1use crate::{error::QuantRS2Result, gate::GateOp, qubit::QubitId};
8use num_complex::Complex64;
9use std::collections::HashMap;
10use std::sync::{Arc, Mutex};
11
12pub struct SpecializedGpuKernels {
14 cuda_context: Option<CudaSpecializedContext>,
16 webgpu_context: Option<WebGpuSpecializedContext>,
18 kernel_cache: Arc<Mutex<KernelCache>>,
20 performance_stats: Arc<Mutex<PerformanceStats>>,
22 config: OptimizationConfig,
24}
25
26pub struct CudaSpecializedContext {
28 #[allow(dead_code)]
30 compute_capability: (i32, i32),
31 has_tensor_cores: bool,
33 #[allow(dead_code)]
35 max_shared_memory: usize,
36 #[allow(dead_code)]
38 warp_size: usize,
39 kernels: HashMap<String, CompiledKernel>,
41}
42
43pub struct WebGpuSpecializedContext {
45 #[allow(dead_code)]
47 device_limits: WebGpuLimits,
48 #[allow(dead_code)]
50 shaders: HashMap<String, CompiledShader>,
51 #[allow(dead_code)]
53 buffer_pools: HashMap<String, BufferPool>,
54}
55
56pub struct KernelCache {
58 #[allow(dead_code)]
60 cuda_kernels: HashMap<String, CachedCudaKernel>,
61 #[allow(dead_code)]
63 webgpu_shaders: HashMap<String, CachedWebGpuShader>,
64 cache_stats: CacheStatistics,
66}
67
68pub struct PerformanceStats {
70 kernel_times: HashMap<String, Vec<f64>>,
72 memory_bandwidth: HashMap<String, f64>,
74 tensor_core_utilization: f64,
76 #[allow(dead_code)]
78 cache_hit_rates: HashMap<String, f64>,
79}
80
81#[derive(Debug, Clone)]
83pub struct OptimizationConfig {
84 pub use_tensor_cores: bool,
86 pub optimize_memory_access: bool,
88 pub enable_gate_fusion: bool,
90 pub max_fusion_length: usize,
92 pub coalescing_threshold: usize,
94 pub use_mixed_precision: bool,
96}
97
98impl Default for OptimizationConfig {
99 fn default() -> Self {
100 Self {
101 use_tensor_cores: true,
102 optimize_memory_access: true,
103 enable_gate_fusion: true,
104 max_fusion_length: 8,
105 coalescing_threshold: 32,
106 use_mixed_precision: true,
107 }
108 }
109}
110
111impl SpecializedGpuKernels {
112 pub fn new(config: OptimizationConfig) -> QuantRS2Result<Self> {
114 let cuda_context = Self::initialize_cuda_context(&config)?;
115 let webgpu_context = Self::initialize_webgpu_context(&config)?;
116
117 Ok(Self {
118 cuda_context,
119 webgpu_context,
120 kernel_cache: Arc::new(Mutex::new(KernelCache::new())),
121 performance_stats: Arc::new(Mutex::new(PerformanceStats::new())),
122 config,
123 })
124 }
125
126 fn initialize_cuda_context(
128 config: &OptimizationConfig,
129 ) -> QuantRS2Result<Option<CudaSpecializedContext>> {
130 if !Self::is_cuda_available() {
132 return Ok(None);
133 }
134
135 let compute_capability = Self::get_compute_capability()?;
136 let has_tensor_cores = compute_capability.0 >= 7; let device_props = Self::get_device_properties()?;
138
139 let mut kernels = HashMap::new();
140
141 kernels.insert(
143 "holonomic_gate".to_string(),
144 Self::compile_holonomic_kernel(config)?,
145 );
146 kernels.insert(
147 "post_quantum_hash".to_string(),
148 Self::compile_post_quantum_kernel(config)?,
149 );
150 kernels.insert(
151 "quantum_ml_attention".to_string(),
