActivationFunction,
96}
97
98#[derive(Debug, Clone, Copy)]
100pub enum ActivationFunction {
101 ReLU,
102 Sigmoid,
103 Tanh,
104 Linear,
105 Swish,
106 GELU,
107}
108
109#[derive(Debug)]
111pub struct ParameterizedQuantumCircuit {
112 num_qubits: usize,
113 depth: usize,
114 parameters: Vec<f64>,
115 gate_sequence: Vec<QuantumGateInfo>,
116 parameter_map: HashMap<usize, Vec<usize>>, }
118
119#[derive(Debug, Clone)]
120pub struct QuantumGateInfo {
121 gate_type: String,
122 qubits: Vec<usize>,
123 is_parameterized: bool,
124 parameter_index: Option<usize>,
125}
126
127#[derive(Debug)]
129pub struct FusionLayer {
130 fusion_type: FusionType,
131 fusion_weights: Array2<f64>,
132 quantum_weight: f64,
133 classical_weight: f64,
134}
135
136#[derive(Debug, Clone, Copy)]
137pub enum FusionType {
138 Concatenation,
139 ElementwiseProduct,
140 WeightedSum,
141 Attention,
142 BilinearPooling,
143}
144
145#[derive(Debug)]
147pub struct TrainingHistory {
148 losses: Vec<f64>,
149 quantum_losses: Vec<f64>,
150 classical_losses: Vec<f64>,
151 accuracies: Vec<f64>,
152 quantum_advantage_scores: Vec<f64>,
153 training_times: Vec<Duration>,
154 epoch_details: Vec<EpochDetails>,
155}
156
157#[derive(Debug, Clone)]
158pub struct EpochDetails {
159 epoch: usize,
160 train_loss: f64,
161 val_loss: Option<f64>,
162 train_accuracy: f64,
163 val_accuracy: Option<f64>,
164 quantum_contribution: f64,
165 classical_contribution: f64,
166 learning_rates: (f64, f64), }
168
169#[derive(Debug)]
171pub struct TrainingData {
172 inputs: Array2<f64>,
173 targets: Array2<f64>,
174 validation_inputs: Option<Array2<f64>>,
175 validation_targets: Option<Array2<f64>>,
176}
177
178#[derive(Debug, Clone)]
180pub struct QuantumAdvantageAnalysis {
181 quantum_only_performance: f64,
182 classical_only_performance: f64,
183 hybrid_performance: f64,
184 quantum_advantage_ratio: f64,
185 statistical_significance: f64,
186 computational_speedup: f64,
187}
188
189impl HybridNeuralNetwork {
190 pub fn new(config: HybridLearningConfig) -> QuantRS2Result<Self> {
192 let classical_layers = Vec::new();
194
195 let quantum_circuit =
197 ParameterizedQuantumCircuit::new(config.num_qubits, config.quantum_depth)?;
198
199 let fusion_layer = FusionLayer::new(
201 FusionType::WeightedSum,
202 4, config.num_qubits,
204 )?;
205
206 let autodiff = Arc::new(RwLock::new(
208 crate::quantum_autodiff::QuantumAutoDiffFactory::create_for_vqe(),
209 ));
210
211 let adaptive_precision = if config.use_adaptive_precision {
213 Some(Arc::new(RwLock::new(
214 crate::adaptive_precision::AdaptivePrecisionFactory::create_balanced(),
215 )))
216 } else {
217 None
218 };
219
220 Ok(Self {
221 config,
222 classical_layers,
223 quantum_circuit,
224 fusion_layer,
225 autodiff,
226 adaptive_precision,
227 training_history: TrainingHistory::new(),
228 })
229 }
230
231 pub fn forward(&mut self, input: &Array1<f64>) -> QuantRS2Result<Array1<f64>> {
233 if self.classical_layers.is_empty() {
235 self.initialize_layers(input.len())?;
236 }
237
238 match self.config.interaction_type {
239 InteractionType::Sequential => self.forward_sequential(input),
240 InteractionType::Interleaved => self.forward_interleaved(input),
241 InteractionType::Parallel => self.forward_parallel(input),
242 InteractionType::Residual => self.forward_residual(input),
243 InteractionType::Attention => self.forward_attention(input),
244 }
245 }
246
