1use crate::{
7 error::{QuantRS2Error, QuantRS2Result},
8 gate::GateOp,
9 qubit::QubitId,
10};
11use ndarray::{Array1, Array2};
12use num_complex::Complex64;
13use std::sync::Arc;
14
15pub mod cpu_backend;
16#[cfg(feature = "cuda")]
17pub mod cuda_backend;
18#[cfg(feature = "metal")]
19pub mod metal_backend;
20#[cfg(feature = "vulkan")]
21pub mod vulkan_backend;
22
23pub mod adaptive_simd;
25pub mod large_scale_simulation;
26pub mod specialized_kernels;
27
28pub use adaptive_simd::{
30 apply_batch_gates_adaptive, apply_single_qubit_adaptive, apply_two_qubit_adaptive,
31 get_adaptive_performance_report, initialize_adaptive_simd, AdaptiveSimdDispatcher, CpuFeatures,
32 SimdVariant,
33};
34pub use large_scale_simulation::{
35 LargeScaleGateType, LargeScaleObservable, LargeScalePerformanceStats, LargeScaleSimAccelerator,
36 LargeScaleSimConfig, LargeScaleStateVectorSim, LargeScaleTensorContractor, SimulationTaskType,
37 TensorDecompositionType,
38};
39pub use specialized_kernels::{
40 FusionType, OptimizationConfig, PerformanceReport, PostQuantumCompressionType,
41 SpecializedGpuKernels,
42};
43
44pub trait GpuBuffer: Send + Sync {
46 fn size(&self) -> usize;
48
49 fn upload(&mut self, data: &[Complex64]) -> QuantRS2Result<()>;
51
52 fn download(&self, data: &mut [Complex64]) -> QuantRS2Result<()>;
54
55 fn sync(&self) -> QuantRS2Result<()>;
57
58 fn as_any(&self) -> &dyn std::any::Any;
60
61 fn as_any_mut(&mut self) -> &mut dyn std::any::Any;
63}
64
65pub trait SpecializedGpuKernel: Send + Sync {
67 fn apply_holonomic_gate(
69 &self,
70 state: &mut dyn GpuBuffer,
71 holonomy_matrix: &[Complex64],
72 target_qubits: &[QubitId],
73 ) -> QuantRS2Result<()>;
74
75 fn apply_post_quantum_hash_gate(
77 &self,
78 state: &mut dyn GpuBuffer,
79 hash_circuit: &[Complex64],
80 compression_type: PostQuantumCompressionType,
81 ) -> QuantRS2Result<()>;
82
83 fn apply_quantum_ml_attention(
85 &self,
86 state: &mut dyn GpuBuffer,
87 query_params: &[Complex64],
88 key_params: &[Complex64],
89 value_params: &[Complex64],
90 num_heads: usize,
91 ) -> QuantRS2Result<()>;
92
93 fn apply_fused_gate_sequence(
95 &self,
96 state: &mut dyn GpuBuffer,
97 gates: &[Box<dyn GateOp>],
98 ) -> QuantRS2Result<()>;
99
100 fn apply_tensor_contraction(
102 &self,
103 tensor_data: &mut dyn GpuBuffer,
104 contraction_indices: &[usize],
105 bond_dimension: usize,
106 ) -> QuantRS2Result<()>;
107}
108
109pub trait GpuKernel: Send + Sync {
111 fn apply_single_qubit_gate(
113 &self,
114 state: &mut dyn GpuBuffer,
115 gate_matrix: &[Complex64; 4],
116 qubit: QubitId,
117 n_qubits: usize,
118 ) -> QuantRS2Result<()>;
119
120 fn apply_two_qubit_gate(
122 &self,
123 state: &mut dyn GpuBuffer,
124 gate_matrix: &[Complex64; 16],
125 control: QubitId,
126 target: QubitId,
127 n_qubits: usize,
128 ) -> QuantRS2Result<()>;
129
130 fn apply_multi_qubit_gate(
132 &self,
133 state: &mut dyn GpuBuffer,
134 gate_matrix: &Array2<Complex64>,
135 qubits: &[QubitId],
136 n_qubits: usize,
137 ) -> QuantRS2Result<()>;
138