152 Self::compile_qml_attention_kernel(config)?,
153 );
154 kernels.insert(
155 "fused_rotation_sequence".to_string(),
156 Self::compile_fused_rotation_kernel(config)?,
157 );
158 kernels.insert(
159 "tensor_core_matmul".to_string(),
160 Self::compile_tensor_core_kernel(config)?,
161 );
162
163 Ok(Some(CudaSpecializedContext {
164 compute_capability,
165 has_tensor_cores,
166 max_shared_memory: device_props.max_shared_memory,
167 warp_size: device_props.warp_size,
168 kernels,
169 }))
170 }
171
172 fn initialize_webgpu_context(
174 config: &OptimizationConfig,
175 ) -> QuantRS2Result<Option<WebGpuSpecializedContext>> {
176 let device_limits = Self::get_webgpu_limits()?;
177 let mut shaders = HashMap::new();
178 let mut buffer_pools = HashMap::new();
179
180 shaders.insert(
182 "holonomic_gate".to_string(),
183 Self::compile_holonomic_shader(config)?,
184 );
185 shaders.insert(
186 "post_quantum_hash".to_string(),
187 Self::compile_post_quantum_shader(config)?,
188 );
189 shaders.insert(
190 "quantum_ml_attention".to_string(),
191 Self::compile_qml_attention_shader(config)?,
192 );
193
194 buffer_pools.insert("state_vectors".to_string(), BufferPool::new(1024 * 1024)); buffer_pools.insert("gate_matrices".to_string(), BufferPool::new(512 * 1024)); buffer_pools.insert("temporary_buffers".to_string(), BufferPool::new(256 * 1024)); Ok(Some(WebGpuSpecializedContext {
200 device_limits,
201 shaders,
202 buffer_pools,
203 }))
204 }
205
206 pub fn apply_holonomic_gate(
208 &self,
209 state: &mut [Complex64],
210 holonomy_matrix: &[Complex64],
211 target_qubits: &[QubitId],
212 ) -> QuantRS2Result<()> {
213 let _num_qubits = target_qubits.len();
214 let state_size = state.len();
215
216 if state_size > 1024 && self.cuda_context.is_some() {
218 self.apply_holonomic_gate_cuda(state, holonomy_matrix, target_qubits)
219 } else if self.webgpu_context.is_some() {
220 self.apply_holonomic_gate_webgpu(state, holonomy_matrix, target_qubits)
221 } else {
222 self.apply_holonomic_gate_cpu_optimized(state, holonomy_matrix, target_qubits)
224 }
225 }
226
227 fn apply_holonomic_gate_cuda(
229 &self,
230 state: &mut [Complex64],
231 holonomy_matrix: &[Complex64],
232 target_qubits: &[QubitId],
233 ) -> QuantRS2Result<()> {
234 let cuda_ctx = self.cuda_context.as_ref().unwrap();
235 let kernel = cuda_ctx.kernels.get("holonomic_gate").unwrap();
236
237 let (block_dim, grid_dim) =
239 self.calculate_optimal_dimensions(state.len(), target_qubits.len())?;
240
241 if cuda_ctx.has_tensor_cores && self.config.use_tensor_cores && holonomy_matrix.len() >= 256
243 {
244 self.launch_tensor_core_holonomic_kernel(
245 kernel,
246 state,
247 holonomy_matrix,
248 target_qubits,
249 block_dim,
250 grid_dim,
251 )?;
252 } else {
253 self.launch_standard_holonomic_kernel(
254 kernel,
255 state,
256 holonomy_matrix,
257 target_qubits,
258 block_dim,
259 grid_dim,
260 )?;
261 }
262
263 self.update_performance_stats("holonomic_gate_cuda", kernel.last_execution_time);
265
266 Ok(())
267 }
268
269 pub fn apply_post_quantum_hash_gate(
