quantrs2_core/gpu/
mod.rs

1//! GPU acceleration backend for quantum operations
2//!
3//! This module provides an abstraction layer for GPU-accelerated quantum
4//! computations, supporting multiple backends (CUDA, Metal, Vulkan, etc.)
5
6use crate::{
7    error::{QuantRS2Error, QuantRS2Result},
8    gate::GateOp,
9    qubit::QubitId,
10};
11use ndarray::{Array1, Array2};
12use num_complex::Complex64;
13use std::sync::Arc;
14
15pub mod cpu_backend;
16#[cfg(feature = "cuda")]
17pub mod cuda_backend;
18#[cfg(feature = "metal")]
19pub mod metal_backend;
20#[cfg(feature = "vulkan")]
21pub mod vulkan_backend;
22
23// Enhanced GPU optimization modules
24pub mod adaptive_simd;
25pub mod large_scale_simulation;
26pub mod specialized_kernels;
27
28// Re-export key optimization components
29pub use adaptive_simd::{
30    apply_batch_gates_adaptive, apply_single_qubit_adaptive, apply_two_qubit_adaptive,
31    get_adaptive_performance_report, initialize_adaptive_simd, AdaptiveSimdDispatcher, CpuFeatures,
32    SimdVariant,
33};
34pub use large_scale_simulation::{
35    LargeScaleGateType, LargeScaleObservable, LargeScalePerformanceStats, LargeScaleSimAccelerator,
36    LargeScaleSimConfig, LargeScaleStateVectorSim, LargeScaleTensorContractor, SimulationTaskType,
37    TensorDecompositionType,
38};
39pub use specialized_kernels::{
40    FusionType, OptimizationConfig, PerformanceReport, PostQuantumCompressionType,
41    SpecializedGpuKernels,
42};
43
44/// GPU memory buffer abstraction
45pub trait GpuBuffer: Send + Sync {
46    /// Get the size of the buffer in bytes
47    fn size(&self) -> usize;
48
49    /// Copy data from host to device
50    fn upload(&mut self, data: &[Complex64]) -> QuantRS2Result<()>;
51
52    /// Copy data from device to host
53    fn download(&self, data: &mut [Complex64]) -> QuantRS2Result<()>;
54
55    /// Synchronize GPU operations
56    fn sync(&self) -> QuantRS2Result<()>;
57
58    /// Enable downcasting to concrete types
59    fn as_any(&self) -> &dyn std::any::Any;
60
61    /// Enable mutable downcasting to concrete types
62    fn as_any_mut(&mut self) -> &mut dyn std::any::Any;
63}
64
65/// Enhanced GPU kernel for specialized quantum operations
66pub trait SpecializedGpuKernel: Send + Sync {
67    /// Apply a holonomic gate with optimized GPU execution
68    fn apply_holonomic_gate(
69        &self,
70        state: &mut dyn GpuBuffer,
71        holonomy_matrix: &[Complex64],
72        target_qubits: &[QubitId],
73    ) -> QuantRS2Result<()>;
74
75    /// Apply post-quantum cryptographic hash gate
76    fn apply_post_quantum_hash_gate(
77        &self,
78        state: &mut dyn GpuBuffer,
79        hash_circuit: &[Complex64],
80        compression_type: PostQuantumCompressionType,
81    ) -> QuantRS2Result<()>;
82
83    /// Apply quantum ML attention mechanism
84    fn apply_quantum_ml_attention(
85        &self,
86        state: &mut dyn GpuBuffer,
87        query_params: &[Complex64],
88        key_params: &[Complex64],
89        value_params: &[Complex64],
90        num_heads: usize,
91    ) -> QuantRS2Result<()>;
92
93    /// Apply fused gate sequences for optimal performance
94    fn apply_fused_gate_sequence(
95        &self,
96        state: &mut dyn GpuBuffer,
97        gates: &[Box<dyn GateOp>],
98    ) -> QuantRS2Result<()>;
99
100    /// Apply tensor network contraction
101    fn apply_tensor_contraction(
102        &self,
103        tensor_data: &mut dyn GpuBuffer,
104        contraction_indices: &[usize],
105        bond_dimension: usize,
106    ) -> QuantRS2Result<()>;
107}
108
109/// GPU kernel for quantum operations
110pub trait GpuKernel: Send + Sync {
111    /// Apply a single-qubit gate
112    fn apply_single_qubit_gate(
113        &self,
114        state: &mut dyn GpuBuffer,
115        gate_matrix: &[Complex64; 4],
116        qubit: QubitId,
117        n_qubits: usize,
118    ) -> QuantRS2Result<()>;
119
120    /// Apply a two-qubit gate
121    fn apply_two_qubit_gate(
122        &self,
123        state: &mut dyn GpuBuffer,
124        gate_matrix: &[Complex64; 16],
125        control: QubitId,
126        target: QubitId,
127        n_qubits: usize,
128    ) -> QuantRS2Result<()>;
129
130    /// Apply a multi-qubit gate
131    fn apply_multi_qubit_gate(
132        &self,
133        state: &mut dyn GpuBuffer,
134        gate_matrix: &Array2<Complex64>,
135        qubits: &[QubitId],
136        n_qubits: usize,
137    ) -> QuantRS2Result<()>;
