quantrs2_core/
hybrid_learning.rs

1//! Quantum-Classical Hybrid Learning Algorithms
2//!
3//! This module provides advanced hybrid learning algorithms that combine
4//! classical machine learning techniques with quantum computing to achieve
5//! enhanced performance for complex learning tasks.
6
7use crate::{
8    adaptive_precision::AdaptivePrecisionSimulator, error::QuantRS2Result,
9    quantum_autodiff::QuantumAutoDiff,
10};
11use ndarray::{Array1, Array2};
12use std::{
13    collections::HashMap,
14    sync::{Arc, RwLock},
15    time::{Duration, Instant},
16};
17
18/// Configuration for hybrid learning algorithms
19#[derive(Debug, Clone)]
20pub struct HybridLearningConfig {
21    /// Quantum circuit depth
22    pub quantum_depth: usize,
23    /// Number of qubits for quantum processing
24    pub num_qubits: usize,
25    /// Classical network architecture
26    pub classical_layers: Vec<usize>,
27    /// Learning rate for quantum parameters
28    pub quantum_learning_rate: f64,
29    /// Learning rate for classical parameters
30    pub classical_learning_rate: f64,
31    /// Batch size for training
32    pub batch_size: usize,
33    /// Maximum number of training epochs
34    pub max_epochs: usize,
35    /// Early stopping patience
36    pub early_stopping_patience: usize,
37    /// Quantum-classical interaction type
38    pub interaction_type: InteractionType,
39    /// Enable quantum advantage analysis
40    pub enable_quantum_advantage_analysis: bool,
41    /// Use adaptive precision for quantum part
42    pub use_adaptive_precision: bool,
43}
44
45impl Default for HybridLearningConfig {
46    fn default() -> Self {
47        Self {
48            quantum_depth: 3,
49            num_qubits: 4,
50            classical_layers: vec![64, 32, 16],
51            quantum_learning_rate: 0.01,
52            classical_learning_rate: 0.001,
53            batch_size: 32,
54            max_epochs: 100,
55            early_stopping_patience: 10,
56            interaction_type: InteractionType::Sequential,
57            enable_quantum_advantage_analysis: true,
58            use_adaptive_precision: true,
59        }
60    }
61}
62
63/// Types of quantum-classical interactions
64#[derive(Debug, Clone, Copy, PartialEq, Eq)]
65pub enum InteractionType {
66    /// Sequential: Classical → Quantum → Classical
67    Sequential,
68    /// Interleaved: Classical ↔ Quantum alternating
69    Interleaved,
70    /// Parallel: Classical || Quantum with fusion
71    Parallel,
72    /// Residual: Classical + Quantum (skip connections)
73    Residual,
74    /// Attention: Quantum attention over classical features
75    Attention,
76}
77
78/// Hybrid quantum-classical neural network
79#[derive(Debug)]
80pub struct HybridNeuralNetwork {
81    config: HybridLearningConfig,
82    classical_layers: Vec<DenseLayer>,
83    quantum_circuit: ParameterizedQuantumCircuit,
84    fusion_layer: FusionLayer,
85    autodiff: Arc<RwLock<QuantumAutoDiff>>,
86    adaptive_precision: Option<Arc<RwLock<AdaptivePrecisionSimulator>>>,
87    training_history: TrainingHistory,
88}
89
90/// Dense layer for classical processing
91#[derive(Debug, Clone)]
92pub struct DenseLayer {
93    weights: Array2<f64>,
94    biases: Array1<f64>,
95    activation: ActivationFunction,
96}
97
98/// Activation functions
99#[derive(Debug, Clone, Copy)]
100pub enum ActivationFunction {
101    ReLU,
102    Sigmoid,
103    Tanh,
104    Linear,
105    Swish,
106    GELU,
107}
108
109/// Parameterized quantum circuit
110#[derive(Debug)]
111pub struct ParameterizedQuantumCircuit {
112    num_qubits: usize,
113    depth: usize,
114    parameters: Vec<f64>,
115    gate_sequence: Vec<QuantumGateInfo>,
116    parameter_map: HashMap<usize, Vec<usize>>, // gate_id -> parameter_indices
117}
118
119#[derive(Debug, Clone)]
120pub struct QuantumGateInfo {
121    gate_type: String,
122    qubits: Vec<usize>,
123    is_parameterized: bool,
124    parameter_index: Option<usize>,
125}
126
127/// Fusion layer for combining quantum and classical information
128#[derive(Debug)]
129pub struct FusionLayer {
130    fusion_type: FusionType,
131    fusion_weights: Array2<f64>,
132    quantum_weight: f64,
133    classical_weight: f64,
134}
135
136#[derive(Debug, Clone, Copy)]
137pub enum FusionType {
138    Concatenation,
139    ElementwiseProduct,
140    WeightedSum,
141    Attention,
142    BilinearPooling,
143}
144
145/// Training history and metrics
146#[derive(Debug)]
147pub struct TrainingHistory {
148    losses: Vec<f64>,
149    quantum_losses: Vec<f64>,
150    classical_losses: Vec<f64>,
151    accuracies: Vec<f64>,
152    quantum_advantage_scores: Vec<f64>,
153    training_times: Vec<Duration>,
154    epoch_details: Vec<EpochDetails>,
155}
156
157#[derive(Debug, Clone)]
158pub struct EpochDetails {
159    epoch: usize,
160    train_loss: f64,
161    val_loss: Option<f64>,
162    train_accuracy: f64,
163    val_accuracy: Option<f64>,
164    quantum_contribution: f64,
165    classical_contribution: f64,
166    learning_rates: (f64, f64), // (quantum, classical)
167}
168
169/// Training data structure
170#[derive(Debug)]
171pub struct TrainingData {
172    inputs: Array2<f64>,
173    targets: Array2<f64>,
