quantrs2_core/gpu/
adaptive_simd.rs

1//! Adaptive SIMD dispatch based on CPU capabilities detection
2//!
3//! This module provides runtime detection of CPU capabilities and dispatches
4//! to the most optimized SIMD implementation available on the target hardware.
5
6use crate::error::{QuantRS2Error, QuantRS2Result};
7use num_complex::Complex64;
8use std::sync::{Mutex, OnceLock};
9
10/// CPU feature detection results
11#[derive(Debug, Clone, Copy)]
12pub struct CpuFeatures {
13    /// AVX2 support (256-bit vectors)
14    pub has_avx2: bool,
15    /// AVX-512 support (512-bit vectors)
16    pub has_avx512: bool,
17    /// FMA (Fused Multiply-Add) support
18    pub has_fma: bool,
19    /// AVX-512 VL (Vector Length) support
20    pub has_avx512vl: bool,
21    /// AVX-512 DQ (Doubleword and Quadword) support
22    pub has_avx512dq: bool,
23    /// AVX-512 CD (Conflict Detection) support
24    pub has_avx512cd: bool,
25    /// SSE 4.1 support
26    pub has_sse41: bool,
27    /// SSE 4.2 support
28    pub has_sse42: bool,
29    /// Number of CPU cores
30    pub num_cores: usize,
31    /// L1 cache size per core (in bytes)
32    pub l1_cache_size: usize,
33    /// L2 cache size per core (in bytes)
34    pub l2_cache_size: usize,
35    /// L3 cache size (in bytes)
36    pub l3_cache_size: usize,
37}
38
39/// SIMD implementation variants
40#[derive(Debug, Clone, Copy, PartialEq, Eq)]
41pub enum SimdVariant {
42    /// Scalar fallback implementation
43    Scalar,
44    /// SSE 4.1/4.2 implementation
45    Sse4,
46    /// AVX2 implementation (256-bit)
47    Avx2,
48    /// AVX-512 implementation (512-bit)
49    Avx512,
50}
51
52/// Adaptive SIMD dispatcher
53pub struct AdaptiveSimdDispatcher {
54    /// Detected CPU features
55    cpu_features: CpuFeatures,
56    /// Selected SIMD variant
57    selected_variant: SimdVariant,
58    /// Performance cache for different operation sizes
59    performance_cache: Mutex<std::collections::HashMap<String, PerformanceData>>,
60}
61
62/// Performance data for SIMD operations
63#[derive(Debug, Clone)]
64pub struct PerformanceData {
65    /// Average execution time (nanoseconds)
66    avg_time: f64,
67    /// Number of samples
68    samples: usize,
69    /// Best SIMD variant for this operation size
70    best_variant: SimdVariant,
71}
72
73/// Global dispatcher instance
74static GLOBAL_DISPATCHER: OnceLock<AdaptiveSimdDispatcher> = OnceLock::new();
75
76impl AdaptiveSimdDispatcher {
77    /// Initialize the global adaptive SIMD dispatcher
78    pub fn initialize() -> QuantRS2Result<()> {
79        let cpu_features = Self::detect_cpu_features();
80        let selected_variant = Self::select_optimal_variant(&cpu_features);
81
82        let dispatcher = AdaptiveSimdDispatcher {
83            cpu_features,
84            selected_variant,
85            performance_cache: Mutex::new(std::collections::HashMap::new()),
86        };
87
88        GLOBAL_DISPATCHER.set(dispatcher).map_err(|_| {
89            QuantRS2Error::RuntimeError("Adaptive SIMD dispatcher already initialized".to_string())
90        })?;
91
92        Ok(())
93    }
94
95    /// Get the global dispatcher instance
96    pub fn instance() -> QuantRS2Result<&'static AdaptiveSimdDispatcher> {
97        GLOBAL_DISPATCHER.get().ok_or_else(|| {
98            QuantRS2Error::RuntimeError("Adaptive SIMD dispatcher not initialized".to_string())
99        })
100    }
101
102    /// Detect CPU features at runtime
103    fn detect_cpu_features() -> CpuFeatures {
104        // Use conditional compilation for different target architectures
105        #[cfg(target_arch = "x86_64")]
106        {
107            Self::detect_x86_64_features()
108        }
109        #[cfg(target_arch = "aarch64")]
110        {
111            Self::detect_aarch64_features()
112        }
113        #[cfg(not(any(target_arch = "x86_64", target_arch = "aarch64")))]
114        {
115            // Fallback for unsupported architectures
116            CpuFeatures {
117                has_avx2: false,
118                has_avx512: false,
119                has_fma: false,
120                has_avx512vl: false,
121                has_avx512dq: false,
122                has_avx512cd: false,
123                has_sse41: false,
124                has_sse42: false,
125                num_cores: 1,
126                l1_cache_size: 32768,
127                l2_cache_size: 262144,
128                l3_cache_size: 8388608,
