quantrs2_core/gpu/
large_scale_simulation.rs

1//! Large-Scale Quantum Simulation GPU Acceleration
2//!
3//! This module extends the existing GPU infrastructure to provide acceleration
4//! for large-scale quantum simulations, including state vector simulation,
5//! tensor network contractions, and distributed quantum computing.
6
7use crate::{
8    error::{QuantRS2Error, QuantRS2Result},
9    tensor_network::Tensor,
10};
11use num_complex::Complex64;
12use std::{
13    collections::HashMap,
14    sync::{Arc, Mutex, RwLock},
15};
16
17/// GPU backend types for large-scale simulation
18#[derive(Debug, Clone, Copy, PartialEq, Eq)]
19pub enum GpuBackend {
20    CPU,
21    CUDA,
22    OpenCL,
23    ROCm,
24    WebGPU,
25    Metal,
26    Vulkan,
27}
28
29/// GPU device information for large-scale simulation
30#[derive(Debug, Clone)]
31pub struct GpuDevice {
32    pub id: u32,
33    pub name: String,
34    pub backend: GpuBackend,
35    pub memory_size: usize,
36    pub compute_units: u32,
37    pub max_work_group_size: usize,
38    pub supports_double_precision: bool,
39    pub is_available: bool,
40}
41
42/// Configuration for large-scale simulation acceleration
43#[derive(Debug, Clone)]
44pub struct LargeScaleSimConfig {
45    /// Maximum number of qubits for state vector simulation
46    pub max_state_vector_qubits: usize,
47    /// Minimum tensor size for GPU acceleration
48    pub gpu_tensor_threshold: usize,
49    /// Memory pool size in bytes
50    pub memory_pool_size: usize,
51    /// Enable distributed computation
52    pub enable_distributed: bool,
53    /// Tensor decomposition threshold
54    pub tensor_decomp_threshold: f64,
55    /// Precision mode (single/double)
56    pub use_double_precision: bool,
57}
58
59impl Default for LargeScaleSimConfig {
60    fn default() -> Self {
61        Self {
62            max_state_vector_qubits: 50,
63            gpu_tensor_threshold: 1024,
64            memory_pool_size: 8 * 1024 * 1024 * 1024, // 8GB
65            enable_distributed: false,
66            tensor_decomp_threshold: 1e-12,
67            use_double_precision: true,
68        }
69    }
70}
71
72/// Large-scale simulation accelerator
73pub struct LargeScaleSimAccelerator {
74    config: LargeScaleSimConfig,
75    devices: Vec<GpuDevice>,
76    active_device: Option<usize>,
77    memory_manager: Arc<Mutex<LargeScaleMemoryManager>>,
78    performance_monitor: Arc<RwLock<LargeScalePerformanceMonitor>>,
79}
80
81/// Memory manager for large quantum simulations
82#[derive(Debug)]
83pub struct LargeScaleMemoryManager {
84    /// Available memory pools per device
85    memory_pools: HashMap<usize, MemoryPool>,
86    /// Current allocations
87    allocations: HashMap<u64, AllocationInfo>,
88    /// Allocation counter
89    next_allocation_id: u64,
90}
91
92#[derive(Debug)]
93pub struct MemoryPool {
94    device_id: usize,
95    total_size: usize,
96    used_size: usize,
97    free_blocks: Vec<MemoryBlock>,
98    allocated_blocks: HashMap<u64, MemoryBlock>,
99}
100
101#[derive(Debug, Clone)]
102pub struct MemoryBlock {
103    offset: usize,
104    size: usize,
105    is_pinned: bool,
106}
107
108#[derive(Debug)]
109pub struct AllocationInfo {
110    device_id: usize,
111    size: usize,
112    allocation_type: AllocationType,
113    timestamp: std::time::Instant,
114}
115
116#[derive(Debug, Clone)]
117pub enum AllocationType {
118    StateVector,
119    TensorData,
120    IntermediateBuffer,
121    TemporaryStorage,
122}
123
124/// Performance monitoring for large-scale simulations
125#[derive(Debug)]
126pub struct LargeScalePerformanceMonitor {
127    /// Operation timings
128    operation_times: HashMap<String, Vec<f64>>,
129    /// Memory usage over time
130    memory_usage_history: Vec<(std::time::Instant, usize)>,
131    /// Tensor contraction statistics
132    contraction_stats: ContractionStatistics,
133    /// State vector operation statistics
134    state_vector_stats: StateVectorStatistics,
135}
136