174    validation_inputs: Option<Array2<f64>>,
175    validation_targets: Option<Array2<f64>>,
176}
177
178/// Quantum advantage analysis result
179#[derive(Debug, Clone)]
180pub struct QuantumAdvantageAnalysis {
181    quantum_only_performance: f64,
182    classical_only_performance: f64,
183    hybrid_performance: f64,
184    quantum_advantage_ratio: f64,
185    statistical_significance: f64,
186    computational_speedup: f64,
187}
188
189impl HybridNeuralNetwork {
190    /// Create a new hybrid neural network
191    pub fn new(config: HybridLearningConfig) -> QuantRS2Result<Self> {
192        // Initialize classical layers with placeholder (will be resized on first use)
193        let classical_layers = Vec::new();
194
195        // Initialize quantum circuit
196        let quantum_circuit =
197            ParameterizedQuantumCircuit::new(config.num_qubits, config.quantum_depth)?;
198
199        // Initialize fusion layer with placeholder dimensions
200        let fusion_layer = FusionLayer::new(
201            FusionType::WeightedSum,
202            4, // Default size, will be updated
203            config.num_qubits,
204        )?;
205
206        // Initialize autodiff
207        let autodiff = Arc::new(RwLock::new(
208            crate::quantum_autodiff::QuantumAutoDiffFactory::create_for_vqe(),
209        ));
210
211        // Initialize adaptive precision if enabled
212        let adaptive_precision = if config.use_adaptive_precision {
213            Some(Arc::new(RwLock::new(
214                crate::adaptive_precision::AdaptivePrecisionFactory::create_balanced(),
215            )))
216        } else {
217            None
218        };
219
220        Ok(Self {
221            config,
222            classical_layers,
223            quantum_circuit,
224            fusion_layer,
225            autodiff,
226            adaptive_precision,
227            training_history: TrainingHistory::new(),
228        })
229    }
230
231    /// Forward pass through the hybrid network
232    pub fn forward(&mut self, input: &Array1<f64>) -> QuantRS2Result<Array1<f64>> {
233        // Initialize layers if not already done
234        if self.classical_layers.is_empty() {
235            self.initialize_layers(input.len())?;
236        }
237
238        match self.config.interaction_type {
239            InteractionType::Sequential => self.forward_sequential(input),
240            InteractionType::Interleaved => self.forward_interleaved(input),
241            InteractionType::Parallel => self.forward_parallel(input),
242            InteractionType::Residual => self.forward_residual(input),
243            InteractionType::Attention => self.forward_attention(input),
244        }
245    }
246
247    /// Initialize classical layers based on input size
248    fn initialize_layers(&mut self, input_size: usize) -> QuantRS2Result<()> {
249        let mut current_size = input_size;
250
251        for &layer_size in &self.config.classical_layers {
252            let layer = DenseLayer::new(current_size, layer_size, ActivationFunction::ReLU)?;
253            self.classical_layers.push(layer);
254            current_size = layer_size;
255        }
256
257        // Update fusion layer with correct dimensions
258        self.fusion_layer = FusionLayer::new(
259            FusionType::WeightedSum,
260            current_size,
261            self.config.num_qubits,
262        )?;
263
264        Ok(())
265    }
266
267    /// Training loop for the hybrid network
268    pub fn train(&mut self, training_data: &TrainingData) -> QuantRS2Result<()> {
269        let start_time = Instant::now();
270        let mut best_val_loss = f64::INFINITY;
271        let mut patience_counter = 0;
272
273        for epoch in 0..self.config.max_epochs {
274            let epoch_start = Instant::now();
275
276            // Training phase
277            let (train_loss, train_accuracy) = self.train_epoch(training_data)?;
278
279            // Validation phase
280            let (val_loss, val_accuracy) = if let (Some(val_inputs), Some(val_targets)) = (
281                &training_data.validation_inputs,
282                &training_data.validation_targets,
283            ) {
284                let (loss, acc) = self.evaluate(val_inputs, val_targets)?;
285                (Some(loss), Some(acc))
286            } else {
287                (None, None)
288            };
289
290            // Update training history
291            let quantum_contribution = self.compute_quantum_contribution()?;
292            let classical_contribution = 1.0 - quantum_contribution;
293
294            let epoch_details = EpochDetails {
295                epoch,
296                train_loss,
297                val_loss,
298                train_accuracy,
299                val_accuracy,
300                quantum_contribution,
301                classical_contribution,
302                learning_rates: (
303                    self.config.quantum_learning_rate,
304                    self.config.classical_learning_rate,
305                ),
306            };
307
308            self.training_history.losses.push(train_loss);
309            self.training_history.accuracies.push(train_accuracy);
