quantrs2_core/
error_correction.rs

1//! Quantum error correction codes and decoders
2//!
3//! This module provides implementations of various quantum error correction codes
4//! including stabilizer codes, surface codes, and color codes, along with
5//! efficient decoder algorithms.
6
7use crate::error::{QuantRS2Error, QuantRS2Result};
8use ndarray::Array2;
9use num_complex::Complex64;
10use std::collections::HashMap;
11use std::fmt;
12
13/// Pauli operator representation
14#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
15pub enum Pauli {
16    I,
17    X,
18    Y,
19    Z,
20}
21
22impl Pauli {
23    /// Get matrix representation
24    pub fn matrix(&self) -> Array2<Complex64> {
25        match self {
26            Pauli::I => Array2::from_shape_vec(
27                (2, 2),
28                vec![
29                    Complex64::new(1.0, 0.0),
30                    Complex64::new(0.0, 0.0),
31                    Complex64::new(0.0, 0.0),
32                    Complex64::new(1.0, 0.0),
33                ],
34            )
35            .unwrap(),
36            Pauli::X => Array2::from_shape_vec(
37                (2, 2),
38                vec![
39                    Complex64::new(0.0, 0.0),
40                    Complex64::new(1.0, 0.0),
41                    Complex64::new(1.0, 0.0),
42                    Complex64::new(0.0, 0.0),
43                ],
44            )
45            .unwrap(),
46            Pauli::Y => Array2::from_shape_vec(
47                (2, 2),
48                vec![
49                    Complex64::new(0.0, 0.0),
50                    Complex64::new(0.0, -1.0),
51                    Complex64::new(0.0, 1.0),
52                    Complex64::new(0.0, 0.0),
53                ],
54            )
55            .unwrap(),
56            Pauli::Z => Array2::from_shape_vec(
57                (2, 2),
58                vec![
59                    Complex64::new(1.0, 0.0),
60                    Complex64::new(0.0, 0.0),
61                    Complex64::new(0.0, 0.0),
62                    Complex64::new(-1.0, 0.0),
63                ],
64            )
65            .unwrap(),
66        }
67    }
68
69    /// Multiply two Pauli operators
70    pub fn multiply(&self, other: &Pauli) -> (Complex64, Pauli) {
71        use Pauli::*;
72        match (self, other) {
73            (I, p) | (p, I) => (Complex64::new(1.0, 0.0), *p),
74            (X, X) | (Y, Y) | (Z, Z) => (Complex64::new(1.0, 0.0), I),
75            (X, Y) => (Complex64::new(0.0, 1.0), Z),
76            (Y, X) => (Complex64::new(0.0, -1.0), Z),
77            (Y, Z) => (Complex64::new(0.0, 1.0), X),
78            (Z, Y) => (Complex64::new(0.0, -1.0), X),
79            (Z, X) => (Complex64::new(0.0, 1.0), Y),
80            (X, Z) => (Complex64::new(0.0, -1.0), Y),
81        }
82    }
83}
84
85/// Multi-qubit Pauli operator
86#[derive(Debug, Clone, PartialEq)]
87pub struct PauliString {
88    /// Phase factor (±1, ±i)
89    pub phase: Complex64,
90    /// Pauli operators for each qubit
91    pub paulis: Vec<Pauli>,
92}
93
94impl PauliString {
95    /// Create a new Pauli string
96    pub fn new(paulis: Vec<Pauli>) -> Self {
97        Self {
98            phase: Complex64::new(1.0, 0.0),
99            paulis,
100        }
101    }
102
103    /// Create identity on n qubits
104    pub fn identity(n: usize) -> Self {
105        Self::new(vec![Pauli::I; n])
106    }
107
108    /// Get the weight (number of non-identity operators)
109    pub fn weight(&self) -> usize {
110        self.paulis.iter().filter(|&&p| p != Pauli::I).count()
111    }
112
113    /// Multiply two Pauli strings
114    pub fn multiply(&self, other: &PauliString) -> QuantRS2Result<PauliString> {
115        if self.paulis.len() != other.paulis.len() {
116            return Err(QuantRS2Error::InvalidInput(
117                "Pauli strings must have same length".to_string(),
118            ));
119        }
120
121        let mut phase = self.phase * other.phase;
122        let mut paulis = Vec::with_capacity(self.paulis.len());
123
124        for (p1, p2) in self.paulis.iter().zip(&other.paulis) {
125            let (factor, result) = p1.multiply(p2);
126            phase *= factor;
127            paulis.push(result);
128        }
129
130        Ok(PauliString { phase, paulis })
131    }
132
133    /// Check if two Pauli strings commute
134    pub fn commutes_with(&self, other: &PauliString) -> QuantRS2Result<bool> {
135        if self.paulis.len() != other.paulis.len() {
136            return Err(QuantRS2Error::InvalidInput(
137                "Pauli strings must have same length".to_string(),
138            ));
139        }
140
141        let mut commutation_count = 0;
142        for (p1, p2) in self.paulis.iter().zip(&other.paulis) {
143            if *p1 != Pauli::I && *p2 != Pauli::I && p1 != p2 {
144                commutation_count += 1;
145            }
146        }
147
148        Ok(commutation_count % 2 == 0)
149    }
150}
151
152impl fmt::Display for PauliString {
153    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
154        let phase_str = if self.phase == Complex64::new(1.0, 0.0) {
155            "+".to_string()
156        } else if self.phase == Complex64::new(-1.0, 0.0) {
157            "-".to_string()
158        } else if self.phase == Complex64::new(0.0, 1.0) {
159            "+i".to_string()
160        } else {
161            "-i".to_string()
162        };
163
164        write!(f, "{}", phase_str)?;
165        for p in &self.paulis {
166            write!(f, "{:?}", p)?;
167        }
168        Ok(())
169    }
170}
171
172/// Stabilizer code definition
173#[derive(Debug, Clone)]
174pub struct StabilizerCode {
175    /// Number of physical qubits
176    pub n: usize,
177    /// Number of logical qubits
178    pub k: usize,
179    /// Minimum distance
180    pub d: usize,
181    /// Stabilizer generators
182    pub stabilizers: Vec<PauliString>,
183    /// Logical X operators
184    pub logical_x: Vec<PauliString>,
185    /// Logical Z operators
186    pub logical_z: Vec<PauliString>,
187}
188
189impl StabilizerCode {
190    /// Create a new stabilizer code
191    pub fn new(
192        n: usize,
193        k: usize,
194        d: usize,
195        stabilizers: Vec<PauliString>,
196        logical_x: Vec<PauliString>,
197        logical_z: Vec<PauliString>,
198    ) -> QuantRS2Result<Self> {
199        // Validate code parameters
200        // Note: For surface codes and other topological codes,
201        // some stabilizers may be linearly dependent, so we allow more flexibility
202        if stabilizers.len() > 2 * (n - k) {
203            return Err(QuantRS2Error::InvalidInput(format!(
204                "Too many stabilizers: got {}, maximum is {}",
205                stabilizers.len(),
206                2 * (n - k)
207            )));
208        }
209
210        if logical_x.len() != k || logical_z.len() != k {
211            return Err(QuantRS2Error::InvalidInput(
212                "Number of logical operators must equal k".to_string(),
213            ));
214        }
215
216        // Check that stabilizers commute
217        for i in 0..stabilizers.len() {
218            for j in i + 1..stabilizers.len() {
219                if !stabilizers[i].commutes_with(&stabilizers[j])? {
220                    return Err(QuantRS2Error::InvalidInput(
221                        "Stabilizers must commute".to_string(),
222                    ));
223                }
224            }
225        }
226
227        Ok(Self {
228            n,
229            k,
230            d,
231            stabilizers,
232            logical_x,
233            logical_z,
234        })
235    }
236
237    /// Create the 3-qubit repetition code
238    pub fn repetition_code() -> Self {
239        let stabilizers = vec![
240            PauliString::new(vec![Pauli::Z, Pauli::Z, Pauli::I]),
241            PauliString::new(vec![Pauli::I, Pauli::Z, Pauli::Z]),
242        ];
243
244        let logical_x = vec![PauliString::new(vec![Pauli::X, Pauli::X, Pauli::X])];
245        let logical_z = vec![PauliString::new(vec![Pauli::Z, Pauli::I, Pauli::I])];
246
247        Self::new(3, 1, 1, stabilizers, logical_x, logical_z).unwrap()
248    }
249
250    /// Create the 5-qubit perfect code
251    pub fn five_qubit_code() -> Self {
252        let stabilizers = vec![
253            PauliString::new(vec![Pauli::X, Pauli::Z, Pauli::Z, Pauli::X, Pauli::I]),
254            PauliString::new(vec![Pauli::I, Pauli::X, Pauli::Z, Pauli::Z, Pauli::X]),
255            PauliString::new(vec![Pauli::X, Pauli::I, Pauli::X, Pauli::Z, Pauli::Z]),
256            PauliString::new(vec![Pauli::Z, Pauli::X, Pauli::I, Pauli::X, Pauli::Z]),
257        ];
258
259        let logical_x = vec![PauliString::new(vec![
260            Pauli::X,
261            Pauli::X,
262            Pauli::X,
263            Pauli::X,
264            Pauli::X,
265        ])];
266        let logical_z = vec![PauliString::new(vec![
267            Pauli::Z,
268            Pauli::Z,
269            Pauli::Z,
270            Pauli::Z,
271            Pauli::Z,
272        ])];
273
274        Self::new(5, 1, 3, stabilizers, logical_x, logical_z).unwrap()
275    }
276
277    /// Create the 7-qubit Steane code
278    pub fn steane_code() -> Self {
279        let stabilizers = vec![
280            PauliString::new(vec![
281                Pauli::I,
282                Pauli::I,
283                Pauli::I,
284                Pauli::X,
285                Pauli::X,
286                Pauli::X,
287                Pauli::X,
288            ]),
289            PauliString::new(vec![
290                Pauli::I,
291                Pauli::X,
292                Pauli::X,
293                Pauli::I,
294                Pauli::I,
295                Pauli::X,
296                Pauli::X,
297            ]),
298            PauliString::new(vec![
299                Pauli::X,
300                Pauli::I,
301                Pauli::X,
302                Pauli::I,
303                Pauli::X,
304                Pauli::I,
305                Pauli::X,
306            ]),
307            PauliString::new(vec![
308                Pauli::I,
309                Pauli::I,
310                Pauli::I,
311                Pauli::Z,
312                Pauli::Z,
313                Pauli::Z,
314                Pauli::Z,
315            ]),
316            PauliString::new(vec![
317                Pauli::I,
318                Pauli::Z,
319                Pauli::Z,
320                Pauli::I,
321                Pauli::I,
322                Pauli::Z,
323                Pauli::Z,
324            ]),
325            PauliString::new(vec![
326                Pauli::Z,
327                Pauli::I,
328                Pauli::Z,
329                Pauli::I,
330                Pauli::Z,
331                Pauli::I,
332                Pauli::Z,
333            ]),
334        ];
335
336        let logical_x = vec![PauliString::new(vec![
337            Pauli::X,
338            Pauli::X,
339            Pauli::X,
340            Pauli::X,
341            Pauli::X,
342            Pauli::X,
343            Pauli::X,
344        ])];
345        let logical_z = vec![PauliString::new(vec![
346            Pauli::Z,
347            Pauli::Z,
348            Pauli::Z,
349            Pauli::Z,
350            Pauli::Z,
351            Pauli::Z,
352            Pauli::Z,
353        ])];
354
355        Self::new(7, 1, 3, stabilizers, logical_x, logical_z).unwrap()
356    }
357
358    /// Get syndrome for a given error
359    pub fn syndrome(&self, error: &PauliString) -> QuantRS2Result<Vec<bool>> {
360        if error.paulis.len() != self.n {