138
139    /// Measure a qubit
140    fn measure_qubit(
141        &self,
142        state: &dyn GpuBuffer,
143        qubit: QubitId,
144        n_qubits: usize,
145    ) -> QuantRS2Result<(bool, f64)>;
146
147    /// Calculate expectation value
148    fn expectation_value(
149        &self,
150        state: &dyn GpuBuffer,
151        observable: &Array2<Complex64>,
152        qubits: &[QubitId],
153        n_qubits: usize,
154    ) -> QuantRS2Result<f64>;
155}
156
157/// Enhanced GPU backend trait for specialized quantum computations
158pub trait EnhancedGpuBackend: GpuBackend {
159    /// Get the specialized kernel implementation
160    fn specialized_kernel(&self) -> Option<&dyn SpecializedGpuKernel>;
161
162    /// Apply a holonomic gate with GPU optimization
163    fn apply_holonomic_gate(
164        &self,
165        state: &mut dyn GpuBuffer,
166        holonomy_matrix: &[Complex64],
167        target_qubits: &[QubitId],
168    ) -> QuantRS2Result<()> {
169        if let Some(kernel) = self.specialized_kernel() {
170            kernel.apply_holonomic_gate(state, holonomy_matrix, target_qubits)
171        } else {
172            Err(QuantRS2Error::UnsupportedOperation(
173                "Holonomic gates not supported by this backend".to_string(),
174            ))
175        }
176    }
177
178    /// Apply post-quantum cryptographic operations
179    fn apply_post_quantum_crypto(
180        &self,
181        state: &mut dyn GpuBuffer,
182        hash_circuit: &[Complex64],
183        compression_type: PostQuantumCompressionType,
184    ) -> QuantRS2Result<()> {
185        if let Some(kernel) = self.specialized_kernel() {
186            kernel.apply_post_quantum_hash_gate(state, hash_circuit, compression_type)
187        } else {
188            Err(QuantRS2Error::UnsupportedOperation(
189                "Post-quantum crypto gates not supported by this backend".to_string(),
190            ))
191        }
192    }
193
194    /// Apply quantum ML operations
195    fn apply_quantum_ml_attention(
196        &self,
197        state: &mut dyn GpuBuffer,
198        query_params: &[Complex64],
199        key_params: &[Complex64],
200        value_params: &[Complex64],
201        num_heads: usize,
202    ) -> QuantRS2Result<()> {
203        if let Some(kernel) = self.specialized_kernel() {
204            kernel.apply_quantum_ml_attention(
205                state,
206                query_params,
207                key_params,
208                value_params,
209                num_heads,
210            )
211        } else {
212            Err(QuantRS2Error::UnsupportedOperation(
213                "Quantum ML attention not supported by this backend".to_string(),
214            ))
215        }
216    }
217
218    /// Apply optimized gate fusion
219    fn apply_fused_gates(
220        &self,
221        state: &mut dyn GpuBuffer,
222        gates: &[Box<dyn GateOp>],
223    ) -> QuantRS2Result<()> {
224        if let Some(kernel) = self.specialized_kernel() {
225            kernel.apply_fused_gate_sequence(state, gates)
226        } else {
227            // Fallback to applying gates individually
228            for gate in gates {
229                let qubits = gate.qubits();
230                self.apply_gate(state, gate.as_ref(), &qubits, qubits.len())?;
231            }
232            Ok(())
233        }
234    }
235
236    /// Get optimization configuration
237    fn optimization_config(&self) -> OptimizationConfig {
238        OptimizationConfig::default()
239    }
240
241    /// Get performance statistics
242    fn performance_stats(&self) -> PerformanceReport {
243        PerformanceReport {
244            average_kernel_times: std::collections::HashMap::new(),
245            cache_hit_rate: 0.0,
246            tensor_core_utilization: 0.0,
247            memory_bandwidth_utilization: 0.0,
248        }
249    }
250}
251
252/// GPU backend trait for quantum computations
253pub trait GpuBackend: Send + Sync {
254    /// Check if this backend is available on the current system
255    fn is_available() -> bool
256    where
257        Self: Sized;
258
259    /// Get the name of this backend
260    fn name(&self) -> &str;
261
262    /// Get device information
263    fn device_info(&self) -> String;
264
265    /// Allocate a GPU buffer for a state vector
266    fn allocate_state_vector(&self, n_qubits: usize) -> QuantRS2Result<Box<dyn GpuBuffer>>;
267