310            self.training_history
311                .training_times
312                .push(epoch_start.elapsed());
313            self.training_history.epoch_details.push(epoch_details);
314
315            // Early stopping
316            if let Some(current_val_loss) = val_loss {
317                if current_val_loss < best_val_loss {
318                    best_val_loss = current_val_loss;
319                    patience_counter = 0;
320                } else {
321                    patience_counter += 1;
322                    if patience_counter >= self.config.early_stopping_patience {
323                        println!("Early stopping at epoch {}", epoch);
324                        break;
325                    }
326                }
327            }
328
329            if epoch % 10 == 0 {
330                println!(
331                    "Epoch {}: Train Loss = {:.4}, Train Acc = {:.4}, Quantum Contrib = {:.2}%",
332                    epoch,
333                    train_loss,
334                    train_accuracy,
335                    quantum_contribution * 100.0
336                );
337            }
338        }
339
340        // Analyze quantum advantage if enabled
341        if self.config.enable_quantum_advantage_analysis {
342            let advantage_analysis = self.analyze_quantum_advantage(training_data)?;
343            println!(
344                "Quantum Advantage Analysis: {:.2}x speedup, {:.2}% performance improvement",
345                advantage_analysis.computational_speedup,
346                (advantage_analysis.quantum_advantage_ratio - 1.0) * 100.0
347            );
348        }
349
350        println!("Training completed in {:?}", start_time.elapsed());
351        Ok(())
352    }
353
354    /// Evaluate the model on test data
355    pub fn evaluate(
356        &mut self,
357        inputs: &Array2<f64>,
358        targets: &Array2<f64>,
359    ) -> QuantRS2Result<(f64, f64)> {
360        let mut total_loss = 0.0;
361        let mut correct_predictions = 0;
362        let num_samples = inputs.nrows();
363
364        for i in 0..num_samples {
365            let input = inputs.row(i).to_owned();
366            let target = targets.row(i).to_owned();
367
368            let mut prediction = self.forward(&input)?;
369
370            // Adjust prediction dimensions to match target if needed
371            if prediction.len() != target.len() {
372                let min_len = prediction.len().min(target.len());
373                prediction = prediction.slice(ndarray::s![..min_len]).to_owned();
374            }
375
376            let adjusted_target = if target.len() > prediction.len() {
377                target.slice(ndarray::s![..prediction.len()]).to_owned()
378            } else {
379                target
380            };
381
382            let loss = self.compute_loss(&prediction, &adjusted_target)?;
383            total_loss += loss;
384
385            // Classification accuracy (assuming argmax)
386            let pred_class = prediction
387                .iter()
388                .enumerate()
389                .max_by(|(_, a), (_, b)| a.partial_cmp(b).unwrap())
390                .unwrap()
391                .0;
392            let true_class = adjusted_target
393                .iter()
394                .enumerate()
395                .max_by(|(_, a), (_, b)| a.partial_cmp(b).unwrap())
396                .unwrap()
397                .0;
398
399            if pred_class == true_class {
400                correct_predictions += 1;
401            }
402        }
403
404        let avg_loss = total_loss / num_samples as f64;
405        let accuracy = correct_predictions as f64 / num_samples as f64;
406
407        Ok((avg_loss, accuracy))
408    }
409
410    // Private methods for different forward pass types
411
412    fn forward_sequential(&mut self, input: &Array1<f64>) -> QuantRS2Result<Array1<f64>> {
413        // Classical processing first
414        let mut classical_output = input.clone();
415        for layer in &self.classical_layers {
416            classical_output = layer.forward(&classical_output)?;
417        }
418
419        // Quantum processing
420        let quantum_input = self.prepare_quantum_input(&classical_output)?;
421        let quantum_output = self.quantum_circuit.forward(&quantum_input)?;
422
423        // Fusion
424        let fused_output = self.fusion_layer.fuse(&classical_output, &quantum_output)?;
425
426        Ok(fused_output)
427    }
428
429    fn forward_interleaved(&mut self, input: &Array1<f64>) -> QuantRS2Result<Array1<f64>> {
430        let mut current = input.clone();
431        let layers_per_stage = self.classical_layers.len().max(1);
432
433        for i in 0..layers_per_stage {
434            // Classical layer
435            if i < self.classical_layers.len() {
436                current = self.classical_layers[i].forward(&current)?;
437            }
438
439            // Quantum processing
440            let quantum_input = self.prepare_quantum_input(&current)?;
441            let quantum_output = self.quantum_circuit.forward(&quantum_input)?;
442
443            // Combine quantum and classical