271 &self,
272 state: &mut [Complex64],
273 hash_circuit: &[Complex64],
274 compression_type: PostQuantumCompressionType,
275 ) -> QuantRS2Result<()> {
276 match compression_type {
277 PostQuantumCompressionType::QuantumSponge { rate, capacity } => {
278 self.apply_quantum_sponge_gpu(state, hash_circuit, rate, capacity)
279 }
280 PostQuantumCompressionType::QuantumMerkleTree { depth, arity } => {
281 self.apply_quantum_merkle_gpu(state, hash_circuit, depth, arity)
282 }
283 PostQuantumCompressionType::QuantumGrover { iterations } => {
284 self.apply_quantum_grover_gpu(state, hash_circuit, iterations)
285 }
286 }
287 }
288
289 pub fn apply_quantum_ml_attention(
291 &self,
292 state: &mut [Complex64],
293 query_params: &[Complex64],
294 key_params: &[Complex64],
295 value_params: &[Complex64],
296 num_heads: usize,
297 ) -> QuantRS2Result<()> {
298 let attention_dim = state.len() / num_heads;
299
300 if self.cuda_context.is_some() && attention_dim >= 64 {
301 self.apply_qml_attention_cuda(state, query_params, key_params, value_params, num_heads)
303 } else if self.webgpu_context.is_some() {
304 self.apply_qml_attention_webgpu(
306 state,
307 query_params,
308 key_params,
309 value_params,
310 num_heads,
311 )
312 } else {
313 self.apply_qml_attention_cpu_vectorized(
315 state,
316 query_params,
317 key_params,
318 value_params,
319 num_heads,
320 )
321 }
322 }
323
324 pub fn apply_fused_gate_sequence(
326 &self,
327 state: &mut [Complex64],
328 gates: &[Box<dyn GateOp>],
329 ) -> QuantRS2Result<()> {
330 if !self.config.enable_gate_fusion || gates.len() < 2 {
331 for gate in gates {
333 self.apply_single_gate_optimized(state, gate.as_ref())?;
334 }
335 return Ok(());
336 }
337
338 let fusion_chains = self.analyze_gate_fusion_opportunities(gates)?;
340
341 for chain in fusion_chains {
342 match chain.fusion_type {
343 FusionType::RotationSequence => {
344 self.apply_fused_rotation_sequence(state, &chain.gates)?;
345 }
346 FusionType::PauliString => {
347 self.apply_fused_pauli_string(state, &chain.gates)?;
348 }
349 FusionType::ControlledSequence => {
350 self.apply_fused_controlled_sequence(state, &chain.gates)?;
351 }
352 FusionType::None => {
353 for gate in &chain.gates {
355 self.apply_single_gate_optimized(state, gate.as_ref())?;
356 }
357 }
358 }
359 }
360
361 Ok(())
362 }
363
364 fn calculate_optimal_dimensions(
366 &self,
367 state_size: usize,
368 num_target_qubits: usize,
369 ) -> QuantRS2Result<(u32, u32)> {
370 let _cuda_ctx = self.cuda_context.as_ref().unwrap();
371
372 let work_per_thread = 1 << num_target_qubits; let total_work_items = state_size / work_per_thread;
375
376 let threads_per_block = if total_work_items >= 1024 {
378 1024
379 } else if total_work_items >= 512 {
380 512
381 } else if total_work_items >= 256 {
382 256
383 } else {
384 128.max(32) };
386
387 let blocks = (total_work_items + threads_per_block - 1) / threads_per_block;
388
389 Ok((threads_per_block as u32, blocks as u32))
390 }
391
392 fn update_performance_stats(&self, kernel_name: &str, execution_time: f64) {