268    /// Allocate a GPU buffer for a density matrix
269    fn allocate_density_matrix(&self, n_qubits: usize) -> QuantRS2Result<Box<dyn GpuBuffer>>;
270
271    /// Get the kernel implementation
272    fn kernel(&self) -> &dyn GpuKernel;
273
274    /// Apply a quantum gate
275    fn apply_gate(
276        &self,
277        state: &mut dyn GpuBuffer,
278        gate: &dyn GateOp,
279        qubits: &[QubitId],
280        n_qubits: usize,
281    ) -> QuantRS2Result<()> {
282        match qubits.len() {
283            1 => {
284                let matrix = gate.matrix()?;
285                let gate_array: [Complex64; 4] = [matrix[0], matrix[1], matrix[2], matrix[3]];
286                self.kernel()
287                    .apply_single_qubit_gate(state, &gate_array, qubits[0], n_qubits)
288            }
289            2 => {
290                let matrix = gate.matrix()?;
291                let mut gate_array = [Complex64::new(0.0, 0.0); 16];
292                for (i, &val) in matrix.iter().enumerate() {
293                    gate_array[i] = val;
294                }
295                self.kernel().apply_two_qubit_gate(
296                    state,
297                    &gate_array,
298                    qubits[0],
299                    qubits[1],
300                    n_qubits,
301                )
302            }
303            _ => {
304                let matrix_vec = gate.matrix()?;
305                let size = (1 << qubits.len(), 1 << qubits.len());
306                let matrix = Array2::from_shape_vec(size, matrix_vec)?;
307                self.kernel()
308                    .apply_multi_qubit_gate(state, &matrix, qubits, n_qubits)
309            }
310        }
311    }
312
313    /// Measure a qubit and collapse the state
314    fn measure(
315        &self,
316        state: &mut dyn GpuBuffer,
317        qubit: QubitId,
318        n_qubits: usize,
319    ) -> QuantRS2Result<bool> {
320        let (outcome, _prob) = self.kernel().measure_qubit(state, qubit, n_qubits)?;
321        Ok(outcome)
322    }
323
324    /// Get measurement probability without collapsing
325    fn get_probability(
326        &self,
327        state: &dyn GpuBuffer,
328        qubit: QubitId,
329        n_qubits: usize,
330    ) -> QuantRS2Result<f64> {
331        let (_outcome, prob) = self.kernel().measure_qubit(state, qubit, n_qubits)?;
332        Ok(prob)
333    }
334}
335
336/// GPU-accelerated state vector
337pub struct GpuStateVector {
338    /// The GPU backend
339    backend: Arc<dyn GpuBackend>,
340    /// The GPU buffer holding the state
341    buffer: Box<dyn GpuBuffer>,
342    /// Number of qubits
343    n_qubits: usize,
344}
345
346impl GpuStateVector {
347    /// Create a new GPU state vector
348    pub fn new(backend: Arc<dyn GpuBackend>, n_qubits: usize) -> QuantRS2Result<Self> {
349        let buffer = backend.allocate_state_vector(n_qubits)?;
350        Ok(Self {
351            backend,
352            buffer,
353            n_qubits,
354        })
355    }
356
357    /// Initialize to |00...0⟩ state
358    pub fn initialize_zero_state(&mut self) -> QuantRS2Result<()> {
359        let size = 1 << self.n_qubits;
360        let mut data = vec![Complex64::new(0.0, 0.0); size];
361        data[0] = Complex64::new(1.0, 0.0);
362        self.buffer.upload(&data)
363    }
364
365    /// Apply a gate
366    pub fn apply_gate(&mut self, gate: &dyn GateOp, qubits: &[QubitId]) -> QuantRS2Result<()> {
367        self.backend
368            .apply_gate(self.buffer.as_mut(), gate, qubits, self.n_qubits)
369    }
370
371    /// Measure a qubit
372    pub fn measure(&mut self, qubit: QubitId) -> QuantRS2Result<bool> {
373        self.backend
374            .measure(self.buffer.as_mut(), qubit, self.n_qubits)
375    }
376
377    /// Get the state vector as a host array
378    pub fn to_array(&self) -> QuantRS2Result<Array1<Complex64>> {
379        let size = 1 << self.n_qubits;
380        let mut data = vec![Complex64::new(0.0, 0.0); size];
381        self.buffer.download(&mut data)?;
382        Ok(Array1::from_vec(data))
383    }
384
385    /// Get measurement probabilities for all basis states
386    pub fn get_probabilities(&self) -> QuantRS2Result<Vec<f64>> {
387        let state = self.to_array()?;
388        Ok(state.iter().map(|c| c.norm_sqr()).collect())
389    }
390}
391
392/// GPU backend factory
393pub struct GpuBackendFactory;
394
395impl GpuBackendFactory {