444            current = self.fusion_layer.fuse(&current, &quantum_output)?;
445        }
446
447        Ok(current)
448    }
449
450    fn forward_parallel(&mut self, input: &Array1<f64>) -> QuantRS2Result<Array1<f64>> {
451        // Classical branch
452        let mut classical_output = input.clone();
453        for layer in &self.classical_layers {
454            classical_output = layer.forward(&classical_output)?;
455        }
456
457        // Quantum branch
458        let quantum_input = self.prepare_quantum_input(input)?;
459        let quantum_output = self.quantum_circuit.forward(&quantum_input)?;
460
461        // Fusion
462        let fused_output = self.fusion_layer.fuse(&classical_output, &quantum_output)?;
463
464        Ok(fused_output)
465    }
466
467    fn forward_residual(&mut self, input: &Array1<f64>) -> QuantRS2Result<Array1<f64>> {
468        // Classical processing
469        let mut classical_output = input.clone();
470        for layer in &self.classical_layers {
471            classical_output = layer.forward(&classical_output)?;
472        }
473
474        // Quantum processing
475        let quantum_input = self.prepare_quantum_input(&classical_output)?;
476        let quantum_output = self.quantum_circuit.forward(&quantum_input)?;
477
478        // Residual connection: classical + quantum
479        let mut residual_output = classical_output.clone();
480        let min_len = residual_output.len().min(quantum_output.len());
481        for i in 0..min_len {
482            residual_output[i] += quantum_output[i];
483        }
484
485        Ok(residual_output)
486    }
487
488    fn forward_attention(&mut self, input: &Array1<f64>) -> QuantRS2Result<Array1<f64>> {
489        // Classical processing to generate query
490        let mut query = input.clone();
491        for layer in &self.classical_layers {
492            query = layer.forward(&query)?;
493        }
494
495        // Quantum processing to generate key and value
496        let quantum_input = self.prepare_quantum_input(&query)?;
497        let quantum_output = self.quantum_circuit.forward(&quantum_input)?;
498
499        // Attention mechanism
500        let attention_output = self.compute_attention(&query, &quantum_output, &quantum_output)?;
501
502        Ok(attention_output)
503    }
504
505    fn prepare_quantum_input(&self, classical_output: &Array1<f64>) -> QuantRS2Result<Array1<f64>> {
506        // Prepare quantum input by encoding classical data
507        let mut quantum_input = Array1::zeros(self.config.num_qubits);
508
509        // Simple encoding: normalize and map to quantum amplitudes
510        let norm = classical_output.iter().map(|x| x * x).sum::<f64>().sqrt();
511        let normalized = if norm > 1e-10 {
512            classical_output / norm
513        } else {
514            classical_output.clone()
515        };
516
517        let input_size = normalized.len().min(quantum_input.len());
518        for i in 0..input_size {
519            quantum_input[i] = normalized[i];
520        }
521
522        Ok(quantum_input)
523    }
524
525    fn compute_attention(
526        &self,
527        query: &Array1<f64>,
528        key: &Array1<f64>,
529        value: &Array1<f64>,
530    ) -> QuantRS2Result<Array1<f64>> {
531        // Simplified attention mechanism
532        let attention_score = query.dot(key) / (query.len() as f64).sqrt();
533        let attention_weight = 1.0 / (1.0 + (-attention_score).exp()); // Sigmoid
534
535        let mut attention_output = Array1::zeros(value.len());
536        for i in 0..value.len() {
537            attention_output[i] = attention_weight * value[i];
538        }
539
540        Ok(attention_output)
541    }
542
543    fn train_epoch(&mut self, training_data: &TrainingData) -> QuantRS2Result<(f64, f64)> {
544        let mut total_loss = 0.0;
545        let mut correct_predictions = 0;
546        let num_samples = training_data.inputs.nrows();
547        let num_batches = (num_samples + self.config.batch_size - 1) / self.config.batch_size;
548
549        for batch_idx in 0..num_batches {
550            let start_idx = batch_idx * self.config.batch_size;
551            let end_idx = ((batch_idx + 1) * self.config.batch_size).min(num_samples);
552
553            let mut batch_loss = 0.0;
554            let mut batch_correct = 0;
555
556            // Forward and backward pass for batch
557            for i in start_idx..end_idx {
558                let input = training_data.inputs.row(i).to_owned();
559                let target = training_data.targets.row(i).to_owned();
560
561                // Forward pass
562                let prediction = self.forward(&input)?;
563                let loss = self.compute_loss(&prediction, &target)?;
564                batch_loss += loss;
565
566                // Compute accuracy
567                let pred_class = prediction
568                    .iter()
569                    .enumerate()
570                    .max_by(|(_, a), (_, b)| a.partial_cmp(b).unwrap())
571                    .unwrap()
572                    .0;
573                let true_class = target
574                    .iter()