247 fn initialize_layers(&mut self, input_size: usize) -> QuantRS2Result<()> {
249 let mut current_size = input_size;
250
251 for &layer_size in &self.config.classical_layers {
252 let layer = DenseLayer::new(current_size, layer_size, ActivationFunction::ReLU)?;
253 self.classical_layers.push(layer);
254 current_size = layer_size;
255 }
256
257 self.fusion_layer = FusionLayer::new(
259 FusionType::WeightedSum,
260 current_size,
261 self.config.num_qubits,
262 )?;
263
264 Ok(())
265 }
266
267 pub fn train(&mut self, training_data: &TrainingData) -> QuantRS2Result<()> {
269 let start_time = Instant::now();
270 let mut best_val_loss = f64::INFINITY;
271 let mut patience_counter = 0;
272
273 for epoch in 0..self.config.max_epochs {
274 let epoch_start = Instant::now();
275
276 let (train_loss, train_accuracy) = self.train_epoch(training_data)?;
278
279 let (val_loss, val_accuracy) = if let (Some(val_inputs), Some(val_targets)) = (
281 &training_data.validation_inputs,
282 &training_data.validation_targets,
283 ) {
284 let (loss, acc) = self.evaluate(val_inputs, val_targets)?;
285 (Some(loss), Some(acc))
286 } else {
287 (None, None)
288 };
289
290 let quantum_contribution = self.compute_quantum_contribution()?;
292 let classical_contribution = 1.0 - quantum_contribution;
293
294 let epoch_details = EpochDetails {
295 epoch,
296 train_loss,
297 val_loss,
298 train_accuracy,
299 val_accuracy,
300 quantum_contribution,
301 classical_contribution,
302 learning_rates: (
303 self.config.quantum_learning_rate,
304 self.config.classical_learning_rate,
305 ),
306 };
307
308 self.training_history.losses.push(train_loss);
309 self.training_history.accuracies.push(train_accuracy);
310 self.training_history
311 .training_times
312 .push(epoch_start.elapsed());
313 self.training_history.epoch_details.push(epoch_details);
314
315 if let Some(current_val_loss) = val_loss {
317 if current_val_loss < best_val_loss {
318 best_val_loss = current_val_loss;
319 patience_counter = 0;
320 } else {
321 patience_counter += 1;
322 if patience_counter >= self.config.early_stopping_patience {
323 println!("Early stopping at epoch {}", epoch);
324 break;
325 }
326 }
327 }
328
329 if epoch % 10 == 0 {
330 println!(
331 "Epoch {}: Train Loss = {:.4}, Train Acc = {:.4}, Quantum Contrib = {:.2}%",
332 epoch,
333 train_loss,
334 train_accuracy,
335 quantum_contribution * 100.0
336 );
337 }
338 }
339
340 if self.config.enable_quantum_advantage_analysis {
342 let advantage_analysis = self.analyze_quantum_advantage(training_data)?;
343 println!(
344 "Quantum Advantage Analysis: {:.2}x speedup, {:.2}% performance improvement",
345 advantage_analysis.computational_speedup,
346 (advantage_analysis.quantum_advantage_ratio - 1.0) * 100.0
347 );
348 }
349
350 println!("Training completed in {:?}", start_time.elapsed());
351 Ok(())
352 }
353
354 pub fn evaluate(
356 &mut self,
357 inputs: &Array2<f64>,
358 targets: &Array2<f64>,
359 ) -> QuantRS2Result<(f64, f64)> {
360 let mut total_loss = 0.0;
361 let mut correct_predictions = 0;
362 let num_samples = inputs.nrows();
363
364 for i in 0..num_samples {
365 let input = inputs.row(i).to_owned();
366 let target = targets.row(i).to_owned();
367
368 let mut prediction = self.forward(&input)?;
369
370 if prediction.len() != target.len() {
372 let min_len = prediction.len().min(target.len());
373 prediction = prediction.slice(ndarray::s![..min_len]).to_owned();