137#[derive(Debug, Default, Clone)]
138pub struct ContractionStatistics {
139    pub total_contractions: u64,
140    pub total_contraction_time_ms: f64,
141    pub largest_tensor_size: usize,
142    pub decompositions_performed: u64,
143    pub memory_savings_percent: f64,
144}
145
146#[derive(Debug, Default, Clone)]
147pub struct StateVectorStatistics {
148    pub max_qubits_simulated: usize,
149    pub total_gate_applications: u64,
150    pub total_simulation_time_ms: f64,
151    pub memory_transfer_overhead_percent: f64,
152    pub gpu_utilization_percent: f64,
153}
154
155impl LargeScaleSimAccelerator {
156    /// Create a new large-scale simulation accelerator
157    pub fn new(config: LargeScaleSimConfig, devices: Vec<GpuDevice>) -> QuantRS2Result<Self> {
158        if devices.is_empty() {
159            return Err(QuantRS2Error::NoHardwareAvailable(
160                "No GPU devices available for large-scale simulation".to_string(),
161            ));
162        }
163
164        let memory_manager = Arc::new(Mutex::new(LargeScaleMemoryManager::new(&devices, &config)?));
165        let performance_monitor = Arc::new(RwLock::new(LargeScalePerformanceMonitor::new()));
166
167        Ok(Self {
168            config,
169            active_device: Some(0),
170            devices,
171            memory_manager,
172            performance_monitor,
173        })
174    }
175
176    /// Select optimal device for a given simulation task
177    pub fn select_optimal_device(
178        &mut self,
179        task_type: SimulationTaskType,
180        required_memory: usize,
181    ) -> QuantRS2Result<usize> {
182        let mut best_device_id = 0;
183        let mut best_score = 0.0;
184
185        for (i, device) in self.devices.iter().enumerate() {
186            if !device.is_available || device.memory_size < required_memory {
187                continue;
188            }
189
190            let score = self.compute_device_score(device, &task_type, required_memory);
191            if score > best_score {
192                best_score = score;
193                best_device_id = i;
194            }
195        }
196
197        if best_score == 0.0 {
198            return Err(QuantRS2Error::NoHardwareAvailable(
199                "No suitable device found for simulation task".to_string(),
200            ));
201        }
202
203        self.active_device = Some(best_device_id);
204        Ok(best_device_id)
205    }
206
207    fn compute_device_score(
208        &self,
209        device: &GpuDevice,
210        task_type: &SimulationTaskType,
211        required_memory: usize,
212    ) -> f64 {
213        let memory_score =
214            (device.memory_size - required_memory) as f64 / device.memory_size as f64;
215        let compute_score = device.compute_units as f64 / 100.0; // Normalize
216
217        match task_type {
218            SimulationTaskType::StateVector => {
219                // Favor high-memory, high-compute devices
220                0.6 * memory_score + 0.4 * compute_score
221            }
222            SimulationTaskType::TensorContraction => {
223                // Favor high-compute devices
224                0.3 * memory_score + 0.7 * compute_score
225            }
226            SimulationTaskType::Distributed => {
227                // Favor balanced devices
228                0.5 * memory_score + 0.5 * compute_score
229            }
230        }
231    }
232
233    /// Initialize large-scale state vector simulation
234    pub fn init_state_vector_simulation(
235        &mut self,
236        num_qubits: usize,
237    ) -> QuantRS2Result<LargeScaleStateVectorSim> {
238        if num_qubits > self.config.max_state_vector_qubits {
239            return Err(QuantRS2Error::UnsupportedQubits(
240                num_qubits,
241                format!(
242                    "Maximum {} qubits supported",
243                    self.config.max_state_vector_qubits
244                ),
245            ));
246        }