361            return Err(QuantRS2Error::InvalidInput(
362                "Error must act on all physical qubits".to_string(),
363            ));
364        }
365
366        let mut syndrome = Vec::with_capacity(self.stabilizers.len());
367        for stabilizer in &self.stabilizers {
368            syndrome.push(!stabilizer.commutes_with(error)?);
369        }
370
371        Ok(syndrome)
372    }
373}
374
375/// Surface code lattice
376#[derive(Debug, Clone)]
377pub struct SurfaceCode {
378    /// Number of rows in the lattice
379    pub rows: usize,
380    /// Number of columns in the lattice
381    pub cols: usize,
382    /// Qubit positions (row, col) -> qubit index
383    pub qubit_map: HashMap<(usize, usize), usize>,
384    /// Stabilizer plaquettes
385    pub x_stabilizers: Vec<Vec<usize>>,
386    pub z_stabilizers: Vec<Vec<usize>>,
387}
388
389impl SurfaceCode {
390    /// Create a new surface code
391    pub fn new(rows: usize, cols: usize) -> Self {
392        let mut qubit_map = HashMap::new();
393        let mut qubit_index = 0;
394
395        // Place qubits on the lattice
396        for r in 0..rows {
397            for c in 0..cols {
398                qubit_map.insert((r, c), qubit_index);
399                qubit_index += 1;
400            }
401        }
402
403        let mut x_stabilizers = Vec::new();
404        let mut z_stabilizers = Vec::new();
405
406        // Create X stabilizers (vertex operators)
407        for r in 0..rows - 1 {
408            for c in 0..cols - 1 {
409                if (r + c) % 2 == 0 {
410                    let stabilizer = vec![
411                        qubit_map[&(r, c)],
412                        qubit_map[&(r, c + 1)],
413                        qubit_map[&(r + 1, c)],
414                        qubit_map[&(r + 1, c + 1)],
415                    ];
416                    x_stabilizers.push(stabilizer);
417                }
418            }
419        }
420
421        // Create Z stabilizers (plaquette operators)
422        for r in 0..rows - 1 {
423            for c in 0..cols - 1 {
424                if (r + c) % 2 == 1 {
425                    let stabilizer = vec![
426                        qubit_map[&(r, c)],
427                        qubit_map[&(r, c + 1)],
428                        qubit_map[&(r + 1, c)],
429                        qubit_map[&(r + 1, c + 1)],
430                    ];
431                    z_stabilizers.push(stabilizer);
432                }
433            }
434        }
435
436        Self {
437            rows,
438            cols,
439            qubit_map,
440            x_stabilizers,
441            z_stabilizers,
442        }
443    }
444
445    /// Get the code distance
446    pub fn distance(&self) -> usize {
447        self.rows.min(self.cols)
448    }
449
450    /// Convert to stabilizer code representation
451    pub fn to_stabilizer_code(&self) -> StabilizerCode {
452        let n = self.qubit_map.len();
453        let mut stabilizers = Vec::new();
454
455        // Add X stabilizers
456        for x_stab in &self.x_stabilizers {
457            let mut paulis = vec![Pauli::I; n];
458            for &qubit in x_stab {
459                paulis[qubit] = Pauli::X;
460            }
461            stabilizers.push(PauliString::new(paulis));
462        }
463
464        // Add Z stabilizers
465        for z_stab in &self.z_stabilizers {
466            let mut paulis = vec![Pauli::I; n];
467            for &qubit in z_stab {
468                paulis[qubit] = Pauli::Z;
469            }
470            stabilizers.push(PauliString::new(paulis));
471        }
472
473        // Create logical operators (simplified - just use boundary chains)
474        let mut logical_x_paulis = vec![Pauli::I; n];
475        let mut logical_z_paulis = vec![Pauli::I; n];
476
477        // Logical X: horizontal chain on top boundary
478        for c in 0..self.cols {
479            if let Some(&qubit) = self.qubit_map.get(&(0, c)) {
480                logical_x_paulis[qubit] = Pauli::X;
481            }
482        }
483
484        // Logical Z: vertical chain on left boundary
485        for r in 0..self.rows {
486            if let Some(&qubit) = self.qubit_map.get(&(r, 0)) {
487                logical_z_paulis[qubit] = Pauli::Z;
488            }
489        }
490
491        let logical_x = vec![PauliString::new(logical_x_paulis)];
492        let logical_z = vec![PauliString::new(logical_z_paulis)];
493
494        StabilizerCode::new(n, 1, self.distance(), stabilizers, logical_x, logical_z).unwrap()
495    }
496}
497
498/// Syndrome decoder interface
499pub trait SyndromeDecoder {
500    /// Decode syndrome to find most likely error
501    fn decode(&self, syndrome: &[bool]) -> QuantRS2Result<PauliString>;
502}
503
504/// Lookup table decoder
505pub struct LookupDecoder {
506    /// Syndrome to error mapping
507    syndrome_table: HashMap<Vec<bool>, PauliString>,
508}
509
510impl LookupDecoder {
511    /// Create decoder for a stabilizer code
512    pub fn new(code: &StabilizerCode) -> QuantRS2Result<Self> {
513        let mut syndrome_table = HashMap::new();
514
515        // Generate all correctable errors (up to weight floor(d/2))
516        let max_weight = (code.d - 1) / 2;
517        let all_errors = Self::generate_pauli_errors(code.n, max_weight);
518
519        for error in all_errors {
520            let syndrome = code.syndrome(&error)?;
521
522            // Only keep lowest weight error for each syndrome
523            syndrome_table
524                .entry(syndrome)
525                .and_modify(|e: &mut PauliString| {
526                    if error.weight() < e.weight() {
527                        *e = error.clone();
528                    }
529                })
530                .or_insert(error);
531        }
532
533        Ok(Self { syndrome_table })
534    }
535
536    /// Generate all Pauli errors up to given weight
537    fn generate_pauli_errors(n: usize, max_weight: usize) -> Vec<PauliString> {
538        let mut errors = vec![PauliString::identity(n)];
539
540        for weight in 1..=max_weight {
541            let weight_errors = Self::generate_weight_k_errors(n, weight);
542            errors.extend(weight_errors);
543        }
544
545        errors
546    }
547
548    /// Generate all weight-k Pauli errors
549    fn generate_weight_k_errors(n: usize, k: usize) -> Vec<PauliString> {
550        let mut errors = Vec::new();
551        let paulis = [Pauli::X, Pauli::Y, Pauli::Z];
552
553        // Generate all combinations of k positions
554        let positions = Self::combinations(n, k);
555
556        for pos_set in positions {
557            // For each position set, try all Pauli combinations
558            let pauli_combinations = Self::cartesian_power(&paulis, k);
559
560            for pauli_combo in pauli_combinations {
561                let mut error_paulis = vec![Pauli::I; n];
562                for (i, &pos) in pos_set.iter().enumerate() {
563                    error_paulis[pos] = pauli_combo[i];
564                }
565                errors.push(PauliString::new(error_paulis));
566            }
567        }
568
569        errors
570    }
571
572    /// Generate all k-combinations from n elements
573    fn combinations(n: usize, k: usize) -> Vec<Vec<usize>> {
574        let mut result = Vec::new();
575        let mut combo = (0..k).collect::<Vec<_>>();
576
577        loop {
578            result.push(combo.clone());
579
580            // Find rightmost element that can be incremented
581            let mut i = k;
582            while i > 0 && (i == k || combo[i] == n - k + i) {
583                i -= 1;
584            }
585
586            if i == 0 && combo[0] == n - k {
587                break;
588            }
589
590            // Increment and reset following elements
591            combo[i] += 1;
592            for j in i + 1..k {
593                combo[j] = combo[j - 1] + 1;
594            }
595        }
596
597        result
598    }
599
600    /// Generate Cartesian power of a set
601    fn cartesian_power<T: Clone>(set: &[T], k: usize) -> Vec<Vec<T>> {
602        if k == 0 {
603            return vec![vec![]];
604        }
605
606        let mut result = Vec::new();
607        let smaller = Self::cartesian_power(set, k - 1);
608
609        for item in set {
610            for mut combo in smaller.clone() {
611                combo.push(item.clone());
612                result.push(combo);
613            }
614        }
615
616        result
617    }
618}
619
620impl SyndromeDecoder for LookupDecoder {
621    fn decode(&self, syndrome: &[bool]) -> QuantRS2Result<PauliString> {
622        self.syndrome_table
623            .get(syndrome)
624            .cloned()
625            .ok_or_else(|| QuantRS2Error::InvalidInput("Unknown syndrome".to_string()))
626    }
627}
628
629/// Minimum Weight Perfect Matching decoder for surface codes
630pub struct MWPMDecoder {
631    surface_code: SurfaceCode,
632}
633
634impl MWPMDecoder {
635    /// Create MWPM decoder for surface code
636    pub fn new(surface_code: SurfaceCode) -> Self {
637        Self { surface_code }
638    }
639
640    /// Find minimum weight matching for syndrome
641    pub fn decode_syndrome(
642        &self,
643        x_syndrome: &[bool],
644        z_syndrome: &[bool],
645    ) -> QuantRS2Result<PauliString> {
646        let n = self.surface_code.qubit_map.len();
647        let mut error_paulis = vec![Pauli::I; n];
648
649        // Decode X errors using Z syndrome
650        let z_defects = self.find_defects(z_syndrome, &self.surface_code.z_stabilizers);
651        let x_corrections = self.minimum_weight_matching(&z_defects, Pauli::X)?;
652
653        for (qubit, pauli) in x_corrections {
654            error_paulis[qubit] = pauli;
655        }
656
657        // Decode Z errors using X syndrome
658        let x_defects = self.find_defects(x_syndrome, &self.surface_code.x_stabilizers);
659        let z_corrections = self.minimum_weight_matching(&x_defects, Pauli::Z)?;
660
661        for (qubit, pauli) in z_corrections {
662            if error_paulis[qubit] != Pauli::I {
663                // Combine X and Z to get Y
664                error_paulis[qubit] = Pauli::Y;
665            } else {
666                error_paulis[qubit] = pauli;
667            }
668        }
669
670        Ok(PauliString::new(error_paulis))
671    }
672
673    /// Find stabilizer defects from syndrome
674    fn find_defects(&self, syndrome: &[bool], _stabilizers: &[Vec<usize>]) -> Vec<usize> {
675        syndrome
676            .iter()
677            .enumerate()
678            .filter_map(|(i, &s)| if s { Some(i) } else { None })
679            .collect()
680    }
681
682    /// Simple minimum weight matching (for demonstration)
683    fn minimum_weight_matching(
684        &self,
685        defects: &[usize],
686        error_type: Pauli,
687    ) -> QuantRS2Result<Vec<(usize, Pauli)>> {
688        // This is a simplified version - real implementation would use blossom algorithm
689        let mut corrections = Vec::new();
690
691        if defects.len() % 2 != 0 {
692            return Err(QuantRS2Error::InvalidInput(
693                "Odd number of defects".to_string(),
694            ));
695        }
696
697        // Simple greedy pairing
698        let mut paired = vec![false; defects.len()];
699
700        for i in 0..defects.len() {
701            if paired[i] {
702                continue;
703            }
704
705            // Find nearest unpaired defect
706            let mut min_dist = usize::MAX;
707            let mut min_j = i;
708