394 let mut stats = self.performance_stats.lock().unwrap();
395 stats
396 .kernel_times
397 .entry(kernel_name.to_string())
398 .or_insert_with(Vec::new)
399 .push(execution_time);
400 }
401
402 pub fn get_performance_report(&self) -> PerformanceReport {
404 let stats = self.performance_stats.lock().unwrap();
405 let cache = self.kernel_cache.lock().unwrap();
406
407 PerformanceReport {
408 average_kernel_times: stats
409 .kernel_times
410 .iter()
411 .map(|(k, v)| (k.clone(), v.iter().sum::<f64>() / v.len() as f64))
412 .collect(),
413 cache_hit_rate: cache.cache_stats.overall_hit_rate(),
414 tensor_core_utilization: stats.tensor_core_utilization,
415 memory_bandwidth_utilization: stats.memory_bandwidth.values().sum::<f64>()
416 / stats.memory_bandwidth.len() as f64,
417 }
418 }
419
420 fn is_cuda_available() -> bool {
422 false
423 } fn get_compute_capability() -> QuantRS2Result<(i32, i32)> {
425 Ok((7, 5))
426 }
427 fn get_device_properties() -> QuantRS2Result<DeviceProperties> {
428 Ok(DeviceProperties {
429 max_shared_memory: 49152,
430 warp_size: 32,
431 })
432 }
433 fn get_webgpu_limits() -> QuantRS2Result<WebGpuLimits> {
434 Ok(WebGpuLimits {
435 max_compute_workgroup_size: 256,
436 })
437 }
438
439 fn compile_holonomic_kernel(_config: &OptimizationConfig) -> QuantRS2Result<CompiledKernel> {
440 Ok(CompiledKernel {
441 name: "holonomic".to_string(),
442 last_execution_time: 0.0,
443 })
444 }
445 fn compile_post_quantum_kernel(_config: &OptimizationConfig) -> QuantRS2Result<CompiledKernel> {
446 Ok(CompiledKernel {
447 name: "post_quantum".to_string(),
448 last_execution_time: 0.0,
449 })
450 }
451 fn compile_qml_attention_kernel(
452 _config: &OptimizationConfig,
453 ) -> QuantRS2Result<CompiledKernel> {
454 Ok(CompiledKernel {
455 name: "qml_attention".to_string(),
456 last_execution_time: 0.0,
457 })
458 }
459 fn compile_fused_rotation_kernel(
460 _config: &OptimizationConfig,
461 ) -> QuantRS2Result<CompiledKernel> {
462 Ok(CompiledKernel {
463 name: "fused_rotation".to_string(),
464 last_execution_time: 0.0,
465 })
466 }
467 fn compile_tensor_core_kernel(_config: &OptimizationConfig) -> QuantRS2Result<CompiledKernel> {
468 Ok(CompiledKernel {
469 name: "tensor_core".to_string(),
470 last_execution_time: 0.0,
471 })
472 }
473
474 fn compile_holonomic_shader(_config: &OptimizationConfig) -> QuantRS2Result<CompiledShader> {
475 Ok(CompiledShader {
476 name: "holonomic".to_string(),
477 })
478 }
479 fn compile_post_quantum_shader(_config: &OptimizationConfig) -> QuantRS2Result<CompiledShader> {
480 Ok(CompiledShader {
481 name: "post_quantum".to_string(),
482 })
483 }
484 fn compile_qml_attention_shader(
485 _config: &OptimizationConfig,
486 ) -> QuantRS2Result<CompiledShader> {
487 Ok(CompiledShader {
488 name: "qml_attention".to_string(),
489 })
490 }
491
492 fn launch_tensor_core_holonomic_kernel(
494 &self,
495 _kernel: &CompiledKernel,
496 _state: &mut [Complex64],
497 _matrix: &[Complex64],
498 _qubits: &[QubitId],
499 _block: u32,
500 _grid: u32,