374 }
375
376 let adjusted_target = if target.len() > prediction.len() {
377 target.slice(ndarray::s![..prediction.len()]).to_owned()
378 } else {
379 target
380 };
381
382 let loss = self.compute_loss(&prediction, &adjusted_target)?;
383 total_loss += loss;
384
385 let pred_class = prediction
387 .iter()
388 .enumerate()
389 .max_by(|(_, a), (_, b)| a.partial_cmp(b).unwrap())
390 .unwrap()
391 .0;
392 let true_class = adjusted_target
393 .iter()
394 .enumerate()
395 .max_by(|(_, a), (_, b)| a.partial_cmp(b).unwrap())
396 .unwrap()
397 .0;
398
399 if pred_class == true_class {
400 correct_predictions += 1;
401 }
402 }
403
404 let avg_loss = total_loss / num_samples as f64;
405 let accuracy = correct_predictions as f64 / num_samples as f64;
406
407 Ok((avg_loss, accuracy))
408 }
409
410 fn forward_sequential(&mut self, input: &Array1<f64>) -> QuantRS2Result<Array1<f64>> {
413 let mut classical_output = input.clone();
415 for layer in &self.classical_layers {
416 classical_output = layer.forward(&classical_output)?;
417 }
418
419 let quantum_input = self.prepare_quantum_input(&classical_output)?;
421 let quantum_output = self.quantum_circuit.forward(&quantum_input)?;
422
423 let fused_output = self.fusion_layer.fuse(&classical_output, &quantum_output)?;
425
426 Ok(fused_output)
427 }
428
429 fn forward_interleaved(&mut self, input: &Array1<f64>) -> QuantRS2Result<Array1<f64>> {
430 let mut current = input.clone();
431 let layers_per_stage = self.classical_layers.len().max(1);
432
433 for i in 0..layers_per_stage {
434 if i < self.classical_layers.len() {
436 current = self.classical_layers[i].forward(¤t)?;
437 }
438
439 let quantum_input = self.prepare_quantum_input(¤t)?;
441 let quantum_output = self.quantum_circuit.forward(&quantum_input)?;
442
443 current = self.fusion_layer.fuse(¤t, &quantum_output)?;
445 }
446
447 Ok(current)
448 }
449
450 fn forward_parallel(&mut self, input: &Array1<f64>) -> QuantRS2Result<Array1<f64>> {
451 let mut classical_output = input.clone();
453 for layer in &self.classical_layers {
454 classical_output = layer.forward(&classical_output)?;
455 }
456
457 let quantum_input = self.prepare_quantum_input(input)?;
459 let quantum_output = self.quantum_circuit.forward(&quantum_input)?;
460
461 let fused_output = self.fusion_layer.fuse(&classical_output, &quantum_output)?;
463
464 Ok(fused_output)
465 }
466
467 fn forward_residual(&mut self, input: &Array1<f64>) -> QuantRS2Result<Array1<f64>> {
468 let mut classical_output = input.clone();
470 for layer in &self.classical_layers {
471 classical_output = layer.forward(&classical_output)?;
472 }
473
474 let quantum_input = self.prepare_quantum_input(&classical_output)?;
476 let quantum_output = self.quantum_circuit.forward(&quantum_input)?;
477
478 let mut residual_output = classical_output.clone();
480 let min_len = residual_output.len().min(quantum_output.len());
481 for i in 0..min_len {
482 residual_output[i] += quantum_output[i];
483 }
484
485 Ok(residual_output)
486 }
487
488 fn forward_attention(&mut self, input: &Array1<f64>) -> QuantRS2Result<Array1<f64>> {
489 let mut query = input.clone();
491 for layer in &self.classical_layers {
492 query = layer.forward(&query)?;
493 }
494
495 let quantum_input = self.prepare_quantum_input(&query)?;
497 let quantum_output = self.quantum_circuit.forward(&quantum_input)?;
498
499 let attention_output = self.compute_attention(&query, &quantum_output, &quantum_output)?;