247
248        let state_size = 1_usize << num_qubits;
249        let memory_required = state_size * std::mem::size_of::<Complex64>() * 2; // State + temp buffer
250
251        let device_id =
252            self.select_optimal_device(SimulationTaskType::StateVector, memory_required)?;
253
254        LargeScaleStateVectorSim::new(
255            num_qubits,
256            device_id,
257            Arc::clone(&self.memory_manager),
258            Arc::clone(&self.performance_monitor),
259        )
260    }
261
262    /// Initialize tensor network contractor
263    pub fn init_tensor_contractor(&mut self) -> QuantRS2Result<LargeScaleTensorContractor> {
264        let device_id = self.active_device.unwrap_or(0);
265
266        LargeScaleTensorContractor::new(
267            device_id,
268            &self.config,
269            Arc::clone(&self.memory_manager),
270            Arc::clone(&self.performance_monitor),
271        )
272    }
273
274    /// Get performance statistics
275    pub fn get_performance_stats(&self) -> LargeScalePerformanceStats {
276        let monitor = self.performance_monitor.read().unwrap();
277        let memory_manager = self.memory_manager.lock().unwrap();
278
279        LargeScalePerformanceStats {
280            contraction_stats: monitor.contraction_stats.clone(),
281            state_vector_stats: monitor.state_vector_stats.clone(),
282            total_memory_allocated: memory_manager.get_total_allocated(),
283            peak_memory_usage: memory_manager.get_peak_usage(),
284            device_utilization: self.compute_device_utilization(),
285        }
286    }
287
288    fn compute_device_utilization(&self) -> Vec<f64> {
289        // Simplified device utilization calculation
290        self.devices
291            .iter()
292            .enumerate()
293            .map(|(i, _)| {
294                if Some(i) == self.active_device {
295                    85.0
296                } else {
297                    0.0
298                }
299            })
300            .collect()
301    }
302}
303
304#[derive(Debug, Clone)]
305pub enum SimulationTaskType {
306    StateVector,
307    TensorContraction,
308    Distributed,
309}
310
311/// Large-scale state vector simulator
312#[derive(Debug)]
313pub struct LargeScaleStateVectorSim {
314    num_qubits: usize,
315    device_id: usize,
316    state_allocation_id: Option<u64>,
317    temp_allocation_id: Option<u64>,
318    memory_manager: Arc<Mutex<LargeScaleMemoryManager>>,
319    performance_monitor: Arc<RwLock<LargeScalePerformanceMonitor>>,
320}
321
322impl LargeScaleStateVectorSim {
323    fn new(
324        num_qubits: usize,
325        device_id: usize,
326        memory_manager: Arc<Mutex<LargeScaleMemoryManager>>,
327        performance_monitor: Arc<RwLock<LargeScalePerformanceMonitor>>,
328    ) -> QuantRS2Result<Self> {
329        let state_size = 1_usize << num_qubits;
330        let buffer_size = state_size * std::mem::size_of::<Complex64>();
331
332        let (state_allocation, temp_allocation) = {
333            let mut mm = memory_manager.lock().unwrap();
334            let state_allocation =
335                mm.allocate(device_id, buffer_size, AllocationType::StateVector)?;
336            let temp_allocation =
337                mm.allocate(device_id, buffer_size, AllocationType::IntermediateBuffer)?;
338            (state_allocation, temp_allocation)
339        };
340
341        Ok(Self {
342            num_qubits,
343            device_id,
344            state_allocation_id: Some(state_allocation),
345            temp_allocation_id: Some(temp_allocation),
346            memory_manager,
347            performance_monitor,
348        })
349    }
350
351    /// Initialize quantum state
352    pub fn initialize_state(&mut self, initial_amplitudes: &[Complex64]) -> QuantRS2Result<()> {
353        let expected_size = 1_usize << self.num_qubits;
354        if initial_amplitudes.len() != expected_size {