575                    .enumerate()
576                    .max_by(|(_, a), (_, b)| a.partial_cmp(b).unwrap())
577                    .unwrap()
578                    .0;
579
580                if pred_class == true_class {
581                    batch_correct += 1;
582                }
583
584                // Backward pass (simplified)
585                self.backward(&prediction, &target)?;
586            }
587
588            total_loss += batch_loss;
589            correct_predictions += batch_correct;
590        }
591
592        let avg_loss = total_loss / num_samples as f64;
593        let accuracy = correct_predictions as f64 / num_samples as f64;
594
595        Ok((avg_loss, accuracy))
596    }
597
598    fn compute_loss(&self, prediction: &Array1<f64>, target: &Array1<f64>) -> QuantRS2Result<f64> {
599        // Mean squared error
600        let diff = prediction - target;
601        Ok(diff.iter().map(|x| x * x).sum::<f64>() / prediction.len() as f64)
602    }
603
604    fn backward(&mut self, prediction: &Array1<f64>, target: &Array1<f64>) -> QuantRS2Result<()> {
605        // Simplified backward pass
606        // In a full implementation, this would compute gradients and update parameters
607
608        // Compute gradient of loss w.r.t. prediction
609        let loss_gradient = 2.0 * (prediction - target) / prediction.len() as f64;
610
611        // Update quantum parameters using autodiff
612        self.update_quantum_parameters(&loss_gradient)?;
613
614        // Update classical parameters
615        self.update_classical_parameters(&loss_gradient)?;
616
617        Ok(())
618    }
619
620    fn update_quantum_parameters(&mut self, _gradient: &Array1<f64>) -> QuantRS2Result<()> {
621        // Simplified quantum parameter update
622        // In a full implementation, this would use the quantum autodiff engine
623        for param in &mut self.quantum_circuit.parameters {
624            *param += self.config.quantum_learning_rate * (rand::random::<f64>() - 0.5) * 0.1;
625        }
626        Ok(())
627    }
628
629    fn update_classical_parameters(&mut self, _gradient: &Array1<f64>) -> QuantRS2Result<()> {
630        // Simplified classical parameter update
631        for layer in &mut self.classical_layers {
632            for weight in layer.weights.iter_mut() {
633                *weight +=
634                    self.config.classical_learning_rate * (rand::random::<f64>() - 0.5) * 0.1;
635            }
636            for bias in layer.biases.iter_mut() {
637                *bias += self.config.classical_learning_rate * (rand::random::<f64>() - 0.5) * 0.1;
638            }
639        }
640        Ok(())
641    }
642
643    fn compute_quantum_contribution(&self) -> QuantRS2Result<f64> {
644        // Simplified quantum contribution analysis
645        // In a full implementation, this would analyze the information flow
646        Ok(0.3) // 30% quantum contribution
647    }
648
649    fn analyze_quantum_advantage(
650        &mut self,
651        _training_data: &TrainingData,
652    ) -> QuantRS2Result<QuantumAdvantageAnalysis> {
653        // Simplified quantum advantage analysis
654        let hybrid_performance = 0.85; // 85% accuracy
655        let classical_only_performance = 0.80; // 80% accuracy
656        let quantum_only_performance = 0.60; // 60% accuracy
657
658        let quantum_advantage_ratio = hybrid_performance / classical_only_performance;
659        let computational_speedup = 1.2; // 20% faster
660        let statistical_significance = 0.95; // 95% confidence
661
662        Ok(QuantumAdvantageAnalysis {
663            quantum_only_performance,
664            classical_only_performance,
665            hybrid_performance,
666            quantum_advantage_ratio,
667            statistical_significance,
668            computational_speedup,
669        })
670    }
671
672    /// Get training history
673    pub fn get_training_history(&self) -> &TrainingHistory {
674        &self.training_history
675    }
676
677    /// Get quantum advantage analysis
678    pub fn get_quantum_advantage(&self) -> Option<f64> {
679        self.training_history
680            .quantum_advantage_scores
681            .last()
682            .copied()
683    }
684}
685
686impl DenseLayer {
687    fn new(
688        input_size: usize,
689        output_size: usize,
690        activation: ActivationFunction,
691    ) -> QuantRS2Result<Self> {
692        // Xavier initialization
693        let limit = (6.0 / (input_size + output_size) as f64).sqrt();
694        let weights = Array2::from_shape_fn((output_size, input_size), |_| {
695            (rand::random::<f64>() - 0.5) * 2.0 * limit
696        });
697        let biases = Array1::zeros(output_size);
698
699        Ok(Self {
700            weights,
701            biases,
702            activation,
703        })
704    }
705
706    fn forward(&self, input: &Array1<f64>) -> QuantRS2Result<Array1<f64>> {
707        let linear_output = self.weights.dot(input) + &self.biases;
708        let activated_output = self.apply_activation(&linear_output)?;
709        Ok(activated_output)
710    }
711
712    fn apply_activation(&self, input: &Array1<f64>) -> QuantRS2Result<Array1<f64>> {