501 ) -> QuantRS2Result<()> {
502 Ok(())
503 }
504 fn launch_standard_holonomic_kernel(
505 &self,
506 _kernel: &CompiledKernel,
507 _state: &mut [Complex64],
508 _matrix: &[Complex64],
509 _qubits: &[QubitId],
510 _block: u32,
511 _grid: u32,
512 ) -> QuantRS2Result<()> {
513 Ok(())
514 }
515
516 fn apply_holonomic_gate_webgpu(
517 &self,
518 _state: &mut [Complex64],
519 _matrix: &[Complex64],
520 _qubits: &[QubitId],
521 ) -> QuantRS2Result<()> {
522 Ok(())
523 }
524 fn apply_holonomic_gate_cpu_optimized(
525 &self,
526 _state: &mut [Complex64],
527 _matrix: &[Complex64],
528 _qubits: &[QubitId],
529 ) -> QuantRS2Result<()> {
530 Ok(())
531 }
532
533 fn apply_quantum_sponge_gpu(
534 &self,
535 _state: &mut [Complex64],
536 _circuit: &[Complex64],
537 _rate: usize,
538 _capacity: usize,
539 ) -> QuantRS2Result<()> {
540 Ok(())
541 }
542 fn apply_quantum_merkle_gpu(
543 &self,
544 _state: &mut [Complex64],
545 _circuit: &[Complex64],
546 _depth: usize,
547 _arity: usize,
548 ) -> QuantRS2Result<()> {
549 Ok(())
550 }
551 fn apply_quantum_grover_gpu(
552 &self,
553 _state: &mut [Complex64],
554 _circuit: &[Complex64],
555 _iterations: usize,
556 ) -> QuantRS2Result<()> {
557 Ok(())
558 }
559
560 fn apply_qml_attention_cuda(
561 &self,
562 _state: &mut [Complex64],
563 _query: &[Complex64],
564 _key: &[Complex64],
565 _value: &[Complex64],
566 _heads: usize,
567 ) -> QuantRS2Result<()> {
568 Ok(())
569 }
570 fn apply_qml_attention_webgpu(
571 &self,
572 _state: &mut [Complex64],
573 _query: &[Complex64],
574 _key: &[Complex64],
575 _value: &[Complex64],
576 _heads: usize,
577 ) -> QuantRS2Result<()> {
578 Ok(())
579 }
580 fn apply_qml_attention_cpu_vectorized(
581 &self,
582 _state: &mut [Complex64],
583 _query: &[Complex64],
584 _key: &[Complex64],
585 _value: &[Complex64],
586 _heads: usize,
587 ) -> QuantRS2Result<()> {
588 Ok(())
589 }
590
591 fn apply_single_gate_optimized(
592 &self,
593 _state: &mut [Complex64],
594 _gate: &dyn GateOp,
595 ) -> QuantRS2Result<()> {
596 Ok(())
597 }
598 fn analyze_gate_fusion_opportunities(
599 &self,
600 _gates: &[Box<dyn GateOp>],
601 ) -> QuantRS2Result<Vec<FusionChain>> {
602 Ok(vec![])
603 }
604 fn apply_fused_rotation_sequence(
605 &self,
606 _state: &mut [Complex64],
607 _gates: &[Box<dyn GateOp>],
608 ) -> QuantRS2Result<()> {
609 Ok(())
610 }
611 fn apply_fused_pauli_string(
612 &self,
613 _state: &mut [Complex64],
614 _gates: &[Box<dyn GateOp>],
615 ) -> QuantRS2Result<()> {
616 Ok(())
617 }
618 fn apply_fused_controlled_sequence(
619 &self,
620 _state: &mut [Complex64],
621 _gates: &[Box<dyn GateOp>],
622 ) -> QuantRS2Result<()> {
623 Ok(())
624 }
625}
626
627#[derive(Debug, Clone)]
630pub enum PostQuantumCompressionType {
631 QuantumSponge { rate: usize, capacity: usize },
632 QuantumMerkleTree { depth: usize, arity: usize },
633 QuantumGrover { iterations: usize },
634}
635
636#[derive(Debug, Clone)]
637pub enum FusionType {
638 RotationSequence,
639 PauliString,
640 ControlledSequence,
641 None,
642}
643
644pub struct FusionChain {
645 pub gates: Vec<Box<dyn GateOp>>,