709            for j in i + 1..defects.len() {
710                if !paired[j] {
711                    let dist = self.defect_distance(defects[i], defects[j]);
712                    if dist < min_dist {
713                        min_dist = dist;
714                        min_j = j;
715                    }
716                }
717            }
718
719            if min_j != i {
720                paired[i] = true;
721                paired[min_j] = true;
722
723                // Add correction path
724                let path = self.shortest_path(defects[i], defects[min_j])?;
725                for qubit in path {
726                    corrections.push((qubit, error_type));
727                }
728            }
729        }
730
731        Ok(corrections)
732    }
733
734    /// Manhattan distance between defects
735    fn defect_distance(&self, defect1: usize, defect2: usize) -> usize {
736        // This is simplified - would need proper defect coordinates
737        (defect1 as isize - defect2 as isize).unsigned_abs()
738    }
739
740    /// Find shortest path between defects
741    fn shortest_path(&self, start: usize, end: usize) -> QuantRS2Result<Vec<usize>> {
742        // Simplified path - in practice would use proper graph traversal
743        let path = if start < end {
744            (start..=end).collect()
745        } else {
746            (end..=start).rev().collect()
747        };
748
749        Ok(path)
750    }
751}
752
753/// Color code
754#[derive(Debug, Clone)]
755pub struct ColorCode {
756    /// Number of physical qubits
757    pub n: usize,
758    /// Face coloring (red, green, blue)
759    pub faces: Vec<(Vec<usize>, Color)>,
760    /// Vertex to qubit mapping
761    pub vertex_map: HashMap<(i32, i32), usize>,
762}
763
764#[derive(Debug, Clone, Copy, PartialEq, Eq)]
765pub enum Color {
766    Red,
767    Green,
768    Blue,
769}
770
771impl ColorCode {
772    /// Create a triangular color code
773    pub fn triangular(size: usize) -> Self {
774        let mut vertex_map = HashMap::new();
775        let mut qubit_index = 0;
776
777        // Create hexagonal lattice vertices
778        for i in 0..size as i32 {
779            for j in 0..size as i32 {
780                vertex_map.insert((i, j), qubit_index);
781                qubit_index += 1;
782            }
783        }
784
785        let mut faces = Vec::new();
786
787        // Create colored faces
788        for i in 0..size as i32 - 1 {
789            for j in 0..size as i32 - 1 {
790                // Red face
791                if let (Some(&q1), Some(&q2), Some(&q3)) = (
792                    vertex_map.get(&(i, j)),
793                    vertex_map.get(&(i + 1, j)),
794                    vertex_map.get(&(i, j + 1)),
795                ) {
796                    faces.push((vec![q1, q2, q3], Color::Red));
797                }
798
799                // Green face
800                if let (Some(&q1), Some(&q2), Some(&q3)) = (
801                    vertex_map.get(&(i + 1, j)),
802                    vertex_map.get(&(i + 1, j + 1)),
803                    vertex_map.get(&(i, j + 1)),
804                ) {
805                    faces.push((vec![q1, q2, q3], Color::Green));
806                }
807            }
808        }
809
810        Self {
811            n: vertex_map.len(),
812            faces,
813            vertex_map,
814        }
815    }
816
817    /// Convert to stabilizer code
818    pub fn to_stabilizer_code(&self) -> StabilizerCode {
819        let mut x_stabilizers = Vec::new();
820        let mut z_stabilizers = Vec::new();
821
822        for (qubits, _color) in &self.faces {
823            // X-type stabilizer
824            let mut x_paulis = vec![Pauli::I; self.n];
825            for &q in qubits {
826                x_paulis[q] = Pauli::X;
827            }
828            x_stabilizers.push(PauliString::new(x_paulis));
829
830            // Z-type stabilizer
831            let mut z_paulis = vec![Pauli::I; self.n];
832            for &q in qubits {
833                z_paulis[q] = Pauli::Z;
834            }
835            z_stabilizers.push(PauliString::new(z_paulis));
836        }
837
838        let mut stabilizers = x_stabilizers;
839        stabilizers.extend(z_stabilizers);
840
841        // Simplified logical operators
842        let logical_x = vec![PauliString::new(vec![Pauli::X; self.n])];
843        let logical_z = vec![PauliString::new(vec![Pauli::Z; self.n])];
844
845        StabilizerCode::new(
846            self.n,
847            1,
848            3, // minimum distance
849            stabilizers,
850            logical_x,
851            logical_z,
852        )
853        .unwrap()
854    }
855}
856
857/// Concatenated quantum error correction codes
858#[derive(Debug, Clone)]
859pub struct ConcatenatedCode {
860    /// Inner code (applied first)
861    pub inner_code: StabilizerCode,
862    /// Outer code (applied to logical qubits of inner code)
863    pub outer_code: StabilizerCode,
864}
865
866impl ConcatenatedCode {
867    /// Create a new concatenated code
868    pub fn new(inner_code: StabilizerCode, outer_code: StabilizerCode) -> Self {
869        Self {
870            inner_code,
871            outer_code,
872        }
873    }
874
875    /// Get total number of physical qubits
876    pub fn total_qubits(&self) -> usize {
877        self.inner_code.n * self.outer_code.n
878    }
879
880    /// Get number of logical qubits
881    pub fn logical_qubits(&self) -> usize {
882        self.inner_code.k * self.outer_code.k
883    }
884
885    /// Get effective distance
886    pub fn distance(&self) -> usize {
887        self.inner_code.d * self.outer_code.d
888    }
889
890    /// Encode a logical state
891    pub fn encode(&self, logical_state: &[Complex64]) -> QuantRS2Result<Vec<Complex64>> {
892        if logical_state.len() != 1 << self.logical_qubits() {
893            return Err(QuantRS2Error::InvalidInput(
894                "Logical state dimension mismatch".to_string(),
895            ));
896        }
897
898        // First encode with outer code
899        let outer_encoded = self.encode_with_code(logical_state, &self.outer_code)?;
900
901        // Then encode each logical qubit of outer code with inner code
902        let mut final_encoded = vec![Complex64::new(0.0, 0.0); 1 << self.total_qubits()];
903
904        // This is a simplified encoding - proper implementation would require
905        // tensor product operations and proper state manipulation
906        for (i, &amplitude) in outer_encoded.iter().enumerate() {
907            if amplitude.norm() > 1e-10 {
908                final_encoded[i * (1 << self.inner_code.n)] = amplitude;
909            }
910        }
911
912        Ok(final_encoded)
913    }
914
915    /// Correct errors using concatenated decoding
916    pub fn correct_error(
917        &self,
918        encoded_state: &[Complex64],
919        error: &PauliString,
920    ) -> QuantRS2Result<Vec<Complex64>> {
921        if error.paulis.len() != self.total_qubits() {
922            return Err(QuantRS2Error::InvalidInput(
923                "Error must act on all physical qubits".to_string(),
924            ));
925        }
926
927        // Simplified error correction - apply error and return corrected state
928        // In practice, would implement syndrome extraction and decoding
929        let mut corrected = encoded_state.to_vec();
930
931        // Apply error (simplified)
932        for (i, &pauli) in error.paulis.iter().enumerate() {
933            if pauli != Pauli::I && i < corrected.len() {
934                // Simplified error application
935                corrected[i] *= -1.0;
936            }
937        }
938
939        Ok(corrected)
940    }
941
942    /// Encode with a specific code
943    fn encode_with_code(
944        &self,
945        state: &[Complex64],
946        code: &StabilizerCode,
947    ) -> QuantRS2Result<Vec<Complex64>> {
948        // Simplified encoding - proper implementation would use stabilizer formalism
949        let mut encoded = vec![Complex64::new(0.0, 0.0); 1 << code.n];
950
951        for (i, &amplitude) in state.iter().enumerate() {
952            if i < encoded.len() {
953                encoded[i * (1 << (code.n - code.k))] = amplitude;
954            }
955        }
956
957        Ok(encoded)
958    }
959}
960
961/// Hypergraph product codes for quantum LDPC
962#[derive(Debug, Clone)]
963pub struct HypergraphProductCode {
964    /// Number of physical qubits
965    pub n: usize,
966    /// Number of logical qubits
967    pub k: usize,
968    /// X-type stabilizers
969    pub x_stabilizers: Vec<PauliString>,
970    /// Z-type stabilizers
971    pub z_stabilizers: Vec<PauliString>,
972}
973
974impl HypergraphProductCode {
975    /// Create hypergraph product code from two classical codes
976    pub fn new(h1: Array2<u8>, h2: Array2<u8>) -> Self {
977        let (m1, n1) = h1.dim();
978        let (m2, n2) = h2.dim();
979
980        let n = n1 * m2 + m1 * n2;
981        let k = (n1 - m1) * (n2 - m2);
982
983        let mut x_stabilizers = Vec::new();
984        let mut z_stabilizers = Vec::new();
985
986        // X-type stabilizers: H1 ⊗ I2
987        for i in 0..m1 {
988            for j in 0..m2 {
989                let mut paulis = vec![Pauli::I; n];
990
991                // Apply H1 to first block
992                for l in 0..n1 {
993                    if h1[[i, l]] == 1 {
994                        paulis[l * m2 + j] = Pauli::X;
995                    }
996                }
997
998                x_stabilizers.push(PauliString::new(paulis));
999            }
1000        }
1001
1002        // Z-type stabilizers: I1 ⊗ H2^T
1003        for i in 0..m1 {
1004            for j in 0..m2 {
1005                let mut paulis = vec![Pauli::I; n];
1006
1007                // Apply H2^T to second block
1008                for l in 0..n2 {
1009                    if h2[[j, l]] == 1 {
1010                        paulis[n1 * m2 + i * n2 + l] = Pauli::Z;
1011                    }
1012                }
1013
1014                z_stabilizers.push(PauliString::new(paulis));
1015            }
1016        }
1017
1018        Self {
1019            n,
1020            k,
1021            x_stabilizers,
1022            z_stabilizers,
1023        }
1024    }
1025
1026    /// Convert to stabilizer code representation
1027    pub fn to_stabilizer_code(&self) -> StabilizerCode {
1028        let mut stabilizers = self.x_stabilizers.clone();
1029        stabilizers.extend(self.z_stabilizers.clone());
1030
1031        // Simplified logical operators
1032        let logical_x = vec![PauliString::new(vec![Pauli::X; self.n])];
1033        let logical_z = vec![PauliString::new(vec![Pauli::Z; self.n])];
1034
1035        StabilizerCode::new(
1036            self.n,
1037            self.k,
1038            3, // Simplified distance
1039            stabilizers,
1040            logical_x,
1041            logical_z,
1042        )
1043        .unwrap()
1044    }
1045}
1046
1047/// Quantum Low-Density Parity-Check (LDPC) codes
1048#[derive(Debug, Clone)]
1049pub struct QuantumLDPCCode {
1050    /// Number of physical qubits
1051    pub n: usize,
1052    /// Number of logical qubits
1053    pub k: usize,
1054    /// Maximum stabilizer weight
1055    pub max_weight: usize,
1056    /// X-type stabilizers
1057    pub x_stabilizers: Vec<PauliString>,
1058    /// Z-type stabilizers
1059    pub z_stabilizers: Vec<PauliString>,
1060}
1061
1062impl QuantumLDPCCode {
1063    /// Create a bicycle code (CSS LDPC)
1064    pub fn bicycle_code(a: usize, b: usize) -> Self {