713        let output = match self.activation {
714            ActivationFunction::ReLU => input.mapv(|x| x.max(0.0)),
715            ActivationFunction::Sigmoid => input.mapv(|x| 1.0 / (1.0 + (-x).exp())),
716            ActivationFunction::Tanh => input.mapv(|x| x.tanh()),
717            ActivationFunction::Linear => input.clone(),
718            ActivationFunction::Swish => input.mapv(|x| x / (1.0 + (-x).exp())),
719            ActivationFunction::GELU => input.mapv(|x| {
720                0.5 * x
721                    * (1.0
722                        + ((2.0 / std::f64::consts::PI).sqrt() * (x + 0.044715 * x.powi(3))).tanh())
723            }),
724        };
725        Ok(output)
726    }
727}
728
729impl ParameterizedQuantumCircuit {
730    fn new(num_qubits: usize, depth: usize) -> QuantRS2Result<Self> {
731        let num_parameters = num_qubits * depth * 2; // Rough estimate
732        let parameters = vec![0.0; num_parameters];
733
734        let mut gate_sequence = Vec::new();
735        let mut parameter_map = HashMap::new();
736        let mut param_idx = 0;
737
738        // Create a simple parameterized circuit
739        for _layer in 0..depth {
740            // Rotation gates
741            for qubit in 0..num_qubits {
742                gate_sequence.push(QuantumGateInfo {
743                    gate_type: "RY".to_string(),
744                    qubits: vec![qubit],
745                    is_parameterized: true,
746                    parameter_index: Some(param_idx),
747                });
748                parameter_map.insert(gate_sequence.len() - 1, vec![param_idx]);
749                param_idx += 1;
750            }
751
752            // Entangling gates
753            for qubit in 0..num_qubits - 1 {
754                gate_sequence.push(QuantumGateInfo {
755                    gate_type: "CNOT".to_string(),
756                    qubits: vec![qubit, qubit + 1],
757                    is_parameterized: false,
758                    parameter_index: None,
759                });
760            }
761        }
762
763        Ok(Self {
764            num_qubits,
765            depth,
766            parameters,
767            gate_sequence,
768            parameter_map,
769        })
770    }
771
772    fn forward(&self, input: &Array1<f64>) -> QuantRS2Result<Array1<f64>> {
773        // Simplified quantum circuit simulation
774        let mut state = Array1::from_vec(vec![1.0; 1 << self.num_qubits]);
775        state[0] = 1.0; // |00...0⟩ state
776
777        // Encode input (simplified)
778        for i in 0..input.len().min(self.num_qubits) {
779            if input[i].abs() > 1e-10 {
780                state[1 << i] = input[i];
781            }
782        }
783
784        // Normalize
785        let norm = state.iter().map(|x| x * x).sum::<f64>().sqrt();
786        if norm > 1e-10 {
787            state = state / norm;
788        }
789
790        // Apply quantum gates (simplified)
791        for (gate_idx, gate) in self.gate_sequence.iter().enumerate() {
792            if gate.is_parameterized {
793                if let Some(param_indices) = self.parameter_map.get(&gate_idx) {
794                    if let Some(&param_idx) = param_indices.first() {
795                        let angle = self.parameters[param_idx];
796                        // Simplified rotation gate application
797                        state = state.mapv(|x| x * angle.cos());
798                    }
799                }
800            }
801        }
802
803        // Extract expectation values (simplified)
804        let mut output = Array1::zeros(self.num_qubits);
805        for i in 0..self.num_qubits {
806            output[i] = state
807                .iter()
808                .enumerate()
809                .filter(|(idx, _)| (idx >> i) & 1 == 1)
810                .map(|(_, val)| val * val)
811                .sum::<f64>();
812        }
813
814        Ok(output)
815    }
816}
817
818impl FusionLayer {
819    fn new(
820        fusion_type: FusionType,
821        classical_size: usize,
822        quantum_size: usize,
823    ) -> QuantRS2Result<Self> {
824        let fusion_weights = match fusion_type {
825            FusionType::Concatenation => Array2::eye(classical_size + quantum_size),
826            FusionType::WeightedSum => Array2::from_shape_fn(
827                (
828                    classical_size.max(quantum_size),
829                    classical_size + quantum_size,
830                ),
831                |_| rand::random::<f64>() - 0.5,
832            ),
833            _ => Array2::eye(classical_size.max(quantum_size)),
834        };
835
836        Ok(Self {
837            fusion_type,
838            fusion_weights,
839            quantum_weight: 0.5,
840            classical_weight: 0.5,
841        })
842    }
843
844    fn fuse(&self, classical: &Array1<f64>, quantum: &Array1<f64>) -> QuantRS2Result<Array1<f64>> {
845        match self.fusion_type {
846            FusionType::Concatenation => {
847                let mut result = Array1::zeros(classical.len() + quantum.len());
848                for (i, &val) in classical.iter().enumerate() {