396    /// Create the best available GPU backend
397    pub fn create_best_available() -> QuantRS2Result<Arc<dyn GpuBackend>> {
398        // Try backends in order of preference
399        #[cfg(feature = "cuda")]
400        if cuda_backend::CudaBackend::is_available() {
401            return Ok(Arc::new(cuda_backend::CudaBackend::new()?));
402        }
403
404        #[cfg(feature = "metal")]
405        if metal_backend::MetalBackend::is_available() {
406            return Ok(Arc::new(metal_backend::MetalBackend::new()?));
407        }
408
409        #[cfg(feature = "vulkan")]
410        if vulkan_backend::VulkanBackend::is_available() {
411            return Ok(Arc::new(vulkan_backend::VulkanBackend::new()?));
412        }
413
414        // Fallback to CPU backend
415        Ok(Arc::new(cpu_backend::CpuBackend::new()))
416    }
417
418    /// Create a specific backend
419    pub fn create_backend(backend_type: &str) -> QuantRS2Result<Arc<dyn GpuBackend>> {
420        match backend_type.to_lowercase().as_str() {
421            #[cfg(feature = "cuda")]
422            "cuda" => Ok(Arc::new(cuda_backend::CudaBackend::new()?)),
423
424            #[cfg(feature = "metal")]
425            "metal" => Ok(Arc::new(metal_backend::MetalBackend::new()?)),
426
427            #[cfg(feature = "vulkan")]
428            "vulkan" => Ok(Arc::new(vulkan_backend::VulkanBackend::new()?)),
429
430            "cpu" => Ok(Arc::new(cpu_backend::CpuBackend::new())),
431
432            _ => Err(QuantRS2Error::InvalidInput(format!(
433                "Unknown backend type: {}",
434                backend_type
435            ))),
436        }
437    }
438
439    /// List available backends
440    pub fn available_backends() -> Vec<&'static str> {
441        #[allow(unused_mut)]
442        let mut backends = vec!["cpu"];
443
444        #[cfg(feature = "cuda")]
445        if cuda_backend::CudaBackend::is_available() {
446            backends.push("cuda");
447        }
448
449        #[cfg(feature = "metal")]
450        if metal_backend::MetalBackend::is_available() {
451            backends.push("metal");
452        }
453
454        #[cfg(feature = "vulkan")]
455        if vulkan_backend::VulkanBackend::is_available() {
456            backends.push("vulkan");
457        }
458
459        backends
460    }
461}
462
463/// Configuration for GPU operations
464#[derive(Debug, Clone)]
465pub struct GpuConfig {
466    /// Preferred backend (None for auto-selection)
467    pub backend: Option<String>,
468    /// Maximum GPU memory to use (in bytes)
469    pub max_memory: Option<usize>,
470    /// Number of GPU threads/work items
471    pub num_threads: Option<usize>,
472    /// Enable profiling
473    pub enable_profiling: bool,
474}
475
476impl Default for GpuConfig {
477    fn default() -> Self {
478        Self {
479            backend: None,
480            max_memory: None,
481            num_threads: None,
482            enable_profiling: false,
483        }
484    }
485}
486
487#[cfg(test)]
488mod tests {
489    use super::*;
490    use crate::gate::single::Hadamard;
491
492    #[test]
493    fn test_gpu_backend_factory() {
494        let backends = GpuBackendFactory::available_backends();
495        assert!(backends.contains(&"cpu"));
496
497        // Should always be able to create CPU backend
498        let backend = GpuBackendFactory::create_backend("cpu").unwrap();
499        assert_eq!(backend.name(), "CPU");
500    }
501
502    #[test]
503    fn test_gpu_state_vector() {
504        let backend = GpuBackendFactory::create_best_available().unwrap();
505        let mut state = GpuStateVector::new(backend, 2).unwrap();
506
507        // Initialize to |00⟩
508        state.initialize_zero_state().unwrap();
509
510        // Apply Hadamard to first qubit
511        let h_gate = Hadamard { target: QubitId(0) };
512        state.apply_gate(&h_gate, &[QubitId(0)]).unwrap();
513
514        // Get probabilities
515        let probs = state.get_probabilities().unwrap();
516        assert_eq!(probs.len(), 4);
517
518        // Should be in equal superposition on first qubit
519        // With our bit ordering (LSB), |00⟩ and |01⟩ should have probability 0.5 each
520        assert!((probs[0] - 0.5).abs() < 1e-10); // |00⟩
521        assert!((probs[1] - 0.5).abs() < 1e-10); // |01⟩
522        assert!((probs[2] - 0.0).abs() < 1e-10); // |10⟩
523        assert!((probs[3] - 0.0).abs() < 1e-10); // |11⟩
524    }
525}