1065        let n = 2 * a * b;
1066        let k = 2;
1067        let max_weight = 6; // Typical for bicycle codes
1068
1069        let mut x_stabilizers = Vec::new();
1070        let mut z_stabilizers = Vec::new();
1071
1072        // Generate bicycle code stabilizers
1073        for i in 0..a {
1074            for j in 0..b {
1075                // X-type stabilizer
1076                let mut x_paulis = vec![Pauli::I; n];
1077                let base_idx = i * b + j;
1078
1079                // Create a 6-cycle in the Cayley graph
1080                x_paulis[base_idx] = Pauli::X;
1081                x_paulis[(base_idx + 1) % (a * b)] = Pauli::X;
1082                x_paulis[(base_idx + b) % (a * b)] = Pauli::X;
1083                x_paulis[a * b + base_idx] = Pauli::X;
1084                x_paulis[a * b + (base_idx + 1) % (a * b)] = Pauli::X;
1085                x_paulis[a * b + (base_idx + b) % (a * b)] = Pauli::X;
1086
1087                x_stabilizers.push(PauliString::new(x_paulis));
1088
1089                // Z-type stabilizer (similar structure)
1090                let mut z_paulis = vec![Pauli::I; n];
1091                z_paulis[base_idx] = Pauli::Z;
1092                z_paulis[(base_idx + a) % (a * b)] = Pauli::Z;
1093                z_paulis[(base_idx + 1) % (a * b)] = Pauli::Z;
1094                z_paulis[a * b + base_idx] = Pauli::Z;
1095                z_paulis[a * b + (base_idx + a) % (a * b)] = Pauli::Z;
1096                z_paulis[a * b + (base_idx + 1) % (a * b)] = Pauli::Z;
1097
1098                z_stabilizers.push(PauliString::new(z_paulis));
1099            }
1100        }
1101
1102        Self {
1103            n,
1104            k,
1105            max_weight,
1106            x_stabilizers,
1107            z_stabilizers,
1108        }
1109    }
1110
1111    /// Convert to stabilizer code representation
1112    pub fn to_stabilizer_code(&self) -> StabilizerCode {
1113        let mut stabilizers = self.x_stabilizers.clone();
1114        stabilizers.extend(self.z_stabilizers.clone());
1115
1116        // Create logical operators (simplified)
1117        let logical_x = vec![
1118            PauliString::new(vec![Pauli::X; self.n]),
1119            PauliString::new(vec![Pauli::Y; self.n]),
1120        ];
1121        let logical_z = vec![
1122            PauliString::new(vec![Pauli::Z; self.n]),
1123            PauliString::new(vec![Pauli::Y; self.n]),
1124        ];
1125
1126        StabilizerCode::new(
1127            self.n,
1128            self.k,
1129            4, // Typical distance for bicycle codes
1130            stabilizers,
1131            logical_x,
1132            logical_z,
1133        )
1134        .unwrap()
1135    }
1136}
1137
1138/// Toric code (generalization of surface code on torus)
1139#[derive(Debug, Clone)]
1140pub struct ToricCode {
1141    /// Number of rows in the torus
1142    pub rows: usize,
1143    /// Number of columns in the torus
1144    pub cols: usize,
1145    /// Qubit mapping
1146    pub qubit_map: HashMap<(usize, usize), usize>,
1147}
1148
1149impl ToricCode {
1150    /// Create a new toric code
1151    pub fn new(rows: usize, cols: usize) -> Self {
1152        let mut qubit_map = HashMap::new();
1153        let mut qubit_index = 0;
1154
1155        // Place qubits on torus (two qubits per unit cell)
1156        for r in 0..rows {
1157            for c in 0..cols {
1158                // Horizontal edge qubit
1159                qubit_map.insert((2 * r, c), qubit_index);
1160                qubit_index += 1;
1161                // Vertical edge qubit
1162                qubit_map.insert((2 * r + 1, c), qubit_index);
1163                qubit_index += 1;
1164            }
1165        }
1166
1167        Self {
1168            rows,
1169            cols,
1170            qubit_map,
1171        }
1172    }
1173
1174    /// Get number of logical qubits
1175    pub fn logical_qubits(&self) -> usize {
1176        2 // Two logical qubits for torus topology
1177    }
1178
1179    /// Get code distance
1180    pub fn distance(&self) -> usize {
1181        self.rows.min(self.cols)
1182    }
1183
1184    /// Convert to stabilizer code representation
1185    pub fn to_stabilizer_code(&self) -> StabilizerCode {
1186        let n = self.qubit_map.len();
1187        let mut stabilizers = Vec::new();
1188
1189        // Vertex stabilizers (X-type)
1190        for r in 0..self.rows {
1191            for c in 0..self.cols {
1192                let mut paulis = vec![Pauli::I; n];
1193
1194                // Four qubits around vertex (with periodic boundary)
1195                let coords = [
1196                    (2 * r, c),
1197                    (2 * r + 1, c),
1198                    (2 * ((r + self.rows - 1) % self.rows), c),
1199                    (2 * r + 1, (c + self.cols - 1) % self.cols),
1200                ];
1201
1202                for &coord in &coords {
1203                    if let Some(&qubit) = self.qubit_map.get(&coord) {
1204                        paulis[qubit] = Pauli::X;
1205                    }
1206                }
1207
1208                stabilizers.push(PauliString::new(paulis));
1209            }
1210        }
1211
1212        // Plaquette stabilizers (Z-type)
1213        for r in 0..self.rows {
1214            for c in 0..self.cols {
1215                let mut paulis = vec![Pauli::I; n];
1216
1217                // Four qubits around plaquette
1218                let coords = [
1219                    (2 * r, c),
1220                    (2 * r, (c + 1) % self.cols),
1221                    (2 * r + 1, c),
1222                    (2 * ((r + 1) % self.rows), c),
1223                ];
1224
1225                for &coord in &coords {
1226                    if let Some(&qubit) = self.qubit_map.get(&coord) {
1227                        paulis[qubit] = Pauli::Z;
1228                    }
1229                }
1230
1231                stabilizers.push(PauliString::new(paulis));
1232            }
1233        }
1234
1235        // Logical operators (horizontal and vertical loops)
1236        let mut logical_x1 = vec![Pauli::I; n];
1237        let mut logical_z1 = vec![Pauli::I; n];
1238        let mut logical_x2 = vec![Pauli::I; n];
1239        let mut logical_z2 = vec![Pauli::I; n];
1240
1241        // Horizontal logical operators
1242        for c in 0..self.cols {
1243            if let Some(&qubit) = self.qubit_map.get(&(0, c)) {
1244                logical_x1[qubit] = Pauli::X;
1245            }
1246            if let Some(&qubit) = self.qubit_map.get(&(1, c)) {
1247                logical_z2[qubit] = Pauli::Z;
1248            }
1249        }
1250
1251        // Vertical logical operators
1252        for r in 0..self.rows {
1253            if let Some(&qubit) = self.qubit_map.get(&(2 * r + 1, 0)) {
1254                logical_x2[qubit] = Pauli::X;
1255            }
1256            if let Some(&qubit) = self.qubit_map.get(&(2 * r, 0)) {
1257                logical_z1[qubit] = Pauli::Z;
1258            }
1259        }
1260
1261        let logical_x = vec![PauliString::new(logical_x1), PauliString::new(logical_x2)];
1262        let logical_z = vec![PauliString::new(logical_z1), PauliString::new(logical_z2)];
1263
1264        StabilizerCode::new(n, 2, self.distance(), stabilizers, logical_x, logical_z).unwrap()
1265    }
1266}
1267
1268/// Machine learning-based syndrome decoder
1269pub struct MLDecoder {
1270    /// The code being decoded
1271    code: StabilizerCode,
1272    /// Neural network weights (simplified representation)
1273    weights: Vec<Vec<f64>>,
1274}
1275
1276impl MLDecoder {
1277    /// Create a new ML decoder
1278    pub fn new(code: StabilizerCode) -> Self {
1279        // Initialize random weights for a simple neural network
1280        let input_size = code.stabilizers.len();
1281        let hidden_size = 2 * input_size;
1282        let output_size = code.n * 3; // 3 Pauli operators per qubit
1283
1284        let mut weights = Vec::new();
1285
1286        // Input to hidden layer
1287        let mut w1 = Vec::new();
1288        for _ in 0..hidden_size {
1289            let mut row = Vec::new();
1290            for _ in 0..input_size {
1291                row.push((rand::random::<f64>() - 0.5) * 0.1);
1292            }
1293            w1.push(row);
1294        }
1295        weights.push(w1.into_iter().flatten().collect());
1296
1297        // Hidden to output layer
1298        let mut w2 = Vec::new();
1299        for _ in 0..output_size {
1300            let mut row = Vec::new();
1301            for _ in 0..hidden_size {
1302                row.push((rand::random::<f64>() - 0.5) * 0.1);
1303            }
1304            w2.push(row);
1305        }
1306        weights.push(w2.into_iter().flatten().collect());
1307
1308        Self { code, weights }
1309    }
1310
1311    /// Simple feedforward prediction
1312    fn predict(&self, syndrome: &[bool]) -> Vec<f64> {
1313        let input: Vec<f64> = syndrome
1314            .iter()
1315            .map(|&b| if b { 1.0 } else { 0.0 })
1316            .collect();
1317
1318        // This is a greatly simplified neural network
1319        // In practice, would use proper ML framework
1320        let hidden_size = 2 * input.len();
1321        let mut hidden = vec![0.0; hidden_size];
1322
1323        // Input to hidden
1324        for i in 0..hidden_size {
1325            for j in 0..input.len() {
1326                if i * input.len() + j < self.weights[0].len() {
1327                    hidden[i] += input[j] * self.weights[0][i * input.len() + j];
1328                }
1329            }
1330            hidden[i] = hidden[i].tanh(); // Activation function
1331        }
1332
1333        // Hidden to output
1334        let output_size = self.code.n * 3;
1335        let mut output = vec![0.0; output_size];
1336
1337        for i in 0..output_size {
1338            for j in 0..hidden_size {
1339                if i * hidden_size + j < self.weights[1].len() {
1340                    output[i] += hidden[j] * self.weights[1][i * hidden_size + j];
1341                }
1342            }
1343        }
1344
1345        output
1346    }
1347}
1348
1349impl SyndromeDecoder for MLDecoder {
1350    fn decode(&self, syndrome: &[bool]) -> QuantRS2Result<PauliString> {
1351        let prediction = self.predict(syndrome);
1352
1353        // Convert prediction to Pauli string
1354        let mut paulis = Vec::with_capacity(self.code.n);
1355
1356        for qubit in 0..self.code.n {
1357            let base_idx = qubit * 3;
1358            if base_idx + 2 < prediction.len() {
1359                let x_prob = prediction[base_idx];
1360                let y_prob = prediction[base_idx + 1];
1361                let z_prob = prediction[base_idx + 2];
1362
1363                // Choose Pauli with highest probability
1364                if x_prob > y_prob && x_prob > z_prob && x_prob > 0.5 {
1365                    paulis.push(Pauli::X);
1366                } else if y_prob > z_prob && y_prob > 0.5 {
1367                    paulis.push(Pauli::Y);
1368                } else if z_prob > 0.5 {
1369                    paulis.push(Pauli::Z);
1370                } else {
1371                    paulis.push(Pauli::I);
1372                }
1373            } else {
1374                paulis.push(Pauli::I);
1375            }
1376        }
1377
1378        Ok(PauliString::new(paulis))
1379    }
1380}
1381
1382/// Real-time error correction with hardware integration
1383/// This module provides interfaces and implementations for real-time quantum error correction
1384/// that can be integrated with quantum hardware control systems.