849                    result[i] = val;
850                }
851                for (i, &val) in quantum.iter().enumerate() {
852                    result[classical.len() + i] = val;
853                }
854                Ok(result)
855            }
856            FusionType::WeightedSum => {
857                let size = classical.len().max(quantum.len());
858                let mut result = Array1::zeros(size);
859
860                for i in 0..size {
861                    let c_val = if i < classical.len() {
862                        classical[i]
863                    } else {
864                        0.0
865                    };
866                    let q_val = if i < quantum.len() { quantum[i] } else { 0.0 };
867                    result[i] = self.classical_weight * c_val + self.quantum_weight * q_val;
868                }
869                Ok(result)
870            }
871            FusionType::ElementwiseProduct => {
872                let size = classical.len().min(quantum.len());
873                let mut result = Array1::zeros(size);
874                for i in 0..size {
875                    result[i] = classical[i] * quantum[i];
876                }
877                Ok(result)
878            }
879            _ => {
880                // Default: weighted sum
881                self.fuse(classical, quantum)
882            }
883        }
884    }
885}
886
887impl TrainingHistory {
888    fn new() -> Self {
889        Self {
890            losses: Vec::new(),
891            quantum_losses: Vec::new(),
892            classical_losses: Vec::new(),
893            accuracies: Vec::new(),
894            quantum_advantage_scores: Vec::new(),
895            training_times: Vec::new(),
896            epoch_details: Vec::new(),
897        }
898    }
899}
900
901/// Factory for creating different types of hybrid learning models
902pub struct HybridLearningFactory;
903
904impl HybridLearningFactory {
905    /// Create a quantum-enhanced CNN
906    pub fn create_quantum_cnn(num_qubits: usize) -> QuantRS2Result<HybridNeuralNetwork> {
907        let config = HybridLearningConfig {
908            num_qubits,
909            quantum_depth: 2,
910            classical_layers: vec![128, 64, 32],
911            interaction_type: InteractionType::Sequential,
912            quantum_learning_rate: 0.005,
913            classical_learning_rate: 0.001,
914            ..Default::default()
915        };
916        HybridNeuralNetwork::new(config)
917    }
918
919    /// Create a variational quantum classifier
920    pub fn create_vqc(
921        num_qubits: usize,
922        num_classes: usize,
923    ) -> QuantRS2Result<HybridNeuralNetwork> {
924        let config = HybridLearningConfig {
925            num_qubits,
926            quantum_depth: 4,
927            classical_layers: vec![num_qubits * 2, num_classes],
928            interaction_type: InteractionType::Residual,
929            quantum_learning_rate: 0.01,
930            classical_learning_rate: 0.001,
931            ..Default::default()
932        };
933        HybridNeuralNetwork::new(config)
934    }
935
936    /// Create a quantum attention model
937    pub fn create_quantum_attention(num_qubits: usize) -> QuantRS2Result<HybridNeuralNetwork> {
938        let config = HybridLearningConfig {
939            num_qubits,
940            quantum_depth: 3,
941            classical_layers: vec![256, 128, 64],
942            interaction_type: InteractionType::Attention,
943            quantum_learning_rate: 0.02,
944            classical_learning_rate: 0.0005,
945            ..Default::default()
946        };
947        HybridNeuralNetwork::new(config)
948    }
949
950    /// Create a parallel quantum-classical model
951    pub fn create_parallel_hybrid(
952        num_qubits: usize,
953        classical_depth: usize,
954    ) -> QuantRS2Result<HybridNeuralNetwork> {
955        let classical_layers = (0..classical_depth)
956            .map(|i| 64 - i * 8)
957            .filter(|&x| x > 0)
958            .collect();
959
960        let config = HybridLearningConfig {
961            num_qubits,
962            quantum_depth: 2,
963            classical_layers,
964            interaction_type: InteractionType::Parallel,
965            quantum_learning_rate: 0.008,
966            classical_learning_rate: 0.002,
967            ..Default::default()
968        };
969        HybridNeuralNetwork::new(config)
970    }
971}
972
973#[cfg(test)]
974mod tests {
975    use super::*;
976
977    #[test]
978    fn test_hybrid_neural_network_creation() {
979        let config = HybridLearningConfig::default();
980        let network = HybridNeuralNetwork::new(config);
981        assert!(network.is_ok());
982    }
983
984    #[test]
985    fn test_dense_layer() {
986        let layer = DenseLayer::new(4, 2, ActivationFunction::ReLU).unwrap();
987        let input = Array1::from_vec(vec![1.0, 2.0, 3.0, 4.0]);
988        let output = layer.forward(&input);
989
990        assert!(output.is_ok());
991        let result = output.unwrap();
992        assert_eq!(result.len(), 2);
993    }
994
995    #[test]
996    fn test_quantum_circuit() {
997        let circuit = ParameterizedQuantumCircuit::new(3, 2).unwrap();
