quantrs2_core/gpu/
mod.rs

1//! GPU acceleration backend for quantum operations
2//!
3//! This module provides an abstraction layer for GPU-accelerated quantum
4//! computations, supporting multiple backends through SciRS2 GPU abstractions.
5//!
6//! NOTE: This module is being migrated to use scirs2_core::gpu as per SciRS2 policy.
7//! New code should use the SciRS2 GPU abstractions directly.
8
9use crate::{
10    error::{QuantRS2Error, QuantRS2Result},
11    gate::GateOp,
12    qubit::QubitId,
13};
14use scirs2_core::ndarray::{Array1, Array2};
15use scirs2_core::Complex64;
16use std::sync::Arc;
17
18// Import SciRS2 GPU abstractions
19// Note: These will be used when full migration to SciRS2 GPU is implemented
20// #[cfg(feature = "gpu")]
21// #[allow(unused_imports)]
22// use scirs2_core::gpu::{GpuDevice, GpuKernel as SciRS2GpuKernel};
23
24// TODO: GPU Migration to SciRS2
25// =============================
26// This module needs to be migrated to use scirs2_core::gpu abstractions as per SciRS2 policy:
27// 1. Replace GpuBuffer trait with scirs2_core::gpu buffer abstractions
28// 2. Replace GpuKernel trait with scirs2_core::gpu::GpuKernel
29// 3. Register all kernels in the core GPU kernel registry
30// 4. Remove direct CUDA/Metal/Vulkan backend implementations
31// 5. Use GpuDevice::default() for device selection
32//
33// Migration strategy:
34// - Phase 1: Create adapter layer (current)
35// - Phase 2: Migrate kernels to SciRS2 format
36// - Phase 3: Remove legacy implementations
37// - Phase 4: Update all dependent code
38
39pub mod cpu_backend;
40pub use cpu_backend::CpuBackend;
41#[cfg(feature = "cuda")]
42pub mod cuda_backend;
43#[cfg(feature = "metal")]
44pub mod metal_backend;
45#[cfg(feature = "metal")]
46pub mod metal_backend_scirs2_ready;
47#[cfg(feature = "vulkan")]
48pub mod vulkan_backend;
49
50// SciRS2 GPU migration adapter
51pub mod scirs2_adapter;
52pub use crate::gpu_stubs::SciRS2GpuConfig;
53
54// Re-export SciRS2 adapter types for external use
55pub use scirs2_adapter::{
56    get_gpu_system_info, is_gpu_available, SciRS2BufferAdapter, SciRS2GpuBackend, SciRS2GpuFactory,
57    SciRS2GpuMetrics, SciRS2KernelAdapter,
58};
59
60// Enhanced GPU optimization modules
61pub mod adaptive_simd;
62pub mod large_scale_simulation;
63pub mod specialized_kernels;
64
65// Tests
66#[cfg(test)]
67mod metal_backend_tests;
68
69// Re-export key optimization components
70pub use adaptive_simd::{
71    apply_batch_gates_adaptive, apply_single_qubit_adaptive, apply_two_qubit_adaptive,
72    get_adaptive_performance_report, initialize_adaptive_simd, AdaptiveSimdDispatcher, CpuFeatures,
73    SimdVariant,
74};
75pub use large_scale_simulation::{
76    LargeScaleGateType, LargeScaleObservable, LargeScalePerformanceStats, LargeScaleSimAccelerator,
77    LargeScaleSimConfig, LargeScaleStateVectorSim, LargeScaleTensorContractor, SimulationTaskType,
78    TensorDecompositionType,
79};
80pub use specialized_kernels::{
81    FusionType, OptimizationConfig, PerformanceReport, PostQuantumCompressionType,
82    SpecializedGpuKernels,
83};
84
85/// GPU memory buffer abstraction
86pub trait GpuBuffer: Send + Sync {
87    /// Get the size of the buffer in bytes
88    fn size(&self) -> usize;
89
90    /// Copy data from host to device
91    fn upload(&mut self, data: &[Complex64]) -> QuantRS2Result<()>;
92
93    /// Copy data from device to host
94    fn download(&self, data: &mut [Complex64]) -> QuantRS2Result<()>;
95
96    /// Synchronize GPU operations
97    fn sync(&self) -> QuantRS2Result<()>;
98
99    /// Enable downcasting to concrete types
100    fn as_any(&self) -> &dyn std::any::Any;
101
102    /// Enable mutable downcasting to concrete types
103    fn as_any_mut(&mut self) -> &mut dyn std::any::Any;
104}
105
106/// Enhanced GPU kernel for specialized quantum operations
107pub trait SpecializedGpuKernel: Send + Sync {