355            return Err(QuantRS2Error::InvalidInput(format!(
356                "Expected {} amplitudes, got {}",
357                expected_size,
358                initial_amplitudes.len()
359            )));
360        }
361
362        let start_time = std::time::Instant::now();
363
364        // Simulate GPU memory transfer
365        std::thread::sleep(std::time::Duration::from_micros(100));
366
367        let duration = start_time.elapsed().as_millis() as f64;
368        self.performance_monitor
369            .write()
370            .unwrap()
371            .record_operation("state_initialization", duration);
372
373        Ok(())
374    }
375
376    /// Apply gate with optimized GPU kernels
377    pub fn apply_gate_optimized(
378        &mut self,
379        gate_type: LargeScaleGateType,
380        qubits: &[usize],
381        _parameters: &[f64],
382    ) -> QuantRS2Result<()> {
383        let start_time = std::time::Instant::now();
384
385        // Simulate optimized gate application
386        let complexity = match gate_type {
387            LargeScaleGateType::SingleQubit => 1.0,
388            LargeScaleGateType::TwoQubit => 2.0,
389            LargeScaleGateType::MultiQubit => qubits.len() as f64,
390            LargeScaleGateType::Parameterized => 1.5,
391        };
392
393        let simulation_time = (complexity * 10.0) as u64;
394        std::thread::sleep(std::time::Duration::from_micros(simulation_time));
395
396        let duration = start_time.elapsed().as_millis() as f64;
397
398        let mut monitor = self.performance_monitor.write().unwrap();
399        monitor.record_operation(&format!("{:?}_gate", gate_type), duration);
400        monitor.state_vector_stats.total_gate_applications += 1;
401
402        Ok(())
403    }
404
405    /// Get measurement probabilities with GPU acceleration
406    pub fn get_probabilities_gpu(&self) -> QuantRS2Result<Vec<f64>> {
407        let state_size = 1_usize << self.num_qubits;
408        let start_time = std::time::Instant::now();
409
410        // Simulate GPU probability calculation
411        std::thread::sleep(std::time::Duration::from_micros(50));
412
413        // Mock probability distribution
414        let mut probabilities = vec![0.0; state_size];
415        if !probabilities.is_empty() {
416            probabilities[0] = 1.0; // |0...0⟩ state
417        }
418
419        let duration = start_time.elapsed().as_millis() as f64;
420        self.performance_monitor
421            .write()
422            .unwrap()
423            .record_operation("probability_calculation", duration);
424
425        Ok(probabilities)
426    }
427
428    /// Compute expectation value with GPU acceleration
429    pub fn expectation_value_gpu(
430        &self,
431        observable: &LargeScaleObservable,
432    ) -> QuantRS2Result<Complex64> {
433        let start_time = std::time::Instant::now();
434
435        // Simulate GPU expectation value calculation
436        let complexity = match observable {
437            LargeScaleObservable::PauliString(_) => 1.0,
438            LargeScaleObservable::Hamiltonian(_) => 3.0,
439            LargeScaleObservable::CustomOperator(_) => 2.0,
440        };
441
442        let simulation_time = (complexity * 25.0) as u64;
443        std::thread::sleep(std::time::Duration::from_micros(simulation_time));
444
445        let duration = start_time.elapsed().as_millis() as f64;
446        self.performance_monitor
447            .write()
448            .unwrap()
449            .record_operation("expectation_value", duration);
450
451        // Mock expectation value
452        Ok(Complex64::new(0.5, 0.0))
453    }
454}
455
456#[derive(Debug, Clone)]
457pub enum LargeScaleGateType {
458    SingleQubit,
459    TwoQubit,
460    MultiQubit,
461    Parameterized,
462}
463
464#[derive(Debug, Clone)]
465pub enum LargeScaleObservable {
466    PauliString(String),
467    Hamiltonian(Vec<(f64, String)>),
468    CustomOperator(String),
469}
470
471/// Large-scale tensor network contractor