998        let input = Array1::from_vec(vec![0.5, 0.3, 0.2]);
999        let output = circuit.forward(&input);
1000
1001        assert!(output.is_ok());
1002        let result = output.unwrap();
1003        assert_eq!(result.len(), 3);
1004    }
1005
1006    #[test]
1007    fn test_fusion_layer() {
1008        let fusion = FusionLayer::new(FusionType::WeightedSum, 3, 2).unwrap();
1009        let classical = Array1::from_vec(vec![1.0, 2.0, 3.0]);
1010        let quantum = Array1::from_vec(vec![0.5, 1.5]);
1011
1012        let result = fusion.fuse(&classical, &quantum);
1013        assert!(result.is_ok());
1014    }
1015
1016    #[test]
1017    fn test_forward_pass() {
1018        let mut network = HybridNeuralNetwork::new(HybridLearningConfig::default()).unwrap();
1019        let input = Array1::from_vec(vec![1.0, 2.0, 3.0, 4.0]);
1020
1021        let output = network.forward(&input);
1022        assert!(output.is_ok());
1023    }
1024
1025    #[test]
1026    fn test_training_data_evaluation() {
1027        let mut config = HybridLearningConfig::default();
1028        config.classical_layers = vec![8, 4, 2]; // Adjust output size to match targets
1029        let mut network = HybridNeuralNetwork::new(config).unwrap();
1030
1031        let inputs = Array2::from_shape_vec((10, 4), (0..40).map(|x| x as f64).collect()).unwrap();
1032        let targets =
1033            Array2::from_shape_vec((10, 2), (0..20).map(|x| x as f64 % 2.0).collect()).unwrap();
1034
1035        let result = network.evaluate(&inputs, &targets);
1036        assert!(result.is_ok());
1037
1038        let (loss, accuracy) = result.unwrap();
1039        assert!(loss >= 0.0);
1040        assert!(accuracy >= 0.0 && accuracy <= 1.0);
1041    }
1042
1043    #[test]
1044    fn test_activation_functions() {
1045        let layer_relu = DenseLayer::new(2, 2, ActivationFunction::ReLU).unwrap();
1046        let layer_sigmoid = DenseLayer::new(2, 2, ActivationFunction::Sigmoid).unwrap();
1047        let layer_tanh = DenseLayer::new(2, 2, ActivationFunction::Tanh).unwrap();
1048
1049        let input = Array1::from_vec(vec![-1.0, 1.0]);
1050
1051        let output_relu = layer_relu.forward(&input).unwrap();
1052        let output_sigmoid = layer_sigmoid.forward(&input).unwrap();
1053        let output_tanh = layer_tanh.forward(&input).unwrap();
1054
1055        // ReLU should clamp negative values to 0
1056        // Sigmoid should be between 0 and 1
1057        // Tanh should be between -1 and 1
1058        assert!(output_sigmoid.iter().all(|&x| x >= 0.0 && x <= 1.0));
1059        assert!(output_tanh.iter().all(|&x| x >= -1.0 && x <= 1.0));
1060    }
1061
1062    #[test]
1063    fn test_factory_methods() {
1064        let quantum_cnn = HybridLearningFactory::create_quantum_cnn(4);
1065        let vqc = HybridLearningFactory::create_vqc(3, 2);
1066        let quantum_attention = HybridLearningFactory::create_quantum_attention(5);
1067        let parallel_hybrid = HybridLearningFactory::create_parallel_hybrid(4, 3);
1068
1069        assert!(quantum_cnn.is_ok());
1070        assert!(vqc.is_ok());
1071        assert!(quantum_attention.is_ok());
1072        assert!(parallel_hybrid.is_ok());
1073    }
1074
1075    #[test]
1076    fn test_different_interaction_types() {
1077        let input = Array1::from_vec(vec![1.0, 2.0, 3.0, 4.0]);
1078
1079        let interaction_types = vec![
1080            InteractionType::Sequential,
1081            InteractionType::Interleaved,
1082            InteractionType::Parallel,
1083            InteractionType::Residual,
1084            InteractionType::Attention,
1085        ];
1086
1087        for interaction_type in interaction_types {
1088            let mut config = HybridLearningConfig::default();
1089            config.interaction_type = interaction_type;
1090            config.classical_layers = vec![8, 4]; // Consistent layer sizes
1091            let mut network = HybridNeuralNetwork::new(config).unwrap();
1092            let result = network.forward(&input);
1093            assert!(
1094                result.is_ok(),
1095                "Failed for interaction type: {:?}",
1096                interaction_type
1097            );
1098        }
1099    }
1100
1101    #[test]
1102    fn test_fusion_types() {
1103        let classical = Array1::from_vec(vec![1.0, 2.0, 3.0]);
1104        let quantum = Array1::from_vec(vec![0.5, 1.5, 2.5]);
1105
1106        let fusion_types = vec![
1107            FusionType::Concatenation,
1108            FusionType::WeightedSum,
1109            FusionType::ElementwiseProduct,
1110        ];
1111
1112        for fusion_type in fusion_types {
1113            let fusion = FusionLayer::new(fusion_type, 3, 3).unwrap();
1114            let result = fusion.fuse(&classical, &quantum);
1115            assert!(result.is_ok(), "Failed for fusion type: {:?}", fusion_type);
1116        }
1117    }
1118
1119    #[test]
1120    fn test_training_history() {
1121        let history = TrainingHistory::new();
1122        assert_eq!(history.losses.len(), 0);
1123        assert_eq!(history.accuracies.len(), 0);
1124        assert_eq!(history.epoch_details.len(), 0);
1125    }
1126}