139 fn measure_qubit(
141 &self,
142 state: &dyn GpuBuffer,
143 qubit: QubitId,
144 n_qubits: usize,
145 ) -> QuantRS2Result<(bool, f64)>;
146
147 fn expectation_value(
149 &self,
150 state: &dyn GpuBuffer,
151 observable: &Array2<Complex64>,
152 qubits: &[QubitId],
153 n_qubits: usize,
154 ) -> QuantRS2Result<f64>;
155}
156
157pub trait EnhancedGpuBackend: GpuBackend {
159 fn specialized_kernel(&self) -> Option<&dyn SpecializedGpuKernel>;
161
162 fn apply_holonomic_gate(
164 &self,
165 state: &mut dyn GpuBuffer,
166 holonomy_matrix: &[Complex64],
167 target_qubits: &[QubitId],
168 ) -> QuantRS2Result<()> {
169 if let Some(kernel) = self.specialized_kernel() {
170 kernel.apply_holonomic_gate(state, holonomy_matrix, target_qubits)
171 } else {
172 Err(QuantRS2Error::UnsupportedOperation(
173 "Holonomic gates not supported by this backend".to_string(),
174 ))
175 }
176 }
177
178 fn apply_post_quantum_crypto(
180 &self,
181 state: &mut dyn GpuBuffer,
182 hash_circuit: &[Complex64],
183 compression_type: PostQuantumCompressionType,
184 ) -> QuantRS2Result<()> {
185 if let Some(kernel) = self.specialized_kernel() {
186 kernel.apply_post_quantum_hash_gate(state, hash_circuit, compression_type)
187 } else {
188 Err(QuantRS2Error::UnsupportedOperation(
189 "Post-quantum crypto gates not supported by this backend".to_string(),
190 ))
191 }
192 }
193
194 fn apply_quantum_ml_attention(
196 &self,
197 state: &mut dyn GpuBuffer,
198 query_params: &[Complex64],
199 key_params: &[Complex64],
200 value_params: &[Complex64],
201 num_heads: usize,
202 ) -> QuantRS2Result<()> {
203 if let Some(kernel) = self.specialized_kernel() {
204 kernel.apply_quantum_ml_attention(
205 state,
206 query_params,
207 key_params,
208 value_params,
209 num_heads,
210 )
211 } else {
212 Err(QuantRS2Error::UnsupportedOperation(
213 "Quantum ML attention not supported by this backend".to_string(),
214 ))
215 }
216 }
217
218 fn apply_fused_gates(
220 &self,
221 state: &mut dyn GpuBuffer,
222 gates: &[Box<dyn GateOp>],
223 ) -> QuantRS2Result<()> {
224 if let Some(kernel) = self.specialized_kernel() {
225 kernel.apply_fused_gate_sequence(state, gates)
226 } else {
227 for gate in gates {
229 let qubits = gate.qubits();
230 self.apply_gate(state, gate.as_ref(), &qubits, qubits.len())?;
231 }
232 Ok(())
233 }
234 }
235
236 fn optimization_config(&self) -> OptimizationConfig {
238 OptimizationConfig::default()
239 }
240
241 fn performance_stats(&self) -> PerformanceReport {
243 PerformanceReport {
244 average_kernel_times: std::collections::HashMap::new(),
245 cache_hit_rate: 0.0,
246 tensor_core_utilization: 0.0,
247 memory_bandwidth_utilization: 0.0,
248 }
249 }
250}
251
252pub trait GpuBackend: Send + Sync {
254 fn is_available() -> bool
256 where
257 Self: Sized;
258
259 fn name(&self) -> &str;
261
262 fn device_info(&self) -> String;
264
265 fn allocate_state_vector(&self, n_qubits: usize) -> QuantRS2Result<Box<dyn GpuBuffer>>;
267
268 fn allocate_density_matrix(&self, n_qubits: usize) -> QuantRS2Result<Box<dyn GpuBuffer>>;