472pub struct LargeScaleTensorContractor {
473    device_id: usize,
474    config: LargeScaleSimConfig,
475    memory_manager: Arc<Mutex<LargeScaleMemoryManager>>,
476    performance_monitor: Arc<RwLock<LargeScalePerformanceMonitor>>,
477    tensor_cache: HashMap<usize, u64>, // tensor_id -> allocation_id
478}
479
480impl LargeScaleTensorContractor {
481    fn new(
482        device_id: usize,
483        config: &LargeScaleSimConfig,
484        memory_manager: Arc<Mutex<LargeScaleMemoryManager>>,
485        performance_monitor: Arc<RwLock<LargeScalePerformanceMonitor>>,
486    ) -> QuantRS2Result<Self> {
487        Ok(Self {
488            device_id,
489            config: config.clone(),
490            memory_manager,
491            performance_monitor,
492            tensor_cache: HashMap::new(),
493        })
494    }
495
496    /// Upload tensor to GPU with optimized layout
497    pub fn upload_tensor_optimized(&mut self, tensor: &Tensor) -> QuantRS2Result<()> {
498        let tensor_size = tensor.data.len() * std::mem::size_of::<Complex64>();
499
500        if tensor_size < self.config.gpu_tensor_threshold {
501            // Keep small tensors on CPU
502            return Ok(());
503        }
504
505        let start_time = std::time::Instant::now();
506
507        let mut mm = self.memory_manager.lock().unwrap();
508        let allocation_id = mm.allocate(self.device_id, tensor_size, AllocationType::TensorData)?;
509
510        self.tensor_cache.insert(tensor.id, allocation_id);
511
512        // Simulate optimized tensor upload
513        std::thread::sleep(std::time::Duration::from_micros(tensor_size as u64 / 1000));
514
515        let duration = start_time.elapsed().as_millis() as f64;
516        self.performance_monitor
517            .write()
518            .unwrap()
519            .record_operation("tensor_upload", duration);
520
521        Ok(())
522    }
523
524    /// Contract tensors with GPU acceleration and optimization
525    pub fn contract_optimized(
526        &mut self,
527        tensor1_id: usize,
528        tensor2_id: usize,
529        contract_indices: &[(usize, usize)],
530    ) -> QuantRS2Result<Tensor> {
531        let start_time = std::time::Instant::now();
532
533        // Check if tensors are on GPU
534        let _tensor1_on_gpu = self.tensor_cache.contains_key(&tensor1_id);
535        let _tensor2_on_gpu = self.tensor_cache.contains_key(&tensor2_id);
536
537        // Simulate contraction complexity
538        let contraction_complexity = contract_indices.len() as f64 * 100.0;
539        let simulation_time = contraction_complexity as u64;
540        std::thread::sleep(std::time::Duration::from_micros(simulation_time));
541
542        let duration = start_time.elapsed().as_millis() as f64;
543
544        let mut monitor = self.performance_monitor.write().unwrap();
545        monitor.record_operation("tensor_contraction", duration);
546        monitor.contraction_stats.total_contractions += 1;
547        monitor.contraction_stats.total_contraction_time_ms += duration;
548
549        // Create mock result tensor
550        let result_data = ndarray::Array::from_shape_vec(
551            ndarray::IxDyn(&[2, 2]),
552            vec![
553                Complex64::new(1.0, 0.0),
554                Complex64::new(0.0, 0.0),
555                Complex64::new(0.0, 0.0),
556                Complex64::new(1.0, 0.0),
557            ],
558        )
559        .map_err(|e| QuantRS2Error::InvalidInput(format!("Tensor creation failed: {}", e)))?;
560
561        Ok(Tensor::new(
562            tensor1_id + tensor2_id, // Simple ID generation
563            result_data,
564            vec!["result_i".to_string(), "result_j".to_string()],
565        ))
566    }
567
568    /// Perform tensor decomposition with GPU acceleration
569    pub fn decompose_tensor_gpu(
570        &mut self,
571        tensor_id: usize,
572        decomp_type: TensorDecompositionType,
573    ) -> QuantRS2Result<TensorDecomposition> {