129            }
130        }
131    }
132
133    #[cfg(target_arch = "x86_64")]
134    fn detect_x86_64_features() -> CpuFeatures {
135        use std::arch::x86_64::*;
136
137        // CPUID feature detection
138        let has_avx2 = is_x86_feature_detected!("avx2");
139        let has_avx512 = is_x86_feature_detected!("avx512f");
140        let has_fma = is_x86_feature_detected!("fma");
141        let has_avx512vl = is_x86_feature_detected!("avx512vl");
142        let has_avx512dq = is_x86_feature_detected!("avx512dq");
143        let has_avx512cd = is_x86_feature_detected!("avx512cd");
144        let has_sse41 = is_x86_feature_detected!("sse4.1");
145        let has_sse42 = is_x86_feature_detected!("sse4.2");
146
147        // Detect cache sizes and core count
148        let num_cores = 8; // Fallback to reasonable default
149        let (l1_cache, l2_cache, l3_cache) = Self::detect_cache_sizes();
150
151        CpuFeatures {
152            has_avx2,
153            has_avx512,
154            has_fma,
155            has_avx512vl,
156            has_avx512dq,
157            has_avx512cd,
158            has_sse41,
159            has_sse42,
160            num_cores,
161            l1_cache_size: l1_cache,
162            l2_cache_size: l2_cache,
163            l3_cache_size: l3_cache,
164        }
165    }
166
167    #[cfg(target_arch = "aarch64")]
168    fn detect_aarch64_features() -> CpuFeatures {
169        // ARM NEON is available on all AArch64 processors
170        let num_cores = 8; // Fallback to reasonable default
171        let (l1_cache, l2_cache, l3_cache) = Self::detect_cache_sizes();
172
173        CpuFeatures {
174            has_avx2: false,   // N/A for ARM
175            has_avx512: false, // N/A for ARM
176            has_fma: true,     // NEON supports FMA
177            has_avx512vl: false,
178            has_avx512dq: false,
179            has_avx512cd: false,
180            has_sse41: false, // N/A for ARM
181            has_sse42: false, // N/A for ARM
182            num_cores,
183            l1_cache_size: l1_cache,
184            l2_cache_size: l2_cache,
185            l3_cache_size: l3_cache,
186        }
187    }
188
189    /// Detect cache sizes (simplified implementation)
190    fn detect_cache_sizes() -> (usize, usize, usize) {
191        // This is a simplified implementation
192        // In practice, you would use CPUID or /proc/cpuinfo on Linux
193        let l1_cache = 32768; // 32KB typical L1
194        let l2_cache = 262144; // 256KB typical L2
195        let l3_cache = 8388608; // 8MB typical L3
196
197        (l1_cache, l2_cache, l3_cache)
198    }
199
200    /// Select the optimal SIMD variant based on CPU features
201    fn select_optimal_variant(features: &CpuFeatures) -> SimdVariant {
202        if features.has_avx512 && features.has_avx512vl && features.has_avx512dq {
203            SimdVariant::Avx512
204        } else if features.has_avx2 && features.has_fma {
205            SimdVariant::Avx2
206        } else if features.has_sse41 && features.has_sse42 {
207            SimdVariant::Sse4
208        } else {
209            SimdVariant::Scalar
210        }
211    }
212
213    /// Apply a single-qubit gate with adaptive SIMD
214    pub fn apply_single_qubit_gate_adaptive(
215        &self,
216        state: &mut [Complex64],
217        target: usize,
218        matrix: &[Complex64; 4],
219    ) -> QuantRS2Result<()> {
220        let operation_key = format!("single_qubit_{}", state.len());
221        let variant = self.select_variant_for_operation(&operation_key, state.len());
222
223        let start_time = std::time::Instant::now();
224
225        let result = match variant {
226            SimdVariant::Avx512 => self.apply_single_qubit_sse4(state, target, matrix), // Fallback to SSE4
227            SimdVariant::Avx2 => self.apply_single_qubit_sse4(state, target, matrix), // Fallback to SSE4
228            SimdVariant::Sse4 => self.apply_single_qubit_sse4(state, target, matrix),
229            SimdVariant::Scalar => self.apply_single_qubit_scalar(state, target, matrix),
230        };
231
232        let execution_time = start_time.elapsed().as_nanos() as f64;
233        self.update_performance_cache(&operation_key, execution_time, variant);
234
235        result
236    }
237
238    /// Apply a two-qubit gate with adaptive SIMD
239    pub fn apply_two_qubit_gate_adaptive(
240        &self,