1385pub mod real_time {
1386    use super::*;
1387    use std::collections::VecDeque;
1388    use std::sync::{Arc, Mutex, RwLock};
1389    use std::thread;
1390    use std::time::{Duration, Instant};
1391
1392    /// Hardware interface trait for quantum error correction
1393    pub trait QuantumHardwareInterface: Send + Sync {
1394        /// Get syndrome measurements from hardware
1395        fn measure_syndromes(&self) -> QuantRS2Result<Vec<bool>>;
1396
1397        /// Apply error correction operations to hardware
1398        fn apply_correction(&self, correction: &PauliString) -> QuantRS2Result<()>;
1399
1400        /// Get hardware error rates and characterization data
1401        fn get_error_characteristics(&self) -> QuantRS2Result<HardwareErrorCharacteristics>;
1402
1403        /// Check if hardware is ready for error correction
1404        fn is_ready(&self) -> bool;
1405
1406        /// Get hardware latency statistics
1407        fn get_latency_stats(&self) -> QuantRS2Result<LatencyStats>;
1408    }
1409
1410    /// Hardware error characteristics for adaptive error correction
1411    #[derive(Debug, Clone)]
1412    pub struct HardwareErrorCharacteristics {
1413        /// Single-qubit error rates (T1, T2, gate errors)
1414        pub single_qubit_error_rates: Vec<f64>,
1415        /// Two-qubit gate error rates
1416        pub two_qubit_error_rates: Vec<f64>,
1417        /// Measurement error rates
1418        pub measurement_error_rates: Vec<f64>,
1419        /// Correlated error patterns
1420        pub correlated_errors: Vec<CorrelatedErrorPattern>,
1421        /// Error rate temporal variation
1422        pub temporal_variation: f64,
1423    }
1424
1425    /// Correlated error pattern for adaptive decoding
1426    #[derive(Debug, Clone)]
1427    pub struct CorrelatedErrorPattern {
1428        pub qubits: Vec<usize>,
1429        pub probability: f64,
1430        pub pauli_pattern: PauliString,
1431    }
1432
1433    /// Performance and latency statistics
1434    #[derive(Debug, Clone)]
1435    pub struct LatencyStats {
1436        pub syndrome_measurement_time: Duration,
1437        pub decoding_time: Duration,
1438        pub correction_application_time: Duration,
1439        pub total_cycle_time: Duration,
1440        pub throughput_hz: f64,
1441    }
1442
1443    /// Real-time syndrome stream processor
1444    pub struct SyndromeStreamProcessor {
1445        buffer: Arc<Mutex<VecDeque<SyndromePacket>>>,
1446        decoder: Arc<dyn SyndromeDecoder + Send + Sync>,
1447        hardware: Arc<dyn QuantumHardwareInterface>,
1448        performance_monitor: Arc<RwLock<PerformanceMonitor>>,
1449        config: RealTimeConfig,
1450    }
1451
1452    /// Syndrome packet with timing information
1453    #[derive(Debug, Clone)]
1454    pub struct SyndromePacket {
1455        pub syndrome: Vec<bool>,
1456        pub timestamp: Instant,
1457        pub sequence_number: u64,
1458        pub measurement_fidelity: f64,
1459    }
1460
1461    /// Real-time error correction configuration
1462    #[derive(Debug, Clone)]
1463    pub struct RealTimeConfig {
1464        pub max_latency: Duration,
1465        pub buffer_size: usize,
1466        pub parallel_workers: usize,
1467        pub adaptive_threshold: bool,
1468        pub hardware_feedback: bool,
1469        pub performance_logging: bool,
1470    }
1471
1472    impl Default for RealTimeConfig {
1473        fn default() -> Self {
1474            Self {
1475                max_latency: Duration::from_micros(100), // 100μs for fast correction
1476                buffer_size: 1000,
1477                parallel_workers: 4,
1478                adaptive_threshold: true,
1479                hardware_feedback: true,
1480                performance_logging: true,
1481            }
1482        }
1483    }
1484
1485    /// Performance monitoring for real-time error correction
1486    #[derive(Debug, Clone)]
1487    pub struct PerformanceMonitor {
1488        pub cycles_processed: u64,
1489        pub errors_corrected: u64,
1490        pub false_positives: u64,
1491        pub latency_histogram: Vec<Duration>,
1492        pub throughput_samples: VecDeque<f64>,
1493        pub start_time: Instant,
1494    }
1495
1496    impl PerformanceMonitor {
1497        pub fn new() -> Self {
1498            Self {
1499                cycles_processed: 0,
1500                errors_corrected: 0,
1501                false_positives: 0,
1502                latency_histogram: Vec::new(),
1503                throughput_samples: VecDeque::new(),
1504                start_time: Instant::now(),
1505            }
1506        }
1507
1508        pub fn record_cycle(&mut self, latency: Duration, error_corrected: bool) {
1509            self.cycles_processed += 1;
1510            if error_corrected {
1511                self.errors_corrected += 1;
1512            }
1513            self.latency_histogram.push(latency);
1514
1515            // Calculate current throughput
1516            let elapsed = self.start_time.elapsed();
1517            if elapsed.as_secs_f64() > 0.0 {
1518                let throughput = self.cycles_processed as f64 / elapsed.as_secs_f64();
1519                self.throughput_samples.push_back(throughput);
1520
1521                // Keep only recent samples
1522                if self.throughput_samples.len() > 100 {
1523                    self.throughput_samples.pop_front();
1524                }
1525            }
1526        }
1527
1528        pub fn average_latency(&self) -> Duration {
1529            if self.latency_histogram.is_empty() {
1530                return Duration::from_nanos(0);
1531            }
1532
1533            let total_nanos: u64 = self
1534                .latency_histogram
1535                .iter()
1536                .map(|d| d.as_nanos() as u64)
1537                .sum();
1538            Duration::from_nanos(total_nanos / self.latency_histogram.len() as u64)
1539        }
1540
1541        pub fn current_throughput(&self) -> f64 {
1542            self.throughput_samples.back().copied().unwrap_or(0.0)
1543        }
1544
1545        pub fn error_correction_rate(&self) -> f64 {
1546            if self.cycles_processed == 0 {
1547                0.0
1548            } else {
1549                self.errors_corrected as f64 / self.cycles_processed as f64
1550            }
1551        }
1552    }
1553
1554    impl SyndromeStreamProcessor {
1555        /// Create a new real-time syndrome stream processor
1556        pub fn new(
1557            decoder: Arc<dyn SyndromeDecoder + Send + Sync>,
1558            hardware: Arc<dyn QuantumHardwareInterface>,
1559            config: RealTimeConfig,
1560        ) -> Self {
1561            Self {
1562                buffer: Arc::new(Mutex::new(VecDeque::with_capacity(config.buffer_size))),
1563                decoder,
1564                hardware,
1565                performance_monitor: Arc::new(RwLock::new(PerformanceMonitor::new())),
1566                config,
1567            }
1568        }
1569
1570        /// Start real-time error correction processing
1571        pub fn start_processing(&self) -> QuantRS2Result<thread::JoinHandle<()>> {
1572            let buffer = Arc::clone(&self.buffer);
1573            let decoder = Arc::clone(&self.decoder);
1574            let hardware = Arc::clone(&self.hardware);
1575            let monitor = Arc::clone(&self.performance_monitor);
1576            let config = self.config.clone();
1577
1578            let handle = thread::spawn(move || {
1579                let mut sequence_number = 0u64;
1580
1581                loop {
1582                    let cycle_start = Instant::now();
1583
1584                    // Check if hardware is ready
1585                    if !hardware.is_ready() {
1586                        thread::sleep(Duration::from_micros(10));
1587                        continue;
1588                    }
1589
1590                    // Measure syndromes from hardware
1591                    match hardware.measure_syndromes() {
1592                        Ok(syndrome) => {
1593                            let packet = SyndromePacket {
1594                                syndrome: syndrome.clone(),
1595                                timestamp: Instant::now(),
1596                                sequence_number,
1597                                measurement_fidelity: 0.99, // Would be measured from hardware
1598                            };
1599
1600                            // Add to buffer
1601                            {
1602                                let mut buf = buffer.lock().unwrap();
1603                                if buf.len() >= config.buffer_size {
1604                                    buf.pop_front(); // Remove oldest if buffer full
1605                                }
1606                                buf.push_back(packet);
1607                            }
1608
1609                            // Process syndrome if not all zeros (no error)
1610                            let has_error = syndrome.iter().any(|&x| x);
1611                            let mut error_corrected = false;
1612
1613                            if has_error {
1614                                match decoder.decode(&syndrome) {
1615                                    Ok(correction) => {
1616                                        match hardware.apply_correction(&correction) {
1617                                            Ok(()) => {
1618                                                error_corrected = true;
1619                                            }
1620                                            Err(e) => {
1621                                                eprintln!("Failed to apply correction: {}", e);
1622                                            }
1623                                        }
1624                                    }
1625                                    Err(e) => {
1626                                        eprintln!("Decoding failed: {}", e);
1627                                    }
1628                                }
1629                            }
1630
1631                            // Record performance metrics
1632                            let cycle_time = cycle_start.elapsed();
1633                            {
1634                                let mut mon = monitor.write().unwrap();
1635                                mon.record_cycle(cycle_time, error_corrected);
1636                            }
1637
1638                            // Check latency constraint
1639                            if cycle_time > config.max_latency {
1640                                eprintln!("Warning: Error correction cycle exceeded max latency: {:?} > {:?}", 
1641                                         cycle_time, config.max_latency);
1642                            }
1643
1644                            sequence_number += 1;
1645                        }
1646                        Err(e) => {
1647                            eprintln!("Failed to measure syndromes: {}", e);
1648                            thread::sleep(Duration::from_micros(10));
1649                        }
1650                    }
1651
1652                    // Small sleep to prevent busy waiting
1653                    thread::sleep(Duration::from_micros(1));
1654                }
1655            });
1656
1657            Ok(handle)
1658        }
1659
1660        /// Get current performance statistics
1661        pub fn get_performance_stats(&self) -> PerformanceMonitor {
1662            (*self.performance_monitor.read().unwrap()).clone()
1663        }
1664
1665        /// Get syndrome buffer status
1666        pub fn get_buffer_status(&self) -> (usize, usize) {
1667            let buffer = self.buffer.lock().unwrap();
1668            (buffer.len(), self.config.buffer_size)
1669        }
1670    }
1671
1672    /// Adaptive threshold decoder that learns from hardware feedback
1673    pub struct AdaptiveThresholdDecoder {
1674        base_decoder: Arc<dyn SyndromeDecoder + Send + Sync>,
1675        error_characteristics: Arc<RwLock<HardwareErrorCharacteristics>>,
1676        learning_rate: f64,
1677        threshold_history: VecDeque<f64>,
1678    }
1679
1680    impl AdaptiveThresholdDecoder {
1681        pub fn new(
1682            base_decoder: Arc<dyn SyndromeDecoder + Send + Sync>,
1683            initial_characteristics: HardwareErrorCharacteristics,
1684        ) -> Self {
1685            Self {
1686                base_decoder,
1687                error_characteristics: Arc::new(RwLock::new(initial_characteristics)),
1688                learning_rate: 0.01,
1689                threshold_history: VecDeque::with_capacity(1000),
1690            }
1691        }
1692
1693        /// Update error characteristics based on hardware feedback
1694        pub fn update_characteristics(
1695            &mut self,
1696            new_characteristics: HardwareErrorCharacteristics,
1697        ) {
1698            *self.error_characteristics.write().unwrap() = new_characteristics;
1699        }
1700
1701        /// Adapt thresholds based on observed error patterns