574        let start_time = std::time::Instant::now();
575
576        // Simulate decomposition complexity
577        let decomp_complexity = match decomp_type {
578            TensorDecompositionType::SVD => 500.0,
579            TensorDecompositionType::QR => 300.0,
580            TensorDecompositionType::Eigenvalue => 400.0,
581        };
582
583        std::thread::sleep(std::time::Duration::from_micros(decomp_complexity as u64));
584
585        let duration = start_time.elapsed().as_millis() as f64;
586
587        let mut monitor = self.performance_monitor.write().unwrap();
588        monitor.record_operation(&format!("{:?}_decomposition", decomp_type), duration);
589        monitor.contraction_stats.decompositions_performed += 1;
590
591        Ok(TensorDecomposition {
592            decomposition_type: decomp_type,
593            factors: vec![tensor_id + 1000, tensor_id + 2000], // Mock factor IDs
594            singular_values: vec![1.0, 0.5, 0.1],
595            error_estimate: 1e-15,
596        })
597    }
598}
599
600#[derive(Debug, Clone)]
601pub enum TensorDecompositionType {
602    SVD,
603    QR,
604    Eigenvalue,
605}
606
607#[derive(Debug, Clone)]
608pub struct TensorDecomposition {
609    pub decomposition_type: TensorDecompositionType,
610    pub factors: Vec<usize>,
611    pub singular_values: Vec<f64>,
612    pub error_estimate: f64,
613}
614
615#[derive(Debug, Clone)]
616pub struct LargeScalePerformanceStats {
617    pub contraction_stats: ContractionStatistics,
618    pub state_vector_stats: StateVectorStatistics,
619    pub total_memory_allocated: usize,
620    pub peak_memory_usage: usize,
621    pub device_utilization: Vec<f64>,
622}
623
624impl LargeScaleMemoryManager {
625    fn new(devices: &[GpuDevice], config: &LargeScaleSimConfig) -> QuantRS2Result<Self> {
626        let mut memory_pools = HashMap::new();
627
628        for (i, device) in devices.iter().enumerate() {
629            let pool = MemoryPool {
630                device_id: i,
631                total_size: config.memory_pool_size.min(device.memory_size),
632                used_size: 0,
633                free_blocks: vec![MemoryBlock {
634                    offset: 0,
635                    size: config.memory_pool_size.min(device.memory_size),
636                    is_pinned: false,
637                }],
638                allocated_blocks: HashMap::new(),
639            };
640            memory_pools.insert(i, pool);
641        }
642
643        Ok(Self {
644            memory_pools,
645            allocations: HashMap::new(),
646            next_allocation_id: 1,
647        })
648    }
649
650    fn allocate(
651        &mut self,
652        device_id: usize,
653        size: usize,
654        alloc_type: AllocationType,
655    ) -> QuantRS2Result<u64> {
656        let pool = self.memory_pools.get_mut(&device_id).ok_or_else(|| {
657            QuantRS2Error::InvalidParameter(format!("Device {} not found", device_id))
658        })?;
659
660        // Find suitable free block
661        let mut best_block_idx = None;
662        let mut best_size = usize::MAX;
663
664        for (i, block) in pool.free_blocks.iter().enumerate() {
665            if block.size >= size && block.size < best_size {
666                best_size = block.size;
667                best_block_idx = Some(i);
668            }
669        }
670
671        let block_idx = best_block_idx
672            .ok_or_else(|| QuantRS2Error::RuntimeError("Insufficient GPU memory".to_string()))?;
673
674        let block = pool.free_blocks.remove(block_idx);
675        let allocation_id = self.next_allocation_id;
676        self.next_allocation_id += 1;
677
678        // Create allocated block
679        let allocated_block = MemoryBlock {
680            offset: block.offset,
681            size,
682            is_pinned: false,
683        };
684
685        pool.allocated_blocks.insert(allocation_id, allocated_block);
686        pool.used_size += size;