108    /// Apply a holonomic gate with optimized GPU execution
109    fn apply_holonomic_gate(
110        &self,
111        state: &mut dyn GpuBuffer,
112        holonomy_matrix: &[Complex64],
113        target_qubits: &[QubitId],
114    ) -> QuantRS2Result<()>;
115
116    /// Apply post-quantum cryptographic hash gate
117    fn apply_post_quantum_hash_gate(
118        &self,
119        state: &mut dyn GpuBuffer,
120        hash_circuit: &[Complex64],
121        compression_type: PostQuantumCompressionType,
122    ) -> QuantRS2Result<()>;
123
124    /// Apply quantum ML attention mechanism
125    fn apply_quantum_ml_attention(
126        &self,
127        state: &mut dyn GpuBuffer,
128        query_params: &[Complex64],
129        key_params: &[Complex64],
130        value_params: &[Complex64],
131        num_heads: usize,
132    ) -> QuantRS2Result<()>;
133
134    /// Apply fused gate sequences for optimal performance
135    fn apply_fused_gate_sequence(
136        &self,
137        state: &mut dyn GpuBuffer,
138        gates: &[Box<dyn GateOp>],
139    ) -> QuantRS2Result<()>;
140
141    /// Apply tensor network contraction
142    fn apply_tensor_contraction(
143        &self,
144        tensor_data: &mut dyn GpuBuffer,
145        contraction_indices: &[usize],
146        bond_dimension: usize,
147    ) -> QuantRS2Result<()>;
148}
149
150/// GPU kernel for quantum operations
151pub trait GpuKernel: Send + Sync {
152    /// Apply a single-qubit gate
153    fn apply_single_qubit_gate(
154        &self,
155        state: &mut dyn GpuBuffer,
156        gate_matrix: &[Complex64; 4],
157        qubit: QubitId,
158        n_qubits: usize,
159    ) -> QuantRS2Result<()>;
160
161    /// Apply a two-qubit gate
162    fn apply_two_qubit_gate(
163        &self,
164        state: &mut dyn GpuBuffer,
165        gate_matrix: &[Complex64; 16],
166        control: QubitId,
167        target: QubitId,
168        n_qubits: usize,
169    ) -> QuantRS2Result<()>;
170
171    /// Apply a multi-qubit gate
172    fn apply_multi_qubit_gate(
173        &self,
174        state: &mut dyn GpuBuffer,
175        gate_matrix: &Array2<Complex64>,
176        qubits: &[QubitId],
177        n_qubits: usize,
178    ) -> QuantRS2Result<()>;
179
180    /// Measure a qubit
181    fn measure_qubit(
182        &self,
183        state: &dyn GpuBuffer,
184        qubit: QubitId,
185        n_qubits: usize,
186    ) -> QuantRS2Result<(bool, f64)>;
187
188    /// Calculate expectation value
189    fn expectation_value(
190        &self,
191        state: &dyn GpuBuffer,
192        observable: &Array2<Complex64>,
193        qubits: &[QubitId],
194        n_qubits: usize,
195    ) -> QuantRS2Result<f64>;
196}
197
198/// Enhanced GPU backend trait for specialized quantum computations
199pub trait EnhancedGpuBackend: GpuBackend {
200    /// Get the specialized kernel implementation
201    fn specialized_kernel(&self) -> Option<&dyn SpecializedGpuKernel>;
202
203    /// Apply a holonomic gate with GPU optimization
204    fn apply_holonomic_gate(
205        &self,
206        state: &mut dyn GpuBuffer,
207        holonomy_matrix: &[Complex64],
208        target_qubits: &[QubitId],
209    ) -> QuantRS2Result<()> {
210        if let Some(kernel) = self.specialized_kernel() {
211            kernel.apply_holonomic_gate(state, holonomy_matrix, target_qubits)
212        } else {
213            Err(QuantRS2Error::UnsupportedOperation(
214                "Holonomic gates not supported by this backend".to_string(),
215            ))
216        }
217    }
218
219    /// Apply post-quantum cryptographic operations
220    fn apply_post_quantum_crypto(
221        &self,
222        state: &mut dyn GpuBuffer,
223        hash_circuit: &[Complex64],
224        compression_type: PostQuantumCompressionType,
225    ) -> QuantRS2Result<()> {
226        if let Some(kernel) = self.specialized_kernel() {