241        state: &mut [Complex64],
242        control: usize,
243        target: usize,
244        matrix: &[Complex64; 16],
245    ) -> QuantRS2Result<()> {
246        let operation_key = format!("two_qubit_{}", state.len());
247        let variant = self.select_variant_for_operation(&operation_key, state.len());
248
249        let start_time = std::time::Instant::now();
250
251        let result = match variant {
252            SimdVariant::Avx512 => self.apply_two_qubit_avx512(state, control, target, matrix),
253            SimdVariant::Avx2 => self.apply_two_qubit_avx2(state, control, target, matrix),
254            SimdVariant::Sse4 => self.apply_two_qubit_sse4(state, control, target, matrix),
255            SimdVariant::Scalar => self.apply_two_qubit_scalar(state, control, target, matrix),
256        };
257
258        let execution_time = start_time.elapsed().as_nanos() as f64;
259        self.update_performance_cache(&operation_key, execution_time, variant);
260
261        result
262    }
263
264    /// Batch apply gates with adaptive SIMD
265    pub fn apply_batch_gates_adaptive(
266        &self,
267        states: &mut [&mut [Complex64]],
268        gates: &[Box<dyn crate::gate::GateOp>],
269    ) -> QuantRS2Result<()> {
270        let batch_size = states.len();
271        let operation_key = format!("batch_{}_{}", batch_size, gates.len());
272        let variant = self.select_variant_for_operation(&operation_key, batch_size * 1000); // Estimate
273
274        let start_time = std::time::Instant::now();
275
276        let result = match variant {
277            SimdVariant::Avx512 => self.apply_batch_gates_avx512(states, gates),
278            SimdVariant::Avx2 => self.apply_batch_gates_avx2(states, gates),
279            SimdVariant::Sse4 => self.apply_batch_gates_sse4(states, gates),
280            SimdVariant::Scalar => self.apply_batch_gates_scalar(states, gates),
281        };
282
283        let execution_time = start_time.elapsed().as_nanos() as f64;
284        self.update_performance_cache(&operation_key, execution_time, variant);
285
286        result
287    }
288
289    /// Select the best SIMD variant for a specific operation
290    fn select_variant_for_operation(&self, operation_key: &str, data_size: usize) -> SimdVariant {
291        // Check performance cache first
292        if let Ok(cache) = self.performance_cache.lock() {
293            if let Some(perf_data) = cache.get(operation_key) {
294                if perf_data.samples >= 5 {
295                    return perf_data.best_variant;
296                }
297            }
298        }
299
300        // Heuristics based on data size and CPU features
301        if data_size >= 1024 && self.cpu_features.has_avx512 {
302            SimdVariant::Avx512
303        } else if data_size >= 256 && self.cpu_features.has_avx2 {
304            SimdVariant::Avx2
305        } else if data_size >= 64 && self.cpu_features.has_sse41 {
306            SimdVariant::Sse4
307        } else {
308            SimdVariant::Scalar
309        }
310    }
311
312    /// Update performance cache with execution time
313    fn update_performance_cache(
314        &self,
315        operation_key: &str,
316        execution_time: f64,
317        variant: SimdVariant,
318    ) {
319        if let Ok(mut cache) = self.performance_cache.lock() {
320            let perf_data =
321                cache
322                    .entry(operation_key.to_string())
323                    .or_insert_with(|| PerformanceData {
324                        avg_time: execution_time,
325                        samples: 0,
326                        best_variant: variant,
327                    });
328
329            // Update running average
330            perf_data.avg_time = (perf_data.avg_time * perf_data.samples as f64 + execution_time)
331                / (perf_data.samples + 1) as f64;
332            perf_data.samples += 1;
333
334            // Update best variant if this one is significantly faster
335            if execution_time < perf_data.avg_time * 0.9 {
336                perf_data.best_variant = variant;
337            }
338        }
339    }
340
341    /// Get performance report
342    pub fn get_performance_report(&self) -> AdaptivePerformanceReport {
343        let cache = self
344            .performance_cache
345            .lock()
346            .map(|cache| cache.clone())
347            .unwrap_or_default();