1702        pub fn adapt_thresholds(&mut self, syndrome: &[bool], correction_success: bool) {
1703            let error_weight = syndrome.iter().filter(|&&x| x).count() as f64;
1704
1705            if correction_success {
1706                // Increase confidence in current threshold
1707                self.threshold_history.push_back(error_weight);
1708            } else {
1709                // Decrease threshold to be more aggressive
1710                self.threshold_history.push_back(error_weight * 0.8);
1711            }
1712
1713            if self.threshold_history.len() > 100 {
1714                self.threshold_history.pop_front();
1715            }
1716        }
1717
1718        /// Get current adaptive threshold
1719        pub fn current_threshold(&self) -> f64 {
1720            if self.threshold_history.is_empty() {
1721                return 1.0; // Default threshold
1722            }
1723
1724            let sum: f64 = self.threshold_history.iter().sum();
1725            sum / self.threshold_history.len() as f64
1726        }
1727    }
1728
1729    impl SyndromeDecoder for AdaptiveThresholdDecoder {
1730        fn decode(&self, syndrome: &[bool]) -> QuantRS2Result<PauliString> {
1731            let threshold = self.current_threshold();
1732            let error_weight = syndrome.iter().filter(|&&x| x).count() as f64;
1733
1734            // Use adaptive threshold to decide decoding strategy
1735            if error_weight > threshold {
1736                // High-confidence error: use more aggressive decoding
1737                self.base_decoder.decode(syndrome)
1738            } else {
1739                // Low-confidence: use conservative approach or no correction
1740                Ok(PauliString::new(vec![Pauli::I; syndrome.len()]))
1741            }
1742        }
1743    }
1744
1745    /// Parallel syndrome decoder for high-throughput error correction
1746    pub struct ParallelSyndromeDecoder {
1747        base_decoder: Arc<dyn SyndromeDecoder + Send + Sync>,
1748        worker_count: usize,
1749    }
1750
1751    impl ParallelSyndromeDecoder {
1752        pub fn new(
1753            base_decoder: Arc<dyn SyndromeDecoder + Send + Sync>,
1754            worker_count: usize,
1755        ) -> Self {
1756            Self {
1757                base_decoder,
1758                worker_count,
1759            }
1760        }
1761
1762        /// Decode multiple syndromes in parallel
1763        pub fn decode_batch(&self, syndromes: &[Vec<bool>]) -> QuantRS2Result<Vec<PauliString>> {
1764            let chunk_size = (syndromes.len() + self.worker_count - 1) / self.worker_count;
1765            let mut handles = Vec::new();
1766
1767            for chunk in syndromes.chunks(chunk_size) {
1768                let decoder = Arc::clone(&self.base_decoder);
1769                let chunk_data: Vec<Vec<bool>> = chunk.to_vec();
1770
1771                let handle = thread::spawn(move || {
1772                    let mut results = Vec::new();
1773                    for syndrome in chunk_data {
1774                        match decoder.decode(&syndrome) {
1775                            Ok(correction) => results.push(correction),
1776                            Err(_) => {
1777                                results.push(PauliString::new(vec![Pauli::I; syndrome.len()]))
1778                            }
1779                        }
1780                    }
1781                    results
1782                });
1783
1784                handles.push(handle);
1785            }
1786
1787            let mut all_results = Vec::new();
1788            for handle in handles {
1789                match handle.join() {
1790                    Ok(chunk_results) => all_results.extend(chunk_results),
1791                    Err(_) => {
1792                        return Err(QuantRS2Error::ComputationError(
1793                            "Parallel decoding failed".to_string(),
1794                        ))
1795                    }
1796                }
1797            }
1798
1799            Ok(all_results)
1800        }
1801    }
1802
1803    impl SyndromeDecoder for ParallelSyndromeDecoder {
1804        fn decode(&self, syndrome: &[bool]) -> QuantRS2Result<PauliString> {
1805            self.base_decoder.decode(syndrome)
1806        }
1807    }
1808
1809    /// Mock hardware interface for testing
1810    pub struct MockQuantumHardware {
1811        error_rate: f64,
1812        latency: Duration,
1813        syndrome_length: usize,
1814    }
1815
1816    impl MockQuantumHardware {
1817        pub fn new(error_rate: f64, latency: Duration, syndrome_length: usize) -> Self {
1818            Self {
1819                error_rate,
1820                latency,
1821                syndrome_length,
1822            }
1823        }
1824    }
1825
1826    impl QuantumHardwareInterface for MockQuantumHardware {
1827        fn measure_syndromes(&self) -> QuantRS2Result<Vec<bool>> {
1828            thread::sleep(self.latency);
1829
1830            // Simulate random syndrome measurements
1831            let mut syndrome = vec![false; self.syndrome_length];
1832            for i in 0..self.syndrome_length {
1833                if rand::random::<f64>() < self.error_rate {
1834                    syndrome[i] = true;
1835                }
1836            }
1837
1838            Ok(syndrome)
1839        }
1840
1841        fn apply_correction(&self, _correction: &PauliString) -> QuantRS2Result<()> {
1842            thread::sleep(self.latency / 2);
1843            Ok(())
1844        }
1845
1846        fn get_error_characteristics(&self) -> QuantRS2Result<HardwareErrorCharacteristics> {
1847            Ok(HardwareErrorCharacteristics {
1848                single_qubit_error_rates: vec![self.error_rate; self.syndrome_length],
1849                two_qubit_error_rates: vec![self.error_rate * 10.0; self.syndrome_length / 2],
1850                measurement_error_rates: vec![self.error_rate * 0.1; self.syndrome_length],
1851                correlated_errors: Vec::new(),
1852                temporal_variation: 0.01,
1853            })
1854        }
1855
1856        fn is_ready(&self) -> bool {
1857            true
1858        }
1859
1860        fn get_latency_stats(&self) -> QuantRS2Result<LatencyStats> {
1861            Ok(LatencyStats {
1862                syndrome_measurement_time: self.latency,
1863                decoding_time: Duration::from_micros(10),
1864                correction_application_time: self.latency / 2,
1865                total_cycle_time: self.latency + Duration::from_micros(10) + self.latency / 2,
1866                throughput_hz: 1.0 / (self.latency.as_secs_f64() * 1.5 + 10e-6),
1867            })
1868        }
1869    }
1870}
1871
1872/// Logical gate synthesis for fault-tolerant computing
1873/// This module provides the ability to implement logical operations on encoded quantum states
1874/// without decoding them first, which is essential for fault-tolerant quantum computation.
1875pub mod logical_gates {
1876    use super::*;
1877
1878    /// Logical gate operation that can be applied to encoded quantum states
1879    #[derive(Debug, Clone)]
1880    pub struct LogicalGateOp {
1881        /// The stabilizer code this logical gate operates on
1882        pub code: StabilizerCode,
1883        /// Physical gate operations that implement the logical gate
1884        pub physical_operations: Vec<PhysicalGateSequence>,
1885        /// Which logical qubit(s) this gate acts on
1886        pub logical_qubits: Vec<usize>,
1887        /// Error propagation analysis
1888        pub error_propagation: ErrorPropagationAnalysis,
1889    }
1890
1891    /// Sequence of physical gates that implement part of a logical gate
1892    #[derive(Debug, Clone)]
1893    pub struct PhysicalGateSequence {
1894        /// Target physical qubits
1895        pub target_qubits: Vec<usize>,
1896        /// Pauli operators to apply
1897        pub pauli_sequence: Vec<PauliString>,
1898        /// Timing constraints (if any)
1899        pub timing_constraints: Option<TimingConstraints>,
1900        /// Error correction rounds needed
1901        pub error_correction_rounds: usize,
1902    }
1903
1904    /// Analysis of how errors propagate through logical gates
1905    #[derive(Debug, Clone)]
1906    pub struct ErrorPropagationAnalysis {
1907        /// How single-qubit errors propagate
1908        pub single_qubit_propagation: Vec<ErrorPropagationPath>,
1909        /// How two-qubit errors propagate
1910        pub two_qubit_propagation: Vec<ErrorPropagationPath>,
1911        /// Maximum error weight after gate application
1912        pub max_error_weight: usize,
1913        /// Fault-tolerance threshold
1914        pub fault_tolerance_threshold: f64,
1915    }
1916
1917    /// Path of error propagation through a logical gate
1918    #[derive(Debug, Clone)]
1919    pub struct ErrorPropagationPath {
1920        /// Initial error location
1921        pub initial_error: PauliString,
1922        /// Final error after gate application
1923        pub final_error: PauliString,
1924        /// Probability of this propagation path
1925        pub probability: f64,
1926        /// Whether this path can be corrected
1927        pub correctable: bool,
1928    }
1929
1930    /// Timing constraints for fault-tolerant gate implementation
1931    #[derive(Debug, Clone)]
1932    pub struct TimingConstraints {
1933        /// Maximum time between operations
1934        pub max_operation_time: std::time::Duration,
1935        /// Required synchronization points
1936        pub sync_points: Vec<usize>,
1937        /// Parallel operation groups
1938        pub parallel_groups: Vec<Vec<usize>>,
1939    }
1940
1941    /// Logical gate synthesis engine
1942    pub struct LogicalGateSynthesizer {
1943        /// Available error correction codes
1944        codes: Vec<StabilizerCode>,
1945        /// Synthesis strategies
1946        strategies: Vec<SynthesisStrategy>,
1947        /// Error threshold for fault tolerance
1948        error_threshold: f64,
1949    }
1950
1951    /// Strategy for synthesizing logical gates
1952    #[derive(Debug, Clone)]
1953    pub enum SynthesisStrategy {
1954        /// Transversal gates (apply same gate to all qubits)
1955        Transversal,
1956        /// Magic state distillation and injection
1957        MagicStateDistillation,
1958        /// Lattice surgery operations
1959        LatticeSurgery,
1960        /// Code deformation
1961        CodeDeformation,
1962        /// Braiding operations (for topological codes)
1963        Braiding,
1964    }
1965
1966    impl LogicalGateSynthesizer {
1967        /// Create a new logical gate synthesizer
1968        pub fn new(error_threshold: f64) -> Self {
1969            Self {
1970                codes: Vec::new(),
1971                strategies: vec![
1972                    SynthesisStrategy::Transversal,
1973                    SynthesisStrategy::MagicStateDistillation,
1974                    SynthesisStrategy::LatticeSurgery,
1975                ],
1976                error_threshold,
1977            }
1978        }
1979
1980        /// Add an error correction code to the synthesizer
1981        pub fn add_code(&mut self, code: StabilizerCode) {
1982            self.codes.push(code);
1983        }
1984
1985        /// Synthesize a logical Pauli-X gate
1986        pub fn synthesize_logical_x(
1987            &self,
1988            code: &StabilizerCode,
1989            logical_qubit: usize,
1990        ) -> QuantRS2Result<LogicalGateOp> {
1991            if logical_qubit >= code.k {
1992                return Err(QuantRS2Error::InvalidInput(format!(
1993                    "Logical qubit {} exceeds code dimension {}",
1994                    logical_qubit, code.k
1995                )));
1996            }
1997
1998            // For most stabilizer codes, logical X can be implemented transversally
1999            let logical_x_operator = &code.logical_x[logical_qubit];
2000
2001            let physical_ops = vec![PhysicalGateSequence {
2002                target_qubits: (0..code.n).collect(),
2003                pauli_sequence: vec![logical_x_operator.clone()],
2004                timing_constraints: None,
2005                error_correction_rounds: 1,
2006            }];
2007
2008            let error_analysis = self.analyze_error_propagation(code, &physical_ops)?;
2009
2010            Ok(LogicalGateOp {
2011                code: code.clone(),
2012                physical_operations: physical_ops,
2013                logical_qubits: vec![logical_qubit],
2014                error_propagation: error_analysis,
2015            })
2016        }
2017
2018        /// Synthesize a logical Pauli-Z gate
2019        pub fn synthesize_logical_z(
2020            &self,
2021            code: &StabilizerCode,
2022            logical_qubit: usize,
2023        ) -> QuantRS2Result<LogicalGateOp> {
2024            if logical_qubit >= code.k {
2025                return Err(QuantRS2Error::InvalidInput(format!(
2026                    "Logical qubit {} exceeds code dimension {}",
2027                    logical_qubit, code.k
2028                )));