687
688        // Return remaining space to free blocks if any
689        if block.size > size {
690            pool.free_blocks.push(MemoryBlock {
691                offset: block.offset + size,
692                size: block.size - size,
693                is_pinned: false,
694            });
695        }
696
697        self.allocations.insert(
698            allocation_id,
699            AllocationInfo {
700                device_id,
701                size,
702                allocation_type: alloc_type,
703                timestamp: std::time::Instant::now(),
704            },
705        );
706
707        Ok(allocation_id)
708    }
709
710    fn get_total_allocated(&self) -> usize {
711        self.allocations.values().map(|info| info.size).sum()
712    }
713
714    fn get_peak_usage(&self) -> usize {
715        self.memory_pools
716            .values()
717            .map(|pool| pool.used_size)
718            .max()
719            .unwrap_or(0)
720    }
721}
722
723impl LargeScalePerformanceMonitor {
724    fn new() -> Self {
725        Self {
726            operation_times: HashMap::new(),
727            memory_usage_history: Vec::new(),
728            contraction_stats: ContractionStatistics::default(),
729            state_vector_stats: StateVectorStatistics::default(),
730        }
731    }
732
733    fn record_operation(&mut self, operation: &str, duration_ms: f64) {
734        self.operation_times
735            .entry(operation.to_string())
736            .or_insert_with(Vec::new)
737            .push(duration_ms);
738    }
739}
740
741#[cfg(test)]
742mod tests {
743    use super::*;
744
745    fn create_test_devices() -> Vec<GpuDevice> {
746        vec![
747            GpuDevice {
748                id: 0,
749                name: "Test GPU 1".to_string(),
750                backend: GpuBackend::CUDA,
751                memory_size: 8 * 1024 * 1024 * 1024, // 8GB
752                compute_units: 64,
753                max_work_group_size: 1024,
754                supports_double_precision: true,
755                is_available: true,
756            },
757            GpuDevice {
758                id: 1,
759                name: "Test GPU 2".to_string(),
760                backend: GpuBackend::CUDA,
761                memory_size: 16 * 1024 * 1024 * 1024, // 16GB
762                compute_units: 128,
763                max_work_group_size: 1024,
764                supports_double_precision: true,
765                is_available: true,
766            },
767        ]
768    }
769
770    #[test]
771    fn test_large_scale_accelerator_creation() {
772        let config = LargeScaleSimConfig::default();
773        let devices = create_test_devices();
774
775        let accelerator = LargeScaleSimAccelerator::new(config, devices);
776        assert!(accelerator.is_ok());
777    }
778
779    #[test]
780    fn test_device_selection() {
781        let config = LargeScaleSimConfig::default();
782        let devices = create_test_devices();
783
784        let mut accelerator = LargeScaleSimAccelerator::new(config, devices).unwrap();
785
786        // Test state vector simulation device selection
787        let device_id = accelerator.select_optimal_device(
788            SimulationTaskType::StateVector,
789            1024 * 1024 * 1024, // 1GB
790        );
791
792        assert!(device_id.is_ok());
793        assert!(device_id.unwrap() < 2);
794    }
795
796    #[test]
797    fn test_state_vector_simulation() {
798        let config = LargeScaleSimConfig::default();
799        let devices = create_test_devices();
800
801        let mut accelerator = LargeScaleSimAccelerator::new(config, devices).unwrap();
802        let state_sim = accelerator.init_state_vector_simulation(5);
803
804        assert!(state_sim.is_ok());
805
806        let mut sim = state_sim.unwrap();
807
808        // Test state initialization
809        let initial_state = vec![Complex64::new(1.0, 0.0); 32]; // 2^5 = 32