646 pub fusion_type: FusionType,
647}
648
649pub struct CompiledKernel {
650 pub name: String,
651 pub last_execution_time: f64,
652}
653
654pub struct CompiledShader {
655 pub name: String,
656}
657
658pub struct CachedCudaKernel {
659 pub kernel: CompiledKernel,
660 pub compilation_time: f64,
661}
662
663pub struct CachedWebGpuShader {
664 pub shader: CompiledShader,
665 pub compilation_time: f64,
666}
667
668pub struct CacheStatistics {
669 pub hits: usize,
670 pub misses: usize,
671}
672
673impl CacheStatistics {
674 pub fn overall_hit_rate(&self) -> f64 {
675 if self.hits + self.misses == 0 {
676 0.0
677 } else {
678 self.hits as f64 / (self.hits + self.misses) as f64
679 }
680 }
681}
682
683pub struct BufferPool {
684 pub initial_size: usize,
685}
686
687impl BufferPool {
688 pub fn new(initial_size: usize) -> Self {
689 Self { initial_size }
690 }
691}
692
693pub struct DeviceProperties {
694 pub max_shared_memory: usize,
695 pub warp_size: usize,
696}
697
698pub struct WebGpuLimits {
699 pub max_compute_workgroup_size: u32,
700}
701
702pub struct PerformanceReport {
703 pub average_kernel_times: HashMap<String, f64>,
704 pub cache_hit_rate: f64,
705 pub tensor_core_utilization: f64,
706 pub memory_bandwidth_utilization: f64,
707}
708
709impl KernelCache {
710 pub fn new() -> Self {
711 Self {
712 cuda_kernels: HashMap::new(),
713 webgpu_shaders: HashMap::new(),
714 cache_stats: CacheStatistics { hits: 0, misses: 0 },
715 }
716 }
717}
718
719impl Default for KernelCache {
720 fn default() -> Self {
721 Self::new()
722 }
723}
724
725impl PerformanceStats {
726 pub fn new() -> Self {
727 Self {
728 kernel_times: HashMap::new(),
729 memory_bandwidth: HashMap::new(),
730 tensor_core_utilization: 0.0,
731 cache_hit_rates: HashMap::new(),
732 }
733 }
734}
735
736impl Default for PerformanceStats {
737 fn default() -> Self {
738 Self::new()
739 }
740}
741
742#[cfg(test)]
743mod tests {
744 use super::*;
745
746 #[test]
747 fn test_specialized_gpu_kernels_creation() {
748 let config = OptimizationConfig::default();
749 let kernels = SpecializedGpuKernels::new(config);
750 assert!(kernels.is_ok());
751 }
752
753 #[test]
754 fn test_holonomic_gate_application() {
755 let config = OptimizationConfig::default();
756 let kernels = SpecializedGpuKernels::new(config).unwrap();
757
758 let mut state = vec![Complex64::new(1.0, 0.0), Complex64::new(0.0, 0.0)];
759 let holonomy_matrix = vec![
760 Complex64::new(1.0, 0.0),
761 Complex64::new(0.0, 0.0),
762 Complex64::new(0.0, 0.0),
763 Complex64::new(1.0, 0.0),
764 ];
765 let target_qubits = vec![QubitId(0)];
766
767 let result = kernels.apply_holonomic_gate(&mut state, &holonomy_matrix, &target_qubits);
768 assert!(result.is_ok());
769 }
770
771 #[test]
772 fn test_performance_reporting() {
773 let config = OptimizationConfig::default();
774 let kernels = SpecializedGpuKernels::new(config).unwrap();
775
776 let report = kernels.get_performance_report();
777 assert!(report.cache_hit_rate >= 0.0 && report.cache_hit_rate <= 1.0);
778 }
779}