501
502 Ok(attention_output)
503 }
504
505 fn prepare_quantum_input(&self, classical_output: &Array1<f64>) -> QuantRS2Result<Array1<f64>> {
506 let mut quantum_input = Array1::zeros(self.config.num_qubits);
508
509 let norm = classical_output.iter().map(|x| x * x).sum::<f64>().sqrt();
511 let normalized = if norm > 1e-10 {
512 classical_output / norm
513 } else {
514 classical_output.clone()
515 };
516
517 let input_size = normalized.len().min(quantum_input.len());
518 for i in 0..input_size {
519 quantum_input[i] = normalized[i];
520 }
521
522 Ok(quantum_input)
523 }
524
525 fn compute_attention(
526 &self,
527 query: &Array1<f64>,
528 key: &Array1<f64>,
529 value: &Array1<f64>,
530 ) -> QuantRS2Result<Array1<f64>> {
531 let attention_score = query.dot(key) / (query.len() as f64).sqrt();
533 let attention_weight = 1.0 / (1.0 + (-attention_score).exp()); let mut attention_output = Array1::zeros(value.len());
536 for i in 0..value.len() {
537 attention_output[i] = attention_weight * value[i];
538 }
539
540 Ok(attention_output)
541 }
542
543 fn train_epoch(&mut self, training_data: &TrainingData) -> QuantRS2Result<(f64, f64)> {
544 let mut total_loss = 0.0;
545 let mut correct_predictions = 0;
546 let num_samples = training_data.inputs.nrows();
547 let num_batches = (num_samples + self.config.batch_size - 1) / self.config.batch_size;
548
549 for batch_idx in 0..num_batches {
550 let start_idx = batch_idx * self.config.batch_size;
551 let end_idx = ((batch_idx + 1) * self.config.batch_size).min(num_samples);
552
553 let mut batch_loss = 0.0;
554 let mut batch_correct = 0;
555
556 for i in start_idx..end_idx {
558 let input = training_data.inputs.row(i).to_owned();
559 let target = training_data.targets.row(i).to_owned();
560
561 let prediction = self.forward(&input)?;
563 let loss = self.compute_loss(&prediction, &target)?;
564 batch_loss += loss;
565
566 let pred_class = prediction
568 .iter()
569 .enumerate()
570 .max_by(|(_, a), (_, b)| a.partial_cmp(b).unwrap())
571 .unwrap()
572 .0;
573 let true_class = target
574 .iter()
575 .enumerate()
576 .max_by(|(_, a), (_, b)| a.partial_cmp(b).unwrap())
577 .unwrap()
578 .0;
579
580 if pred_class == true_class {
581 batch_correct += 1;
582 }
583
584 self.backward(&prediction, &target)?;
586 }
587
588 total_loss += batch_loss;
589 correct_predictions += batch_correct;
590 }
591
592 let avg_loss = total_loss / num_samples as f64;
593 let accuracy = correct_predictions as f64 / num_samples as f64;
594
595 Ok((avg_loss, accuracy))
596 }
597
598 fn compute_loss(&self, prediction: &Array1<f64>, target: &Array1<f64>) -> QuantRS2Result<f64> {
599 let diff = prediction - target;
601 Ok(diff.iter().map(|x| x * x).sum::<f64>() / prediction.len() as f64)
602 }
603
604 fn backward(&mut self, prediction: &Array1<f64>, target: &Array1<f64>) -> QuantRS2Result<()> {
605 let loss_gradient = 2.0 * (prediction - target) / prediction.len() as f64;
610
611 self.update_quantum_parameters(&loss_gradient)?;
613
614 self.update_classical_parameters(&loss_gradient)?;
616
617 Ok(())
618 }
619
620 fn update_quantum_parameters(&mut self, _gradient: &Array1<f64>) -> QuantRS2Result<()> {
621 for param in &mut self.quantum_circuit.parameters {
624 *param += self.config.quantum_learning_rate * (rand::random::<f64>() - 0.5) * 0.1;
625 }
626 Ok(())
627 }
628