2029            }
2030
2031            let logical_z_operator = &code.logical_z[logical_qubit];
2032
2033            let physical_ops = vec![PhysicalGateSequence {
2034                target_qubits: (0..code.n).collect(),
2035                pauli_sequence: vec![logical_z_operator.clone()],
2036                timing_constraints: None,
2037                error_correction_rounds: 1,
2038            }];
2039
2040            let error_analysis = self.analyze_error_propagation(code, &physical_ops)?;
2041
2042            Ok(LogicalGateOp {
2043                code: code.clone(),
2044                physical_operations: physical_ops,
2045                logical_qubits: vec![logical_qubit],
2046                error_propagation: error_analysis,
2047            })
2048        }
2049
2050        /// Synthesize a logical Hadamard gate
2051        pub fn synthesize_logical_h(
2052            &self,
2053            code: &StabilizerCode,
2054            logical_qubit: usize,
2055        ) -> QuantRS2Result<LogicalGateOp> {
2056            if logical_qubit >= code.k {
2057                return Err(QuantRS2Error::InvalidInput(format!(
2058                    "Logical qubit {} exceeds code dimension {}",
2059                    logical_qubit, code.k
2060                )));
2061            }
2062
2063            // Hadamard can often be implemented transversally
2064            // H|x⟩ = |+⟩ if x=0, |-⟩ if x=1, and H swaps X and Z operators
2065            let physical_ops = vec![PhysicalGateSequence {
2066                target_qubits: (0..code.n).collect(),
2067                pauli_sequence: self.generate_hadamard_sequence(code, logical_qubit)?,
2068                timing_constraints: Some(TimingConstraints {
2069                    max_operation_time: std::time::Duration::from_micros(100),
2070                    sync_points: vec![code.n / 2],
2071                    parallel_groups: vec![(0..code.n).collect()],
2072                }),
2073                error_correction_rounds: 2, // Need more rounds for non-Pauli gates
2074            }];
2075
2076            let error_analysis = self.analyze_error_propagation(code, &physical_ops)?;
2077
2078            Ok(LogicalGateOp {
2079                code: code.clone(),
2080                physical_operations: physical_ops,
2081                logical_qubits: vec![logical_qubit],
2082                error_propagation: error_analysis,
2083            })
2084        }
2085
2086        /// Synthesize a logical CNOT gate
2087        pub fn synthesize_logical_cnot(
2088            &self,
2089            code: &StabilizerCode,
2090            control_qubit: usize,
2091            target_qubit: usize,
2092        ) -> QuantRS2Result<LogicalGateOp> {
2093            if control_qubit >= code.k || target_qubit >= code.k {
2094                return Err(QuantRS2Error::InvalidInput(
2095                    "Control or target qubit exceeds code dimension".to_string(),
2096                ));
2097            }
2098
2099            if control_qubit == target_qubit {
2100                return Err(QuantRS2Error::InvalidInput(
2101                    "Control and target qubits must be different".to_string(),
2102                ));
2103            }
2104
2105            // CNOT can be implemented transversally for many codes
2106            let cnot_sequence = self.generate_cnot_sequence(code, control_qubit, target_qubit)?;
2107
2108            let physical_ops = vec![PhysicalGateSequence {
2109                target_qubits: (0..code.n).collect(),
2110                pauli_sequence: cnot_sequence,
2111                timing_constraints: Some(TimingConstraints {
2112                    max_operation_time: std::time::Duration::from_micros(200),
2113                    sync_points: vec![],
2114                    parallel_groups: vec![], // CNOT requires sequential operations
2115                }),
2116                error_correction_rounds: 2,
2117            }];
2118
2119            let error_analysis = self.analyze_error_propagation(code, &physical_ops)?;
2120
2121            Ok(LogicalGateOp {
2122                code: code.clone(),
2123                physical_operations: physical_ops,
2124                logical_qubits: vec![control_qubit, target_qubit],
2125                error_propagation: error_analysis,
2126            })
2127        }
2128
2129        /// Synthesize a T gate using magic state distillation
2130        pub fn synthesize_logical_t(
2131            &self,
2132            code: &StabilizerCode,
2133            logical_qubit: usize,
2134        ) -> QuantRS2Result<LogicalGateOp> {
2135            if logical_qubit >= code.k {
2136                return Err(QuantRS2Error::InvalidInput(format!(
2137                    "Logical qubit {} exceeds code dimension {}",
2138                    logical_qubit, code.k
2139                )));
2140            }
2141
2142            // T gate requires magic state distillation for fault-tolerant implementation
2143            let magic_state_prep = self.prepare_magic_state(code)?;
2144            let injection_sequence =
2145                self.inject_magic_state(code, logical_qubit, &magic_state_prep)?;
2146
2147            let physical_ops = vec![magic_state_prep, injection_sequence];
2148
2149            let error_analysis = self.analyze_error_propagation(code, &physical_ops)?;
2150
2151            Ok(LogicalGateOp {
2152                code: code.clone(),
2153                physical_operations: physical_ops,
2154                logical_qubits: vec![logical_qubit],
2155                error_propagation: error_analysis,
2156            })
2157        }
2158
2159        /// Generate Hadamard gate sequence for a logical qubit
2160        fn generate_hadamard_sequence(
2161            &self,
2162            code: &StabilizerCode,
2163            _logical_qubit: usize,
2164        ) -> QuantRS2Result<Vec<PauliString>> {
2165            // For transversal Hadamard, apply H to each physical qubit
2166            // This swaps X and Z logical operators
2167            let mut sequence = Vec::new();
2168
2169            // Create a Pauli string that represents applying H to all qubits
2170            // Since H|0⟩ = |+⟩ = (|0⟩ + |1⟩)/√2 and H|1⟩ = |-⟩ = (|0⟩ - |1⟩)/√2
2171            // We represent this as identity for simplicity in this implementation
2172            sequence.push(PauliString::new(vec![Pauli::I; code.n]));
2173
2174            Ok(sequence)
2175        }
2176
2177        /// Generate CNOT gate sequence for logical qubits
2178        fn generate_cnot_sequence(
2179            &self,
2180            code: &StabilizerCode,
2181            _control: usize,
2182            _target: usize,
2183        ) -> QuantRS2Result<Vec<PauliString>> {
2184            // For transversal CNOT, apply CNOT between corresponding physical qubits
2185            // This is a simplified implementation
2186            let mut sequence = Vec::new();
2187
2188            // Represent CNOT as identity for this implementation
2189            sequence.push(PauliString::new(vec![Pauli::I; code.n]));
2190
2191            Ok(sequence)
2192        }
2193
2194        /// Prepare magic state for T gate implementation
2195        fn prepare_magic_state(
2196            &self,
2197            code: &StabilizerCode,
2198        ) -> QuantRS2Result<PhysicalGateSequence> {
2199            // Magic state |T⟩ = (|0⟩ + e^(iπ/4)|1⟩)/√2 for T gate
2200            // This is a simplified implementation
2201            Ok(PhysicalGateSequence {
2202                target_qubits: (0..code.n).collect(),
2203                pauli_sequence: vec![PauliString::new(vec![Pauli::I; code.n])],
2204                timing_constraints: Some(TimingConstraints {
2205                    max_operation_time: std::time::Duration::from_millis(1),
2206                    sync_points: vec![],
2207                    parallel_groups: vec![(0..code.n).collect()],
2208                }),
2209                error_correction_rounds: 5, // Magic state prep requires many rounds
2210            })
2211        }
2212
2213        /// Inject magic state to implement T gate
2214        fn inject_magic_state(
2215            &self,
2216            code: &StabilizerCode,
2217            _logical_qubit: usize,
2218            _magic_state: &PhysicalGateSequence,
2219        ) -> QuantRS2Result<PhysicalGateSequence> {
2220            // Inject magic state using teleportation-based approach
2221            Ok(PhysicalGateSequence {
2222                target_qubits: (0..code.n).collect(),
2223                pauli_sequence: vec![PauliString::new(vec![Pauli::I; code.n])],
2224                timing_constraints: Some(TimingConstraints {
2225                    max_operation_time: std::time::Duration::from_micros(500),
2226                    sync_points: vec![code.n / 2],
2227                    parallel_groups: vec![],
2228                }),
2229                error_correction_rounds: 3,
2230            })
2231        }
2232
2233        /// Analyze error propagation through logical gate operations
2234        fn analyze_error_propagation(
2235            &self,
2236            code: &StabilizerCode,
2237            physical_ops: &[PhysicalGateSequence],
2238        ) -> QuantRS2Result<ErrorPropagationAnalysis> {
2239            let mut single_qubit_propagation = Vec::new();
2240            let mut two_qubit_propagation = Vec::new();
2241            let mut max_error_weight = 0;
2242
2243            // Analyze single-qubit errors
2244            for i in 0..code.n {
2245                for pauli in [Pauli::X, Pauli::Y, Pauli::Z] {
2246                    let mut initial_error = vec![Pauli::I; code.n];
2247                    initial_error[i] = pauli;
2248                    let initial_pauli_string = PauliString::new(initial_error);
2249
2250                    // Simulate error propagation through the logical gate
2251                    let final_error = self.propagate_error(&initial_pauli_string, physical_ops)?;
2252                    let error_weight = final_error.weight();
2253                    max_error_weight = max_error_weight.max(error_weight);
2254
2255                    // Check if error is correctable
2256                    let correctable = self.is_error_correctable(code, &final_error)?;
2257
2258                    single_qubit_propagation.push(ErrorPropagationPath {
2259                        initial_error: initial_pauli_string,
2260                        final_error,
2261                        probability: 1.0 / (3.0 * code.n as f64), // Uniform for now
2262                        correctable,
2263                    });
2264                }
2265            }
2266
2267            // Analyze two-qubit errors (simplified)
2268            for i in 0..code.n.min(5) {
2269                // Limit to first 5 for performance
2270                for j in (i + 1)..code.n.min(5) {
2271                    let mut initial_error = vec![Pauli::I; code.n];
2272                    initial_error[i] = Pauli::X;
2273                    initial_error[j] = Pauli::X;
2274                    let initial_pauli_string = PauliString::new(initial_error);
2275
2276                    let final_error = self.propagate_error(&initial_pauli_string, physical_ops)?;
2277                    let error_weight = final_error.weight();
2278                    max_error_weight = max_error_weight.max(error_weight);
2279
2280                    let correctable = self.is_error_correctable(code, &final_error)?;
2281
2282                    two_qubit_propagation.push(ErrorPropagationPath {
2283                        initial_error: initial_pauli_string,
2284                        final_error,
2285                        probability: 1.0 / (code.n * (code.n - 1)) as f64,
2286                        correctable,
2287                    });
2288                }
2289            }
2290
2291            Ok(ErrorPropagationAnalysis {
2292                single_qubit_propagation,
2293                two_qubit_propagation,
2294                max_error_weight,
2295                fault_tolerance_threshold: self.error_threshold,
2296            })
2297        }
2298
2299        /// Propagate an error through physical gate operations
2300        fn propagate_error(
2301            &self,
2302            error: &PauliString,
2303            _physical_ops: &[PhysicalGateSequence],
2304        ) -> QuantRS2Result<PauliString> {
2305            // Simplified error propagation - in reality this would track
2306            // how each gate operation transforms the error
2307            Ok(error.clone())
2308        }
2309
2310        /// Check if an error is correctable by the code
2311        fn is_error_correctable(
2312            &self,
2313            code: &StabilizerCode,
2314            error: &PauliString,
2315        ) -> QuantRS2Result<bool> {
2316            // An error is correctable if its weight is less than (d+1)/2
2317            // where d is the minimum distance of the code
2318            Ok(error.weight() <= (code.d + 1) / 2)
2319        }
2320    }
2321
2322    /// Logical circuit synthesis for fault-tolerant quantum computing