270
271 fn kernel(&self) -> &dyn GpuKernel;
273
274 fn apply_gate(
276 &self,
277 state: &mut dyn GpuBuffer,
278 gate: &dyn GateOp,
279 qubits: &[QubitId],
280 n_qubits: usize,
281 ) -> QuantRS2Result<()> {
282 match qubits.len() {
283 1 => {
284 let matrix = gate.matrix()?;
285 let gate_array: [Complex64; 4] = [matrix[0], matrix[1], matrix[2], matrix[3]];
286 self.kernel()
287 .apply_single_qubit_gate(state, &gate_array, qubits[0], n_qubits)
288 }
289 2 => {
290 let matrix = gate.matrix()?;
291 let mut gate_array = [Complex64::new(0.0, 0.0); 16];
292 for (i, &val) in matrix.iter().enumerate() {
293 gate_array[i] = val;
294 }
295 self.kernel().apply_two_qubit_gate(
296 state,
297 &gate_array,
298 qubits[0],
299 qubits[1],
300 n_qubits,
301 )
302 }
303 _ => {
304 let matrix_vec = gate.matrix()?;
305 let size = (1 << qubits.len(), 1 << qubits.len());
306 let matrix = Array2::from_shape_vec(size, matrix_vec)?;
307 self.kernel()
308 .apply_multi_qubit_gate(state, &matrix, qubits, n_qubits)
309 }
310 }
311 }
312
313 fn measure(
315 &self,
316 state: &mut dyn GpuBuffer,
317 qubit: QubitId,
318 n_qubits: usize,
319 ) -> QuantRS2Result<bool> {
320 let (outcome, _prob) = self.kernel().measure_qubit(state, qubit, n_qubits)?;
321 Ok(outcome)
322 }
323
324 fn get_probability(
326 &self,
327 state: &dyn GpuBuffer,
328 qubit: QubitId,
329 n_qubits: usize,
330 ) -> QuantRS2Result<f64> {
331 let (_outcome, prob) = self.kernel().measure_qubit(state, qubit, n_qubits)?;
332 Ok(prob)
333 }
334}
335
336pub struct GpuStateVector {
338 backend: Arc<dyn GpuBackend>,
340 buffer: Box<dyn GpuBuffer>,
342 n_qubits: usize,
344}
345
346impl GpuStateVector {
347 pub fn new(backend: Arc<dyn GpuBackend>, n_qubits: usize) -> QuantRS2Result<Self> {
349 let buffer = backend.allocate_state_vector(n_qubits)?;
350 Ok(Self {
351 backend,
352 buffer,
353 n_qubits,
354 })
355 }
356
357 pub fn initialize_zero_state(&mut self) -> QuantRS2Result<()> {
359 let size = 1 << self.n_qubits;
360 let mut data = vec![Complex64::new(0.0, 0.0); size];
361 data[0] = Complex64::new(1.0, 0.0);
362 self.buffer.upload(&data)
363 }
364
365 pub fn apply_gate(&mut self, gate: &dyn GateOp, qubits: &[QubitId]) -> QuantRS2Result<()> {
367 self.backend
368 .apply_gate(self.buffer.as_mut(), gate, qubits, self.n_qubits)
369 }
370
371 pub fn measure(&mut self, qubit: QubitId) -> QuantRS2Result<bool> {
373 self.backend
374 .measure(self.buffer.as_mut(), qubit, self.n_qubits)
375 }
376
377 pub fn to_array(&self) -> QuantRS2Result<Array1<Complex64>> {
379 let size = 1 << self.n_qubits;
380 let mut data = vec![Complex64::new(0.0, 0.0); size];
381 self.buffer.download(&mut data)?;
382 Ok(Array1::from_vec(data))
383 }
384
385 pub fn get_probabilities(&self) -> QuantRS2Result<Vec<f64>> {
387 let state = self.to_array()?;
388 Ok(state.iter().map(|c| c.norm_sqr()).collect())
389 }
390}
391
392pub struct GpuBackendFactory;
394
395impl GpuBackendFactory {
396 pub fn create_best_available() -> QuantRS2Result<Arc<dyn GpuBackend>> {