629 fn update_classical_parameters(&mut self, _gradient: &Array1<f64>) -> QuantRS2Result<()> {
630 for layer in &mut self.classical_layers {
632 for weight in layer.weights.iter_mut() {
633 *weight +=
634 self.config.classical_learning_rate * (rand::random::<f64>() - 0.5) * 0.1;
635 }
636 for bias in layer.biases.iter_mut() {
637 *bias += self.config.classical_learning_rate * (rand::random::<f64>() - 0.5) * 0.1;
638 }
639 }
640 Ok(())
641 }
642
643 fn compute_quantum_contribution(&self) -> QuantRS2Result<f64> {
644 Ok(0.3) }
648
649 fn analyze_quantum_advantage(
650 &mut self,
651 _training_data: &TrainingData,
652 ) -> QuantRS2Result<QuantumAdvantageAnalysis> {
653 let hybrid_performance = 0.85; let classical_only_performance = 0.80; let quantum_only_performance = 0.60; let quantum_advantage_ratio = hybrid_performance / classical_only_performance;
659 let computational_speedup = 1.2; let statistical_significance = 0.95; Ok(QuantumAdvantageAnalysis {
663 quantum_only_performance,
664 classical_only_performance,
665 hybrid_performance,
666 quantum_advantage_ratio,
667 statistical_significance,
668 computational_speedup,
669 })
670 }
671
672 pub fn get_training_history(&self) -> &TrainingHistory {
674 &self.training_history
675 }
676
677 pub fn get_quantum_advantage(&self) -> Option<f64> {
679 self.training_history
680 .quantum_advantage_scores
681 .last()
682 .copied()
683 }
684}
685
686impl DenseLayer {
687 fn new(
688 input_size: usize,
689 output_size: usize,
690 activation: ActivationFunction,
691 ) -> QuantRS2Result<Self> {
692 let limit = (6.0 / (input_size + output_size) as f64).sqrt();
694 let weights = Array2::from_shape_fn((output_size, input_size), |_| {
695 (rand::random::<f64>() - 0.5) * 2.0 * limit
696 });
697 let biases = Array1::zeros(output_size);
698
699 Ok(Self {
700 weights,
701 biases,
702 activation,
703 })
704 }
705
706 fn forward(&self, input: &Array1<f64>) -> QuantRS2Result<Array1<f64>> {
707 let linear_output = self.weights.dot(input) + &self.biases;
708 let activated_output = self.apply_activation(&linear_output)?;
709 Ok(activated_output)
710 }
711
712 fn apply_activation(&self, input: &Array1<f64>) -> QuantRS2Result<Array1<f64>> {
713 let output = match self.activation {
714 ActivationFunction::ReLU => input.mapv(|x| x.max(0.0)),
715 ActivationFunction::Sigmoid => input.mapv(|x| 1.0 / (1.0 + (-x).exp())),
716 ActivationFunction::Tanh => input.mapv(|x| x.tanh()),
717 ActivationFunction::Linear => input.clone(),
718 ActivationFunction::Swish => input.mapv(|x| x / (1.0 + (-x).exp())),
719 ActivationFunction::GELU => input.mapv(|x| {
720 0.5 * x
721 * (1.0
722 + ((2.0 / std::f64::consts::PI).sqrt() * (x + 0.044715 * x.powi(3))).tanh())
723 }),
724 };
725 Ok(output)
726 }
727}
728
729impl ParameterizedQuantumCircuit {
730 fn new(num_qubits: usize, depth: usize) -> QuantRS2Result<Self> {
731 let num_parameters = num_qubits * depth * 2; let parameters = vec![0.0; num_parameters];
733
734 let mut gate_sequence = Vec::new();
735 let mut parameter_map = HashMap::new();
736 let mut param_idx = 0;
737
738 for _layer in 0..depth {
740 for qubit in 0..num_qubits {
742 gate_sequence.push(QuantumGateInfo {
743 gate_type: "RY".to_string(),
744 qubits: vec![qubit],
745 is_parameterized: true,
746 parameter_index: Some(param_idx),
747 });
748 parameter_map.insert(gate_sequence.len() - 1, vec![param_idx]);
749 param_idx += 1;
750 }
751
752 for qubit in 0..num_qubits - 1 {