348
349        AdaptivePerformanceReport {
350            cpu_features: self.cpu_features,
351            selected_variant: self.selected_variant,
352            performance_cache: cache,
353        }
354    }
355
356    // SIMD implementation methods (simplified placeholders)
357
358    #[cfg(target_arch = "x86_64")]
359    fn apply_single_qubit_avx512(
360        &self,
361        state: &mut [Complex64],
362        target: usize,
363        matrix: &[Complex64; 4],
364    ) -> QuantRS2Result<()> {
365        // AVX-512 implementation using 512-bit vectors
366        simd_ops::apply_single_qubit_gate_simd(state, target, matrix)
367    }
368
369    #[cfg(target_arch = "x86_64")]
370    fn apply_single_qubit_avx2(
371        &self,
372        state: &mut [Complex64],
373        target: usize,
374        matrix: &[Complex64; 4],
375    ) -> QuantRS2Result<()> {
376        // AVX2 implementation using 256-bit vectors
377        simd_ops::apply_single_qubit_gate_simd(state, target, matrix)
378    }
379
380    fn apply_single_qubit_sse4(
381        &self,
382        state: &mut [Complex64],
383        target: usize,
384        matrix: &[Complex64; 4],
385    ) -> QuantRS2Result<()> {
386        // For now, fall back to scalar implementation
387        // TODO: Implement SIMD version
388        self.apply_single_qubit_scalar(state, target, matrix)
389    }
390
391    fn apply_single_qubit_scalar(
392        &self,
393        state: &mut [Complex64],
394        target: usize,
395        matrix: &[Complex64; 4],
396    ) -> QuantRS2Result<()> {
397        // Scalar implementation
398        let n = state.len();
399        for i in 0..n {
400            if (i >> target) & 1 == 0 {
401                let j = i | (1 << target);
402                let temp0 = state[i];
403                let temp1 = state[j];
404                state[i] = matrix[0] * temp0 + matrix[1] * temp1;
405                state[j] = matrix[2] * temp0 + matrix[3] * temp1;
406            }
407        }
408        Ok(())
409    }
410
411    // Similar implementations for two-qubit gates and batch operations
412
413    fn apply_two_qubit_avx512(
414        &self,
415        _state: &mut [Complex64],
416        _control: usize,
417        _target: usize,
418        _matrix: &[Complex64; 16],
419    ) -> QuantRS2Result<()> {
420        // Placeholder
421        Ok(())
422    }
423
424    fn apply_two_qubit_avx2(
425        &self,
426        _state: &mut [Complex64],
427        _control: usize,
428        _target: usize,
429        _matrix: &[Complex64; 16],
430    ) -> QuantRS2Result<()> {
431        // Placeholder
432        Ok(())
433    }
434
435    fn apply_two_qubit_sse4(
436        &self,
437        _state: &mut [Complex64],
438        _control: usize,
439        _target: usize,
440        _matrix: &[Complex64; 16],
441    ) -> QuantRS2Result<()> {
442        // Placeholder
443        Ok(())
444    }
445
446    fn apply_two_qubit_scalar(
447        &self,
448        _state: &mut [Complex64],
449        _control: usize,
450        _target: usize,
451        _matrix: &[Complex64; 16],
452    ) -> QuantRS2Result<()> {
453        // Placeholder
454        Ok(())
455    }
456
457    fn apply_batch_gates_avx512(
458        &self,
459        _states: &mut [&mut [Complex64]],
460        _gates: &[Box<dyn crate::gate::GateOp>],
461    ) -> QuantRS2Result<()> {
462        // Placeholder
463        Ok(())
464    }
465
466    fn apply_batch_gates_avx2(
467        &self,
468        _states: &mut [&mut [Complex64]],
469        _gates: &[Box<dyn crate::gate::GateOp>],
470    ) -> QuantRS2Result<()> {
471        // Placeholder
472        Ok(())
473    }
474
475    fn apply_batch_gates_sse4(
476        &self,
477        _states: &mut [&mut [Complex64]],
478        _gates: &[Box<dyn crate::gate::GateOp>],
479    ) -> QuantRS2Result<()> {
480        // Placeholder
481        Ok(())
482    }
483
484    fn apply_batch_gates_scalar(
485        &self,
486        _states: &mut [&mut [Complex64]],
487        _gates: &[Box<dyn crate::gate::GateOp>],
488    ) -> QuantRS2Result<()> {
489        // Placeholder
490        Ok(())
491    }
492}
493
494/// Performance report for adaptive SIMD
495#[derive(Debug, Clone)]
496pub struct AdaptivePerformanceReport {
497    pub cpu_features: CpuFeatures,
498    pub selected_variant: SimdVariant,
499    pub performance_cache: std::collections::HashMap<String, PerformanceData>,
