quantrs2_core/
hhl.rs

1//! Harrow-Hassidim-Lloyd (HHL) Algorithm Implementation
2//!
3//! The HHL algorithm provides a quantum algorithm for solving linear systems of equations
4//! Ax = b, where A is a Hermitian matrix. The algorithm outputs a quantum state |x⟩
5//! proportional to the solution vector x.
6
7use ndarray::{Array1, Array2};
8use num_complex::Complex64;
9use std::f64::consts::PI;
10
11/// Parameters for the HHL algorithm
12#[derive(Debug, Clone)]
13pub struct HHLParams {
14    /// Number of qubits for the input register (log2 of matrix dimension)
15    pub n_qubits: usize,
16    /// Number of qubits for the clock register (precision)
17    pub clock_qubits: usize,
18    /// Time evolution parameter
19    pub evolution_time: f64,
20    /// Condition number of the matrix (for scaling)
21    pub condition_number: f64,
22    /// Eigenvalue rescaling factor
23    pub eigenvalue_scale: f64,
24}
25
26impl HHLParams {
27    /// Create default HHL parameters
28    pub fn new(n_qubits: usize) -> Self {
29        Self {
30            n_qubits,
31            clock_qubits: n_qubits + 2, // Good default precision
32            evolution_time: PI,
33            condition_number: 10.0,
34            eigenvalue_scale: 1.0,
35        }
36    }
37}
38
39/// HHL algorithm implementation
40pub struct HHLAlgorithm {
41    params: HHLParams,
42    #[allow(dead_code)]
43    matrix: Array2<Complex64>,
44    vector_b: Array1<Complex64>,
45}
46
47impl HHLAlgorithm {
48    /// Create a new HHL algorithm instance
49    pub fn new(
50        matrix: Array2<Complex64>,
51        vector_b: Array1<Complex64>,
52        params: HHLParams,
53    ) -> Result<Self, String> {
54        // Validate inputs
55        let (n, m) = matrix.dim();
56        if n != m {
57            return Err("Matrix must be square".to_string());
58        }
59
60        if n != 1 << params.n_qubits {
61            return Err(format!(
62                "Matrix size {} doesn't match qubit count {} (expected {})",
63                n,
64                params.n_qubits,
65                1 << params.n_qubits
66            ));
67        }
68
69        if vector_b.len() != n {
70            return Err("Vector b must have same dimension as matrix".to_string());
71        }
72
73        // Check if matrix is approximately Hermitian
74        if !is_hermitian(&matrix, 1e-10) {
75            return Err("Matrix must be Hermitian".to_string());
76        }
77
78        Ok(Self {
79            params,
80            matrix,
81            vector_b,
82        })
83    }
84
85    /// Get the total number of qubits required
86    pub fn total_qubits(&self) -> usize {
87        self.params.n_qubits + self.params.clock_qubits + 1 // +1 for ancilla
88    }
89
90    /// Initialize the quantum state with |b⟩
91    pub fn prepare_input_state(&self, state: &mut Vec<Complex64>) {
92        let n = 1 << self.params.n_qubits;
93        let clock_size = 1 << self.params.clock_qubits;
94        let total_size = n * clock_size * 2; // *2 for ancilla
95
96        // Ensure state is properly sized
97        state.clear();
98        state.resize(total_size, Complex64::new(0.0, 0.0));
99
100        // Normalize vector b
101        let norm: f64 = self
102            .vector_b
103            .iter()
104            .map(|c| c.norm_sqr())
105            .sum::<f64>()
106            .sqrt();
107
108        // Initialize state |0⟩_clock |b⟩_input |0⟩_ancilla
109        for i in 0..n {
110            let amplitude = self.vector_b[i] / norm;
111            // Clock register in |0⟩, input register in |b⟩, ancilla in |0⟩
112            let index = i * clock_size * 2;
113            state[index] = amplitude;
114        }
115    }
116
117    /// Apply quantum phase estimation to find eigenvalues
118    pub fn apply_phase_estimation(&self, state: &mut [Complex64]) {
119        // This is a simplified version - full QPE would require:
120        // 1. Hadamard gates on clock register
121        // 2. Controlled-U operations where U = exp(iAt)
122        // 3. Inverse QFT on clock register
123
124        let clock_size = 1 << self.params.clock_qubits;
125        let n = 1 << self.params.n_qubits;
126
127        // Apply Hadamard to all clock qubits (simplified)