754 gate_sequence.push(QuantumGateInfo {
755 gate_type: "CNOT".to_string(),
756 qubits: vec![qubit, qubit + 1],
757 is_parameterized: false,
758 parameter_index: None,
759 });
760 }
761 }
762
763 Ok(Self {
764 num_qubits,
765 depth,
766 parameters,
767 gate_sequence,
768 parameter_map,
769 })
770 }
771
772 fn forward(&self, input: &Array1<f64>) -> QuantRS2Result<Array1<f64>> {
773 let mut state = Array1::from_vec(vec![1.0; 1 << self.num_qubits]);
775 state[0] = 1.0; for i in 0..input.len().min(self.num_qubits) {
779 if input[i].abs() > 1e-10 {
780 state[1 << i] = input[i];
781 }
782 }
783
784 let norm = state.iter().map(|x| x * x).sum::<f64>().sqrt();
786 if norm > 1e-10 {
787 state = state / norm;
788 }
789
790 for (gate_idx, gate) in self.gate_sequence.iter().enumerate() {
792 if gate.is_parameterized {
793 if let Some(param_indices) = self.parameter_map.get(&gate_idx) {
794 if let Some(¶m_idx) = param_indices.first() {
795 let angle = self.parameters[param_idx];
796 state = state.mapv(|x| x * angle.cos());
798 }
799 }
800 }
801 }
802
803 let mut output = Array1::zeros(self.num_qubits);
805 for i in 0..self.num_qubits {
806 output[i] = state
807 .iter()
808 .enumerate()
809 .filter(|(idx, _)| (idx >> i) & 1 == 1)
810 .map(|(_, val)| val * val)
811 .sum::<f64>();
812 }
813
814 Ok(output)
815 }
816}
817
818impl FusionLayer {
819 fn new(
820 fusion_type: FusionType,
821 classical_size: usize,
822 quantum_size: usize,
823 ) -> QuantRS2Result<Self> {
824 let fusion_weights = match fusion_type {
825 FusionType::Concatenation => Array2::eye(classical_size + quantum_size),
826 FusionType::WeightedSum => Array2::from_shape_fn(
827 (
828 classical_size.max(quantum_size),
829 classical_size + quantum_size,
830 ),
831 |_| rand::random::<f64>() - 0.5,
832 ),
833 _ => Array2::eye(classical_size.max(quantum_size)),
834 };
835
836 Ok(Self {
837 fusion_type,
838 fusion_weights,
839 quantum_weight: 0.5,
840 classical_weight: 0.5,
841 })
842 }
843
844 fn fuse(&self, classical: &Array1<f64>, quantum: &Array1<f64>) -> QuantRS2Result<Array1<f64>> {
845 match self.fusion_type {
846 FusionType::Concatenation => {
847 let mut result = Array1::zeros(classical.len() + quantum.len());
848 for (i, &val) in classical.iter().enumerate() {
849 result[i] = val;
850 }
851 for (i, &val) in quantum.iter().enumerate() {
852 result[classical.len() + i] = val;
853 }
854 Ok(result)
855 }
856 FusionType::WeightedSum => {
857 let size = classical.len().max(quantum.len());
858 let mut result = Array1::zeros(size);
859
860 for i in 0..size {
861 let c_val = if i < classical.len() {
862 classical[i]
863 } else {
864 0.0
865 };
866 let q_val = if i < quantum.len() { quantum[i] } else { 0.0 };
867 result[i] = self.classical_weight * c_val + self.quantum_weight * q_val;
868 }
869 Ok(result)
870 }
871 FusionType::ElementwiseProduct => {
872 let size = classical.len().min(quantum.len());
873 let mut result = Array1::zeros(size);
874 for i in 0..size {
875 result[i] = classical[i] * quantum[i];
876 }
877 Ok(result)
878 }
879 _ => {
880 self.fuse(classical, quantum)
882 }
883 }
884 }
885}
886
887impl TrainingHistory {
888 fn new() -> Self {
889 Self {
890 losses: Vec::new(),
891 quantum_losses: Vec::new(),
892 classical_losses: Vec::new(),
893 accuracies: Vec::new(),
894 quantum_advantage_scores: Vec::new(),
895 training_times: Vec::new(),
896 epoch_details: Vec::new(),
897 }
898 }
899}
900