398 #[cfg(feature = "cuda")]
400 if cuda_backend::CudaBackend::is_available() {
401 return Ok(Arc::new(cuda_backend::CudaBackend::new()?));
402 }
403
404 #[cfg(feature = "metal")]
405 if metal_backend::MetalBackend::is_available() {
406 return Ok(Arc::new(metal_backend::MetalBackend::new()?));
407 }
408
409 #[cfg(feature = "vulkan")]
410 if vulkan_backend::VulkanBackend::is_available() {
411 return Ok(Arc::new(vulkan_backend::VulkanBackend::new()?));
412 }
413
414 Ok(Arc::new(cpu_backend::CpuBackend::new()))
416 }
417
418 pub fn create_backend(backend_type: &str) -> QuantRS2Result<Arc<dyn GpuBackend>> {
420 match backend_type.to_lowercase().as_str() {
421 #[cfg(feature = "cuda")]
422 "cuda" => Ok(Arc::new(cuda_backend::CudaBackend::new()?)),
423
424 #[cfg(feature = "metal")]
425 "metal" => Ok(Arc::new(metal_backend::MetalBackend::new()?)),
426
427 #[cfg(feature = "vulkan")]
428 "vulkan" => Ok(Arc::new(vulkan_backend::VulkanBackend::new()?)),
429
430 "cpu" => Ok(Arc::new(cpu_backend::CpuBackend::new())),
431
432 _ => Err(QuantRS2Error::InvalidInput(format!(
433 "Unknown backend type: {}",
434 backend_type
435 ))),
436 }
437 }
438
439 pub fn available_backends() -> Vec<&'static str> {
441 #[allow(unused_mut)]
442 let mut backends = vec!["cpu"];
443
444 #[cfg(feature = "cuda")]
445 if cuda_backend::CudaBackend::is_available() {
446 backends.push("cuda");
447 }
448
449 #[cfg(feature = "metal")]
450 if metal_backend::MetalBackend::is_available() {
451 backends.push("metal");
452 }
453
454 #[cfg(feature = "vulkan")]
455 if vulkan_backend::VulkanBackend::is_available() {
456 backends.push("vulkan");
457 }
458
459 backends
460 }
461}
462
463#[derive(Debug, Clone)]
465pub struct GpuConfig {
466 pub backend: Option<String>,
468 pub max_memory: Option<usize>,
470 pub num_threads: Option<usize>,
472 pub enable_profiling: bool,
474}
475
476impl Default for GpuConfig {
477 fn default() -> Self {
478 Self {
479 backend: None,
480 max_memory: None,
481 num_threads: None,
482 enable_profiling: false,
483 }
484 }
485}
486
487#[cfg(test)]
488mod tests {
489 use super::*;
490 use crate::gate::single::Hadamard;
491
492 #[test]
493 fn test_gpu_backend_factory() {
494 let backends = GpuBackendFactory::available_backends();
495 assert!(backends.contains(&"cpu"));
496
497 let backend = GpuBackendFactory::create_backend("cpu").unwrap();
499 assert_eq!(backend.name(), "CPU");
500 }
501
502 #[test]
503 fn test_gpu_state_vector() {
504 let backend = GpuBackendFactory::create_best_available().unwrap();
505 let mut state = GpuStateVector::new(backend, 2).unwrap();
506
507 state.initialize_zero_state().unwrap();
509
510 let h_gate = Hadamard { target: QubitId(0) };
512 state.apply_gate(&h_gate, &[QubitId(0)]).unwrap();
513
514 let probs = state.get_probabilities().unwrap();
516 assert_eq!(probs.len(), 4);
517
518 assert!((probs[0] - 0.5).abs() < 1e-10); assert!((probs[1] - 0.5).abs() < 1e-10); assert!((probs[2] - 0.0).abs() < 1e-10); assert!((probs[3] - 0.0).abs() < 1e-10); }
525}