128        for clock_idx in 0..clock_size {
129            for input_idx in 0..n {
130                for ancilla_idx in 0..2 {
131                    let idx = ancilla_idx + 2 * (input_idx + n * clock_idx);
132                    state[idx] *= Complex64::new(1.0 / (clock_size as f64).sqrt(), 0.0);
133                }
134            }
135        }
136
137        // In a real implementation, we would:
138        // - Decompose matrix into eigenvalues/eigenvectors
139        // - Apply controlled rotations based on eigenvalues
140        // - Perform inverse QFT
141    }
142
143    /// Apply controlled rotation based on eigenvalues
144    pub fn apply_eigenvalue_inversion(&self, state: &mut [Complex64]) {
145        let clock_size = 1 << self.params.clock_qubits;
146        let n = 1 << self.params.n_qubits;
147
148        // For each eigenvalue encoded in the clock register,
149        // apply rotation on ancilla qubit proportional to 1/eigenvalue
150        for clock_idx in 1..clock_size {
151            // Skip 0 to avoid division by zero
152            let eigenvalue =
153                (clock_idx as f64) / (clock_size as f64) * self.params.eigenvalue_scale;
154
155            // Rotation angle: arcsin(C/λ) where C is a normalization constant
156            let c = 1.0 / self.params.condition_number;
157            let angle = if eigenvalue > c {
158                (c / eigenvalue).asin()
159            } else {
160                PI / 2.0 // Maximum rotation for small eigenvalues
161            };
162
163            // Apply controlled rotation on ancilla
164            for input_idx in 0..n {
165                let idx0 = 2 * (input_idx + n * clock_idx); // ancilla = 0
166                let idx1 = 1 + 2 * (input_idx + n * clock_idx); // ancilla = 1
167
168                let cos_angle = angle.cos();
169                let sin_angle = angle.sin();
170
171                let amp0 = state[idx0];
172                let amp1 = state[idx1];
173
174                state[idx0] = amp0 * cos_angle - amp1 * sin_angle;
175                state[idx1] = amp0 * sin_angle + amp1 * cos_angle;
176            }
177        }
178    }
179
180    /// Apply inverse phase estimation to uncompute eigenvalues
181    pub fn apply_inverse_phase_estimation(&self, state: &mut [Complex64]) {
182        // This would apply the inverse of the phase estimation
183        // For now, this is a placeholder
184        self.apply_phase_estimation(state); // Simplified: QPE is self-inverse up to normalization
185    }
186
187    /// Measure ancilla qubit and post-select on |1⟩
188    pub fn postselect_ancilla(&self, state: &mut Vec<Complex64>) -> f64 {
189        let total_size = state.len();
190        let mut success_probability = 0.0;
191        let mut new_state = vec![Complex64::new(0.0, 0.0); total_size / 2];
192
193        // Post-select on ancilla = 1
194        for (i, amp) in new_state.iter_mut().enumerate() {
195            let idx1 = 2 * i + 1; // ancilla = 1
196            *amp = state[idx1];
197            success_probability += state[idx1].norm_sqr();
198        }
199
200        // Normalize the post-selected state
201        if success_probability > 1e-10 {
202            let norm = success_probability.sqrt();
203            for amp in new_state.iter_mut() {
204                *amp /= norm;
205            }
206        }
207
208        // Update state (removing ancilla dimension)
209        state.clear();
210        state.extend_from_slice(&new_state);
211
212        success_probability
213    }
214
215    /// Extract solution from the quantum state
216    pub fn extract_solution(&self, state: &[Complex64]) -> Array1<Complex64> {
217        let n = 1 << self.params.n_qubits;
218        let clock_size = 1 << self.params.clock_qubits;
219        let mut solution = Array1::zeros(n);
220
221        // Trace out clock register
222        for input_idx in 0..n {
223            let mut amplitude = Complex64::new(0.0, 0.0);
224            for clock_idx in 0..clock_size {
225                let idx = input_idx + n * clock_idx;
226                if idx < state.len() {
227                    amplitude += state[idx];
228                }
229            }
230            solution[input_idx] = amplitude;
231        }