901pub struct HybridLearningFactory;
903
904impl HybridLearningFactory {
905 pub fn create_quantum_cnn(num_qubits: usize) -> QuantRS2Result<HybridNeuralNetwork> {
907 let config = HybridLearningConfig {
908 num_qubits,
909 quantum_depth: 2,
910 classical_layers: vec![128, 64, 32],
911 interaction_type: InteractionType::Sequential,
912 quantum_learning_rate: 0.005,
913 classical_learning_rate: 0.001,
914 ..Default::default()
915 };
916 HybridNeuralNetwork::new(config)
917 }
918
919 pub fn create_vqc(
921 num_qubits: usize,
922 num_classes: usize,
923 ) -> QuantRS2Result<HybridNeuralNetwork> {
924 let config = HybridLearningConfig {
925 num_qubits,
926 quantum_depth: 4,
927 classical_layers: vec![num_qubits * 2, num_classes],
928 interaction_type: InteractionType::Residual,
929 quantum_learning_rate: 0.01,
930 classical_learning_rate: 0.001,
931 ..Default::default()
932 };
933 HybridNeuralNetwork::new(config)
934 }
935
936 pub fn create_quantum_attention(num_qubits: usize) -> QuantRS2Result<HybridNeuralNetwork> {
938 let config = HybridLearningConfig {
939 num_qubits,
940 quantum_depth: 3,
941 classical_layers: vec![256, 128, 64],
942 interaction_type: InteractionType::Attention,
943 quantum_learning_rate: 0.02,
944 classical_learning_rate: 0.0005,
945 ..Default::default()
946 };
947 HybridNeuralNetwork::new(config)
948 }
949
950 pub fn create_parallel_hybrid(
952 num_qubits: usize,
953 classical_depth: usize,
954 ) -> QuantRS2Result<HybridNeuralNetwork> {
955 let classical_layers = (0..classical_depth)
956 .map(|i| 64 - i * 8)
957 .filter(|&x| x > 0)
958 .collect();
959
960 let config = HybridLearningConfig {
961 num_qubits,
962 quantum_depth: 2,
963 classical_layers,
964 interaction_type: InteractionType::Parallel,
965 quantum_learning_rate: 0.008,
966 classical_learning_rate: 0.002,
967 ..Default::default()
968 };
969 HybridNeuralNetwork::new(config)
970 }
971}
972
973#[cfg(test)]
974mod tests {
975 use super::*;
976
977 #[test]
978 fn test_hybrid_neural_network_creation() {
979 let config = HybridLearningConfig::default();
980 let network = HybridNeuralNetwork::new(config);
981 assert!(network.is_ok());
982 }
983
984 #[test]
985 fn test_dense_layer() {
986 let layer = DenseLayer::new(4, 2, ActivationFunction::ReLU).unwrap();
987 let input = Array1::from_vec(vec![1.0, 2.0, 3.0, 4.0]);
988 let output = layer.forward(&input);
989
990 assert!(output.is_ok());
991 let result = output.unwrap();
992 assert_eq!(result.len(), 2);
993 }
994
995 #[test]
996 fn test_quantum_circuit() {
997 let circuit = ParameterizedQuantumCircuit::new(3, 2).unwrap();
998 let input = Array1::from_vec(vec![0.5, 0.3, 0.2]);
999 let output = circuit.forward(&input);
1000
1001 assert!(output.is_ok());
1002 let result = output.unwrap();
1003 assert_eq!(result.len(), 3);
1004 }
1005
1006 #[test]
1007 fn test_fusion_layer() {
1008 let fusion = FusionLayer::new(FusionType::WeightedSum, 3, 2).unwrap();
1009 let classical = Array1::from_vec(vec![1.0, 2.0, 3.0]);
1010 let quantum = Array1::from_vec(vec![0.5, 1.5]);
1011
1012 let result = fusion.fuse(&classical, &quantum);
1013 assert!(result.is_ok());
1014 }
1015
1016 #[test]
1017 fn test_forward_pass() {
1018 let mut network = HybridNeuralNetwork::new(HybridLearningConfig::default()).unwrap();
1019 let input = Array1::from_vec(vec![1.0, 2.0, 3.0, 4.0]);
1020
1021 let output = network.forward(&input);
1022 assert!(output.is_ok());
1023 }
1024