500}
501
502/// Convenience functions for adaptive SIMD operations
503pub fn apply_single_qubit_adaptive(
504    state: &mut [Complex64],
505    target: usize,
506    matrix: &[Complex64; 4],
507) -> QuantRS2Result<()> {
508    AdaptiveSimdDispatcher::instance()?.apply_single_qubit_gate_adaptive(state, target, matrix)
509}
510
511pub fn apply_two_qubit_adaptive(
512    state: &mut [Complex64],
513    control: usize,
514    target: usize,
515    matrix: &[Complex64; 16],
516) -> QuantRS2Result<()> {
517    AdaptiveSimdDispatcher::instance()?
518        .apply_two_qubit_gate_adaptive(state, control, target, matrix)
519}
520
521pub fn apply_batch_gates_adaptive(
522    states: &mut [&mut [Complex64]],
523    gates: &[Box<dyn crate::gate::GateOp>],
524) -> QuantRS2Result<()> {
525    AdaptiveSimdDispatcher::instance()?.apply_batch_gates_adaptive(states, gates)
526}
527
528/// Initialize the adaptive SIMD system
529pub fn initialize_adaptive_simd() -> QuantRS2Result<()> {
530    AdaptiveSimdDispatcher::initialize()
531}
532
533/// Get the performance report
534pub fn get_adaptive_performance_report() -> QuantRS2Result<AdaptivePerformanceReport> {
535    Ok(AdaptiveSimdDispatcher::instance()?.get_performance_report())
536}
537
538#[cfg(test)]
539mod tests {
540    use super::*;
541    use num_complex::Complex64;
542
543    #[test]
544    fn test_cpu_feature_detection() {
545        let features = AdaptiveSimdDispatcher::detect_cpu_features();
546        println!("Detected CPU features: {:?}", features);
547
548        // Basic sanity checks
549        assert!(features.num_cores >= 1);
550        assert!(features.l1_cache_size > 0);
551    }
552
553    #[test]
554    fn test_simd_variant_selection() {
555        let features = CpuFeatures {
556            has_avx2: true,
557            has_avx512: false,
558            has_fma: true,
559            has_avx512vl: false,
560            has_avx512dq: false,
561            has_avx512cd: false,
562            has_sse41: true,
563            has_sse42: true,
564            num_cores: 8,
565            l1_cache_size: 32768,
566            l2_cache_size: 262144,
567            l3_cache_size: 8388608,
568        };
569
570        let variant = AdaptiveSimdDispatcher::select_optimal_variant(&features);
571        assert_eq!(variant, SimdVariant::Avx2);
572    }
573
574    #[test]
575    fn test_adaptive_single_qubit_gate() {
576        let _ = AdaptiveSimdDispatcher::initialize();
577
578        let mut state = vec![Complex64::new(1.0, 0.0), Complex64::new(0.0, 0.0)];
579
580        let hadamard_matrix = [
581            Complex64::new(1.0 / 2.0_f64.sqrt(), 0.0),
582            Complex64::new(1.0 / 2.0_f64.sqrt(), 0.0),
583            Complex64::new(1.0 / 2.0_f64.sqrt(), 0.0),
584            Complex64::new(-1.0 / 2.0_f64.sqrt(), 0.0),
585        ];
586
587        let result = apply_single_qubit_adaptive(&mut state, 0, &hadamard_matrix);
588        assert!(result.is_ok());
589
590        // Check that the state has been modified
591        let expected_amplitude = 1.0 / 2.0_f64.sqrt();
592        assert!((state[0].re - expected_amplitude).abs() < 1e-10);
593        assert!((state[1].re - expected_amplitude).abs() < 1e-10);
594    }
595
596    #[test]
597    fn test_performance_caching() {
598        let dispatcher = AdaptiveSimdDispatcher {
599            cpu_features: AdaptiveSimdDispatcher::detect_cpu_features(),
600            selected_variant: SimdVariant::Avx2,
601            performance_cache: Mutex::new(std::collections::HashMap::new()),
602        };
603
604        dispatcher.update_performance_cache("test_op", 100.0, SimdVariant::Avx2);
605        dispatcher.update_performance_cache("test_op", 150.0, SimdVariant::Avx2);
606
607        let perf_data = dispatcher
608            .performance_cache
609            .lock()
610            .unwrap()
611            .get("test_op")
612            .unwrap()
613            .clone();
614        assert_eq!(perf_data.samples, 2);
615        assert!((perf_data.avg_time - 125.0).abs() < 1e-10);
616    }
617}