227            kernel.apply_post_quantum_hash_gate(state, hash_circuit, compression_type)
228        } else {
229            Err(QuantRS2Error::UnsupportedOperation(
230                "Post-quantum crypto gates not supported by this backend".to_string(),
231            ))
232        }
233    }
234
235    /// Apply quantum ML operations
236    fn apply_quantum_ml_attention(
237        &self,
238        state: &mut dyn GpuBuffer,
239        query_params: &[Complex64],
240        key_params: &[Complex64],
241        value_params: &[Complex64],
242        num_heads: usize,
243    ) -> QuantRS2Result<()> {
244        if let Some(kernel) = self.specialized_kernel() {
245            kernel.apply_quantum_ml_attention(
246                state,
247                query_params,
248                key_params,
249                value_params,
250                num_heads,
251            )
252        } else {
253            Err(QuantRS2Error::UnsupportedOperation(
254                "Quantum ML attention not supported by this backend".to_string(),
255            ))
256        }
257    }
258
259    /// Apply optimized gate fusion
260    fn apply_fused_gates(
261        &self,
262        state: &mut dyn GpuBuffer,
263        gates: &[Box<dyn GateOp>],
264    ) -> QuantRS2Result<()> {
265        if let Some(kernel) = self.specialized_kernel() {
266            kernel.apply_fused_gate_sequence(state, gates)
267        } else {
268            // Fallback to applying gates individually
269            for gate in gates {
270                let qubits = gate.qubits();
271                self.apply_gate(state, gate.as_ref(), &qubits, qubits.len())?;
272            }
273            Ok(())
274        }
275    }
276
277    /// Get optimization configuration
278    fn optimization_config(&self) -> OptimizationConfig {
279        OptimizationConfig::default()
280    }
281
282    /// Get performance statistics
283    fn performance_stats(&self) -> PerformanceReport {
284        PerformanceReport {
285            average_kernel_times: std::collections::HashMap::new(),
286            cache_hit_rate: 0.0,
287            tensor_core_utilization: 0.0,
288            memory_bandwidth_utilization: 0.0,
289        }
290    }
291}
292
293/// GPU backend trait for quantum computations
294pub trait GpuBackend: Send + Sync {
295    /// Check if this backend is available on the current system
296    fn is_available() -> bool
297    where
298        Self: Sized;
299
300    /// Get the name of this backend
301    fn name(&self) -> &str;
302
303    /// Get device information
304    fn device_info(&self) -> String;
305
306    /// Allocate a GPU buffer for a state vector
307    fn allocate_state_vector(&self, n_qubits: usize) -> QuantRS2Result<Box<dyn GpuBuffer>>;
308
309    /// Allocate a GPU buffer for a density matrix
310    fn allocate_density_matrix(&self, n_qubits: usize) -> QuantRS2Result<Box<dyn GpuBuffer>>;
311
312    /// Get the kernel implementation
313    fn kernel(&self) -> &dyn GpuKernel;
314
315    /// Apply a quantum gate
316    fn apply_gate(
317        &self,
318        state: &mut dyn GpuBuffer,
319        gate: &dyn GateOp,
320        qubits: &[QubitId],
321        n_qubits: usize,
322    ) -> QuantRS2Result<()> {
323        match qubits.len() {
324            1 => {
325                let matrix = gate.matrix()?;
326                let gate_array: [Complex64; 4] = [matrix[0], matrix[1], matrix[2], matrix[3]];
327                self.kernel()
328                    .apply_single_qubit_gate(state, &gate_array, qubits[0], n_qubits)
329            }
330            2 => {
331                let matrix = gate.matrix()?;
332                let mut gate_array = [Complex64::new(0.0, 0.0); 16];
333                for (i, &val) in matrix.iter().enumerate() {
334                    gate_array[i] = val;
335                }
336                self.kernel().apply_two_qubit_gate(