1025 #[test]
1026 fn test_training_data_evaluation() {
1027 let mut config = HybridLearningConfig::default();
1028 config.classical_layers = vec![8, 4, 2]; let mut network = HybridNeuralNetwork::new(config).unwrap();
1030
1031 let inputs = Array2::from_shape_vec((10, 4), (0..40).map(|x| x as f64).collect()).unwrap();
1032 let targets =
1033 Array2::from_shape_vec((10, 2), (0..20).map(|x| x as f64 % 2.0).collect()).unwrap();
1034
1035 let result = network.evaluate(&inputs, &targets);
1036 assert!(result.is_ok());
1037
1038 let (loss, accuracy) = result.unwrap();
1039 assert!(loss >= 0.0);
1040 assert!(accuracy >= 0.0 && accuracy <= 1.0);
1041 }
1042
1043 #[test]
1044 fn test_activation_functions() {
1045 let layer_relu = DenseLayer::new(2, 2, ActivationFunction::ReLU).unwrap();
1046 let layer_sigmoid = DenseLayer::new(2, 2, ActivationFunction::Sigmoid).unwrap();
1047 let layer_tanh = DenseLayer::new(2, 2, ActivationFunction::Tanh).unwrap();
1048
1049 let input = Array1::from_vec(vec![-1.0, 1.0]);
1050
1051 let output_relu = layer_relu.forward(&input).unwrap();
1052 let output_sigmoid = layer_sigmoid.forward(&input).unwrap();
1053 let output_tanh = layer_tanh.forward(&input).unwrap();
1054
1055 assert!(output_sigmoid.iter().all(|&x| x >= 0.0 && x <= 1.0));
1059 assert!(output_tanh.iter().all(|&x| x >= -1.0 && x <= 1.0));
1060 }
1061
1062 #[test]
1063 fn test_factory_methods() {
1064 let quantum_cnn = HybridLearningFactory::create_quantum_cnn(4);
1065 let vqc = HybridLearningFactory::create_vqc(3, 2);
1066 let quantum_attention = HybridLearningFactory::create_quantum_attention(5);
1067 let parallel_hybrid = HybridLearningFactory::create_parallel_hybrid(4, 3);
1068
1069 assert!(quantum_cnn.is_ok());
1070 assert!(vqc.is_ok());
1071 assert!(quantum_attention.is_ok());
1072 assert!(parallel_hybrid.is_ok());
1073 }
1074
1075 #[test]
1076 fn test_different_interaction_types() {
1077 let input = Array1::from_vec(vec![1.0, 2.0, 3.0, 4.0]);
1078
1079 let interaction_types = vec![
1080 InteractionType::Sequential,
1081 InteractionType::Interleaved,
1082 InteractionType::Parallel,
1083 InteractionType::Residual,
1084 InteractionType::Attention,
1085 ];
1086
1087 for interaction_type in interaction_types {
1088 let mut config = HybridLearningConfig::default();
1089 config.interaction_type = interaction_type;
1090 config.classical_layers = vec![8, 4]; let mut network = HybridNeuralNetwork::new(config).unwrap();
1092 let result = network.forward(&input);
1093 assert!(
1094 result.is_ok(),
1095 "Failed for interaction type: {:?}",
1096 interaction_type
1097 );
1098 }
1099 }
1100
1101 #[test]
1102 fn test_fusion_types() {
1103 let classical = Array1::from_vec(vec![1.0, 2.0, 3.0]);
1104 let quantum = Array1::from_vec(vec![0.5, 1.5, 2.5]);
1105
1106 let fusion_types = vec![
1107 FusionType::Concatenation,
1108 FusionType::WeightedSum,
1109 FusionType::ElementwiseProduct,
1110 ];
1111
1112 for fusion_type in fusion_types {
1113 let fusion = FusionLayer::new(fusion_type, 3, 3).unwrap();
1114 let result = fusion.fuse(&classical, &quantum);
1115 assert!(result.is_ok(), "Failed for fusion type: {:?}", fusion_type);
1116 }
1117 }
1118
1119 #[test]
1120 fn test_training_history() {
1121 let history = TrainingHistory::new();
1122 assert_eq!(history.losses.len(), 0);
1123 assert_eq!(history.accuracies.len(), 0);
1124 assert_eq!(history.epoch_details.len(), 0);
1125 }
1126}