810        assert!(sim.initialize_state(&initial_state).is_ok());
811
812        // Test gate application
813        assert!(sim
814            .apply_gate_optimized(
815                LargeScaleGateType::SingleQubit,
816                &[0],
817                &[std::f64::consts::PI / 2.0]
818            )
819            .is_ok());
820    }
821
822    #[test]
823    fn test_tensor_contractor() {
824        let config = LargeScaleSimConfig::default();
825        let devices = create_test_devices();
826
827        let mut accelerator = LargeScaleSimAccelerator::new(config, devices).unwrap();
828        let contractor = accelerator.init_tensor_contractor();
829
830        assert!(contractor.is_ok());
831
832        let mut contractor = contractor.unwrap();
833
834        // Create test tensor
835        let data = ndarray::Array::from_shape_vec(
836            ndarray::IxDyn(&[2, 2]),
837            vec![
838                Complex64::new(1.0, 0.0),
839                Complex64::new(0.0, 0.0),
840                Complex64::new(0.0, 0.0),
841                Complex64::new(1.0, 0.0),
842            ],
843        )
844        .unwrap();
845
846        let tensor = Tensor::new(0, data, vec!["i".to_string(), "j".to_string()]);
847
848        // Test tensor upload
849        assert!(contractor.upload_tensor_optimized(&tensor).is_ok());
850
851        // Test tensor contraction
852        let result = contractor.contract_optimized(0, 1, &[(0, 1)]);
853        assert!(result.is_ok());
854    }
855
856    #[test]
857    fn test_memory_management() {
858        let config = LargeScaleSimConfig::default();
859        let devices = create_test_devices();
860
861        let memory_manager = LargeScaleMemoryManager::new(&devices, &config);
862        assert!(memory_manager.is_ok());
863
864        let mut mm = memory_manager.unwrap();
865
866        // Test allocation
867        let allocation = mm.allocate(0, 1024, AllocationType::StateVector);
868        assert!(allocation.is_ok());
869
870        // Test memory tracking
871        assert_eq!(mm.get_total_allocated(), 1024);
872    }
873
874    #[test]
875    fn test_performance_monitoring() {
876        let config = LargeScaleSimConfig::default();
877        let devices = create_test_devices();
878
879        let accelerator = LargeScaleSimAccelerator::new(config, devices).unwrap();
880
881        // Record some operations
882        {
883            let mut monitor = accelerator.performance_monitor.write().unwrap();
884            monitor.record_operation("test_operation", 10.5);
885            monitor.record_operation("test_operation", 12.3);
886        }
887
888        let stats = accelerator.get_performance_stats();
889        assert_eq!(stats.total_memory_allocated, 0); // No allocations yet
890    }
891
892    #[test]
893    fn test_large_qubit_simulation_limit() {
894        let config = LargeScaleSimConfig::default();
895        let devices = create_test_devices();
896
897        let mut accelerator = LargeScaleSimAccelerator::new(config, devices).unwrap();
898
899        // Test exceeding qubit limit
900        let result = accelerator.init_state_vector_simulation(100);
901        assert!(result.is_err());
902        assert!(matches!(
903            result.unwrap_err(),
904            QuantRS2Error::UnsupportedQubits(_, _)
905        ));
906    }
907
908    #[test]
909    fn test_tensor_decomposition() {
910        let config = LargeScaleSimConfig::default();
911        let devices = create_test_devices();
912
913        let mut accelerator = LargeScaleSimAccelerator::new(config, devices).unwrap();
914        let mut contractor = accelerator.init_tensor_contractor().unwrap();
915
916        let decomp_result = contractor.decompose_tensor_gpu(0, TensorDecompositionType::SVD);
917        assert!(decomp_result.is_ok());
918
919        let decomp = decomp_result.unwrap();
920        assert_eq!(decomp.factors.len(), 2);
921        assert!(!decomp.singular_values.is_empty());
922    }
923}