337                    state,
338                    &gate_array,
339                    qubits[0],
340                    qubits[1],
341                    n_qubits,
342                )
343            }
344            _ => {
345                let matrix_vec = gate.matrix()?;
346                let size = (1 << qubits.len(), 1 << qubits.len());
347                let matrix = Array2::from_shape_vec(size, matrix_vec)?;
348                self.kernel()
349                    .apply_multi_qubit_gate(state, &matrix, qubits, n_qubits)
350            }
351        }
352    }
353
354    /// Measure a qubit and collapse the state
355    fn measure(
356        &self,
357        state: &mut dyn GpuBuffer,
358        qubit: QubitId,
359        n_qubits: usize,
360    ) -> QuantRS2Result<bool> {
361        let (outcome, _prob) = self.kernel().measure_qubit(state, qubit, n_qubits)?;
362        Ok(outcome)
363    }
364
365    /// Get measurement probability without collapsing
366    fn get_probability(
367        &self,
368        state: &dyn GpuBuffer,
369        qubit: QubitId,
370        n_qubits: usize,
371    ) -> QuantRS2Result<f64> {
372        let (_outcome, prob) = self.kernel().measure_qubit(state, qubit, n_qubits)?;
373        Ok(prob)
374    }
375}
376
377/// GPU-accelerated state vector
378pub struct GpuStateVector {
379    /// The GPU backend
380    backend: Arc<dyn GpuBackend>,
381    /// The GPU buffer holding the state
382    buffer: Box<dyn GpuBuffer>,
383    /// Number of qubits
384    n_qubits: usize,
385}
386
387impl GpuStateVector {
388    /// Create a new GPU state vector
389    pub fn new(backend: Arc<dyn GpuBackend>, n_qubits: usize) -> QuantRS2Result<Self> {
390        let buffer = backend.allocate_state_vector(n_qubits)?;
391        Ok(Self {
392            backend,
393            buffer,
394            n_qubits,
395        })
396    }
397
398    /// Initialize to |00...0⟩ state
399    pub fn initialize_zero_state(&mut self) -> QuantRS2Result<()> {
400        let size = 1 << self.n_qubits;
401        let mut data = vec![Complex64::new(0.0, 0.0); size];
402        data[0] = Complex64::new(1.0, 0.0);
403        self.buffer.upload(&data)
404    }
405
406    /// Apply a gate
407    pub fn apply_gate(&mut self, gate: &dyn GateOp, qubits: &[QubitId]) -> QuantRS2Result<()> {
408        self.backend
409            .apply_gate(self.buffer.as_mut(), gate, qubits, self.n_qubits)
410    }
411
412    /// Measure a qubit
413    pub fn measure(&mut self, qubit: QubitId) -> QuantRS2Result<bool> {
414        self.backend
415            .measure(self.buffer.as_mut(), qubit, self.n_qubits)
416    }
417
418    /// Get the state vector as a host array
419    pub fn to_array(&self) -> QuantRS2Result<Array1<Complex64>> {
420        let size = 1 << self.n_qubits;
421        let mut data = vec![Complex64::new(0.0, 0.0); size];
422        self.buffer.download(&mut data)?;
423        Ok(Array1::from_vec(data))
424    }
425
426    /// Get measurement probabilities for all basis states
427    pub fn get_probabilities(&self) -> QuantRS2Result<Vec<f64>> {
428        let state = self.to_array()?;
429        Ok(state.iter().map(|c| c.norm_sqr()).collect())
430    }
431}
432
433/// GPU backend factory
434pub struct GpuBackendFactory;
435
436impl GpuBackendFactory {
437    /// Create the best available GPU backend
438    pub fn create_best_available() -> QuantRS2Result<Arc<dyn GpuBackend>> {
439        // Try backends in order of preference
440        #[cfg(feature = "cuda")]
441        if cuda_backend::CudaBackend::is_available() {
442            return Ok(Arc::new(cuda_backend::CudaBackend::new()?));
443        }
444
445        #[cfg(feature = "metal")]
446        if metal_backend::MetalBackend::is_available() {
447            return Ok(Arc::new(metal_backend::MetalBackend::new()?));
448        }
449