232
233        // Normalize
234        let norm: f64 = solution.iter().map(|c| c.norm_sqr()).sum::<f64>().sqrt();
235
236        if norm > 1e-10 {
237            for amp in solution.iter_mut() {
238                *amp /= norm;
239            }
240        }
241
242        solution
243    }
244
245    /// Run the complete HHL algorithm
246    pub fn run(&self) -> Result<(Array1<Complex64>, f64), String> {
247        let total_size = 1 << self.total_qubits();
248        let mut state = vec![Complex64::new(0.0, 0.0); total_size];
249
250        // Step 1: Prepare input state |b⟩
251        self.prepare_input_state(&mut state);
252
253        // Step 2: Apply quantum phase estimation
254        self.apply_phase_estimation(&mut state);
255
256        // Step 3: Apply eigenvalue inversion (controlled rotation)
257        self.apply_eigenvalue_inversion(&mut state);
258
259        // Step 4: Apply inverse phase estimation
260        self.apply_inverse_phase_estimation(&mut state);
261
262        // Step 5: Measure ancilla and post-select
263        let success_probability = self.postselect_ancilla(&mut state);
264
265        // Step 6: Extract solution
266        let solution = self.extract_solution(&state);
267
268        Ok((solution, success_probability))
269    }
270}
271
272/// Check if a matrix is Hermitian
273fn is_hermitian(matrix: &Array2<Complex64>, tolerance: f64) -> bool {
274    let (n, m) = matrix.dim();
275    if n != m {
276        return false;
277    }
278
279    for i in 0..n {
280        for j in 0..n {
281            let diff = (matrix[[i, j]] - matrix[[j, i]].conj()).norm();
282            if diff > tolerance {
283                return false;
284            }
285        }
286    }
287
288    true
289}
290
291/// Simple example: solving a 2x2 system
292pub fn hhl_example() -> Result<(), String> {
293    // Example matrix A (must be Hermitian)
294    let matrix = Array2::from_shape_vec(
295        (2, 2),
296        vec![
297            Complex64::new(3.0, 0.0),
298            Complex64::new(1.0, 0.0),
299            Complex64::new(1.0, 0.0),
300            Complex64::new(3.0, 0.0),
301        ],
302    )
303    .unwrap();
304
305    // Vector b
306    let vector_b = Array1::from_vec(vec![Complex64::new(1.0, 0.0), Complex64::new(0.0, 0.0)]);
307
308    // Create HHL instance
309    let params = HHLParams::new(1); // 2^1 = 2 dimensional system
310    let hhl = HHLAlgorithm::new(matrix.clone(), vector_b.clone(), params)?;
311
312    // Run algorithm
313    let (solution, success_prob) = hhl.run()?;
314
315    println!("HHL Algorithm Results:");
316    println!("Matrix A:\n{:?}", matrix);
317    println!("Vector b: {:?}", vector_b);
318    println!("Quantum solution |x⟩: {:?}", solution);
319    println!("Success probability: {:.4}", success_prob);
320
321    // Verify: A|x⟩ should be proportional to |b⟩
322    let ax = matrix.dot(&solution);
323    println!("Verification A|x⟩: {:?}", ax);
324
325    Ok(())
326}
327
328#[cfg(test)]
329mod tests {
330    use super::*;
331
332    #[test]
333    fn test_hermitian_check() {
334        // Hermitian matrix
335        let h = Array2::from_shape_vec(
336            (2, 2),
337            vec![
338                Complex64::new(1.0, 0.0),
339                Complex64::new(0.0, 1.0),
340                Complex64::new(0.0, -1.0),
341                Complex64::new(2.0, 0.0),
342            ],
343        )
344        .unwrap();
345        assert!(is_hermitian(&h, 1e-10));
346
347        // Non-Hermitian matrix
348        let nh = Array2::from_shape_vec(
349            (2, 2),
350            vec![
351                Complex64::new(1.0, 0.0),
352                Complex64::new(2.0, 0.0),
353                Complex64::new(3.0, 0.0),
354                Complex64::new(4.0, 0.0),
355            ],
356        )
357        .unwrap();
358        assert!(!is_hermitian(&nh, 1e-10));
359    }
360
361    #[test]
362    fn test_hhl_creation() {
363        let matrix = Array2::eye(2);
364        let vector_b = Array1::from_vec(vec![Complex64::new(1.0, 0.0), Complex64::new(0.0, 0.0)]);
365
366        let params = HHLParams::new(1);
367        let hhl = HHLAlgorithm::new(matrix, vector_b, params);
368        assert!(hhl.is_ok());
369    }
370}