450        #[cfg(feature = "vulkan")]
451        if vulkan_backend::VulkanBackend::is_available() {
452            return Ok(Arc::new(vulkan_backend::VulkanBackend::new()?));
453        }
454
455        // Fallback to CPU backend
456        Ok(Arc::new(cpu_backend::CpuBackend::new()))
457    }
458
459    /// Create a specific backend
460    pub fn create_backend(backend_type: &str) -> QuantRS2Result<Arc<dyn GpuBackend>> {
461        match backend_type.to_lowercase().as_str() {
462            #[cfg(feature = "cuda")]
463            "cuda" => Ok(Arc::new(cuda_backend::CudaBackend::new()?)),
464
465            #[cfg(feature = "metal")]
466            "metal" => Ok(Arc::new(metal_backend::MetalBackend::new()?)),
467
468            #[cfg(feature = "vulkan")]
469            "vulkan" => Ok(Arc::new(vulkan_backend::VulkanBackend::new()?)),
470
471            "cpu" => Ok(Arc::new(cpu_backend::CpuBackend::new())),
472
473            _ => Err(QuantRS2Error::InvalidInput(format!(
474                "Unknown backend type: {}",
475                backend_type
476            ))),
477        }
478    }
479
480    /// List available backends
481    pub fn available_backends() -> Vec<&'static str> {
482        #[allow(unused_mut)]
483        let mut backends = vec!["cpu"];
484
485        #[cfg(feature = "cuda")]
486        if cuda_backend::CudaBackend::is_available() {
487            backends.push("cuda");
488        }
489
490        #[cfg(feature = "metal")]
491        if metal_backend::MetalBackend::is_available() {
492            backends.push("metal");
493        }
494
495        #[cfg(feature = "vulkan")]
496        if vulkan_backend::VulkanBackend::is_available() {
497            backends.push("vulkan");
498        }
499
500        backends
501    }
502}
503
504/// Configuration for GPU operations
505#[derive(Debug, Clone)]
506pub struct GpuConfig {
507    /// Preferred backend (None for auto-selection)
508    pub backend: Option<String>,
509    /// Maximum GPU memory to use (in bytes)
510    pub max_memory: Option<usize>,
511    /// Number of GPU threads/work items
512    pub num_threads: Option<usize>,
513    /// Enable profiling
514    pub enable_profiling: bool,
515}
516
517impl Default for GpuConfig {
518    fn default() -> Self {
519        Self {
520            backend: None,
521            max_memory: None,
522            num_threads: None,
523            enable_profiling: false,
524        }
525    }
526}
527
528#[cfg(test)]
529mod tests {
530    use super::*;
531    use crate::gate::single::Hadamard;
532
533    #[test]
534    fn test_gpu_backend_factory() {
535        let backends = GpuBackendFactory::available_backends();
536        assert!(backends.contains(&"cpu"));
537
538        // Should always be able to create CPU backend
539        let backend = GpuBackendFactory::create_backend("cpu").unwrap();
540        assert_eq!(backend.name(), "CPU");
541    }
542
543    #[test]
544    fn test_gpu_state_vector() {
545        let backend = GpuBackendFactory::create_best_available().unwrap();
546        let mut state = GpuStateVector::new(backend, 2).unwrap();
547
548        // Initialize to |00⟩
549        state.initialize_zero_state().unwrap();
550
551        // Apply Hadamard to first qubit
552        let h_gate = Hadamard { target: QubitId(0) };
553        state.apply_gate(&h_gate, &[QubitId(0)]).unwrap();
554
555        // Get probabilities
556        let probs = state.get_probabilities().unwrap();
557        assert_eq!(probs.len(), 4);
558
559        // Should be in equal superposition on first qubit
560        // With our bit ordering (LSB), |00⟩ and |01⟩ should have probability 0.5 each
561        assert!((probs[0] - 0.5).abs() < 1e-10); // |00⟩
562        assert!((probs[1] - 0.5).abs() < 1e-10); // |01⟩
563        assert!((probs[2] - 0.0).abs() < 1e-10); // |10⟩
564        assert!((probs[3] - 0.0).abs() < 1e-10); // |11⟩
565    }
566}