2323    pub struct LogicalCircuitSynthesizer {
2324        gate_synthesizer: LogicalGateSynthesizer,
2325        optimization_passes: Vec<OptimizationPass>,
2326    }
2327
2328    /// Optimization pass for logical circuits
2329    #[derive(Debug, Clone)]
2330    pub enum OptimizationPass {
2331        /// Combine adjacent Pauli gates
2332        PauliOptimization,
2333        /// Optimize error correction rounds
2334        ErrorCorrectionOptimization,
2335        /// Parallelize commuting operations
2336        ParallelizationOptimization,
2337        /// Reduce magic state usage
2338        MagicStateOptimization,
2339    }
2340
2341    impl LogicalCircuitSynthesizer {
2342        pub fn new(error_threshold: f64) -> Self {
2343            Self {
2344                gate_synthesizer: LogicalGateSynthesizer::new(error_threshold),
2345                optimization_passes: vec![
2346                    OptimizationPass::PauliOptimization,
2347                    OptimizationPass::ErrorCorrectionOptimization,
2348                    OptimizationPass::ParallelizationOptimization,
2349                    OptimizationPass::MagicStateOptimization,
2350                ],
2351            }
2352        }
2353
2354        /// Add a code to the synthesizer
2355        pub fn add_code(&mut self, code: StabilizerCode) {
2356            self.gate_synthesizer.add_code(code);
2357        }
2358
2359        /// Synthesize a logical circuit from a sequence of gate names
2360        pub fn synthesize_circuit(
2361            &self,
2362            code: &StabilizerCode,
2363            gate_sequence: &[(&str, Vec<usize>)], // (gate_name, target_qubits)
2364        ) -> QuantRS2Result<Vec<LogicalGateOp>> {
2365            let mut logical_gates = Vec::new();
2366
2367            for (gate_name, targets) in gate_sequence {
2368                match gate_name.to_lowercase().as_str() {
2369                    "x" | "pauli_x" => {
2370                        if targets.len() != 1 {
2371                            return Err(QuantRS2Error::InvalidInput(
2372                                "X gate requires exactly one target".to_string(),
2373                            ));
2374                        }
2375                        logical_gates.push(
2376                            self.gate_synthesizer
2377                                .synthesize_logical_x(code, targets[0])?,
2378                        );
2379                    }
2380                    "z" | "pauli_z" => {
2381                        if targets.len() != 1 {
2382                            return Err(QuantRS2Error::InvalidInput(
2383                                "Z gate requires exactly one target".to_string(),
2384                            ));
2385                        }
2386                        logical_gates.push(
2387                            self.gate_synthesizer
2388                                .synthesize_logical_z(code, targets[0])?,
2389                        );
2390                    }
2391                    "h" | "hadamard" => {
2392                        if targets.len() != 1 {
2393                            return Err(QuantRS2Error::InvalidInput(
2394                                "H gate requires exactly one target".to_string(),
2395                            ));
2396                        }
2397                        logical_gates.push(
2398                            self.gate_synthesizer
2399                                .synthesize_logical_h(code, targets[0])?,
2400                        );
2401                    }
2402                    "cnot" | "cx" => {
2403                        if targets.len() != 2 {
2404                            return Err(QuantRS2Error::InvalidInput(
2405                                "CNOT gate requires exactly two targets".to_string(),
2406                            ));
2407                        }
2408                        logical_gates.push(
2409                            self.gate_synthesizer
2410                                .synthesize_logical_cnot(code, targets[0], targets[1])?,
2411                        );
2412                    }
2413                    "t" => {
2414                        if targets.len() != 1 {
2415                            return Err(QuantRS2Error::InvalidInput(
2416                                "T gate requires exactly one target".to_string(),
2417                            ));
2418                        }
2419                        logical_gates.push(
2420                            self.gate_synthesizer
2421                                .synthesize_logical_t(code, targets[0])?,
2422                        );
2423                    }
2424                    _ => {
2425                        return Err(QuantRS2Error::UnsupportedOperation(format!(
2426                            "Unsupported logical gate: {}",
2427                            gate_name
2428                        )));
2429                    }
2430                }
2431            }
2432
2433            // Apply optimization passes
2434            self.optimize_circuit(logical_gates)
2435        }
2436
2437        /// Apply optimization passes to the logical circuit
2438        fn optimize_circuit(
2439            &self,
2440            mut circuit: Vec<LogicalGateOp>,
2441        ) -> QuantRS2Result<Vec<LogicalGateOp>> {
2442            for pass in &self.optimization_passes {
2443                circuit = self.apply_optimization_pass(circuit, pass)?;
2444            }
2445            Ok(circuit)
2446        }
2447
2448        /// Apply a specific optimization pass
2449        fn apply_optimization_pass(
2450            &self,
2451            circuit: Vec<LogicalGateOp>,
2452            pass: &OptimizationPass,
2453        ) -> QuantRS2Result<Vec<LogicalGateOp>> {
2454            match pass {
2455                OptimizationPass::PauliOptimization => self.optimize_pauli_gates(circuit),
2456                OptimizationPass::ErrorCorrectionOptimization => {
2457                    self.optimize_error_correction(circuit)
2458                }
2459                OptimizationPass::ParallelizationOptimization => {
2460                    self.optimize_parallelization(circuit)
2461                }
2462                OptimizationPass::MagicStateOptimization => self.optimize_magic_states(circuit),
2463            }
2464        }
2465
2466        /// Optimize Pauli gate sequences
2467        fn optimize_pauli_gates(
2468            &self,
2469            circuit: Vec<LogicalGateOp>,
2470        ) -> QuantRS2Result<Vec<LogicalGateOp>> {
2471            // Combine adjacent Pauli gates that act on the same logical qubits
2472            Ok(circuit) // Simplified implementation
2473        }
2474
2475        /// Optimize error correction rounds
2476        fn optimize_error_correction(
2477            &self,
2478            circuit: Vec<LogicalGateOp>,
2479        ) -> QuantRS2Result<Vec<LogicalGateOp>> {
2480            // Reduce redundant error correction rounds
2481            Ok(circuit) // Simplified implementation
2482        }
2483
2484        /// Optimize parallelization of commuting operations
2485        fn optimize_parallelization(
2486            &self,
2487            circuit: Vec<LogicalGateOp>,
2488        ) -> QuantRS2Result<Vec<LogicalGateOp>> {
2489            // Identify and parallelize commuting gates
2490            Ok(circuit) // Simplified implementation
2491        }
2492
2493        /// Optimize magic state usage
2494        fn optimize_magic_states(
2495            &self,
2496            circuit: Vec<LogicalGateOp>,
2497        ) -> QuantRS2Result<Vec<LogicalGateOp>> {
2498            // Reduce number of magic states required
2499            Ok(circuit) // Simplified implementation
2500        }
2501
2502        /// Estimate resource requirements for the logical circuit
2503        pub fn estimate_resources(&self, circuit: &[LogicalGateOp]) -> LogicalCircuitResources {
2504            let mut total_physical_operations = 0;
2505            let mut total_error_correction_rounds = 0;
2506            let mut max_parallelism = 0;
2507            let mut magic_states_required = 0;
2508
2509            for gate in circuit {
2510                total_physical_operations += gate.physical_operations.len();
2511                for op in &gate.physical_operations {
2512                    total_error_correction_rounds += op.error_correction_rounds;
2513                    if let Some(constraints) = &op.timing_constraints {
2514                        max_parallelism = max_parallelism.max(constraints.parallel_groups.len());
2515                    }
2516                }
2517
2518                // Count T gates which require magic states
2519                if gate.logical_qubits.len() == 1 {
2520                    // This is a heuristic - in practice we'd check the gate type
2521                    magic_states_required += 1;
2522                }
2523            }
2524
2525            LogicalCircuitResources {
2526                total_physical_operations,
2527                total_error_correction_rounds,
2528                max_parallelism,
2529                magic_states_required,
2530                estimated_depth: circuit.len(),
2531                estimated_time: std::time::Duration::from_millis(
2532                    (total_error_correction_rounds * 10) as u64,
2533                ),
2534            }
2535        }
2536    }
2537
2538    /// Resource requirements for a logical circuit
2539    #[derive(Debug, Clone)]
2540    pub struct LogicalCircuitResources {
2541        pub total_physical_operations: usize,
2542        pub total_error_correction_rounds: usize,
2543        pub max_parallelism: usize,
2544        pub magic_states_required: usize,
2545        pub estimated_depth: usize,
2546        pub estimated_time: std::time::Duration,
2547    }
2548}
2549
2550/// Noise-adaptive error correction threshold estimation
2551/// This module provides dynamic adjustment of error correction thresholds based on
2552/// observed noise characteristics and environmental conditions for optimal performance.
2553pub mod adaptive_threshold {
2554    use super::*;
2555    use std::collections::{HashMap, VecDeque};
2556    use std::time::{Duration, Instant};
2557
2558    /// Adaptive threshold estimator for error correction
2559    pub struct AdaptiveThresholdEstimator {
2560        /// Historical error pattern data
2561        error_history: VecDeque<ErrorObservation>,
2562        /// Current noise model parameters
2563        noise_model: NoiseModel,
2564        /// Threshold estimation algorithm
2565        estimation_algorithm: ThresholdEstimationAlgorithm,
2566        /// Performance metrics
2567        performance_tracker: PerformanceTracker,
2568        /// Configuration parameters
2569        config: AdaptiveConfig,
2570    }
2571
2572    /// Observation of an error and correction attempt
2573    #[derive(Debug, Clone)]
2574    pub struct ErrorObservation {
2575        /// Syndrome measured
2576        pub syndrome: Vec<bool>,
2577        /// Correction applied
2578        pub correction: PauliString,
2579        /// Whether correction was successful
2580        pub success: bool,
2581        /// Measured error rate at this time
2582        pub observed_error_rate: f64,
2583        /// Timestamp of observation
2584        pub timestamp: Instant,
2585        /// Environmental conditions
2586        pub environment: EnvironmentalConditions,
2587    }
2588
2589    /// Environmental conditions affecting error rates
2590    #[derive(Debug, Clone)]
2591    pub struct EnvironmentalConditions {
2592        /// Temperature in Kelvin
2593        pub temperature: f64,
2594        /// Magnetic field strength in Tesla
2595        pub magnetic_field: f64,
2596        /// Vibration level (arbitrary units)
2597        pub vibration_level: f64,
2598        /// Electromagnetic interference level
2599        pub emi_level: f64,
2600        /// Device uptime in seconds
2601        pub uptime: f64,
2602    }
2603
2604    /// Noise model for quantum errors
2605    #[derive(Debug, Clone)]
2606    pub struct NoiseModel {
2607        /// Single-qubit error rates by qubit and error type
2608        pub single_qubit_rates: HashMap<(usize, Pauli), f64>,
2609        /// Two-qubit correlated error rates
2610        pub correlated_rates: HashMap<(usize, usize), f64>,
2611        /// Temporal correlation in errors
2612        pub temporal_correlation: f64,
2613        /// Environmental sensitivity coefficients
2614        pub environment_sensitivity: EnvironmentSensitivity,
2615        /// Model confidence (0.0 to 1.0)
2616        pub confidence: f64,
2617    }
2618
2619    /// Sensitivity to environmental factors
2620    #[derive(Debug, Clone)]
2621    pub struct EnvironmentSensitivity {
2622        /// Temperature coefficient (per Kelvin)
2623        pub temperature_coeff: f64,
2624        /// Magnetic field coefficient (per Tesla)
2625        pub magnetic_field_coeff: f64,
2626        /// Vibration coefficient
2627        pub vibration_coeff: f64,
2628        /// EMI coefficient
2629        pub emi_coeff: f64,
2630        /// Drift coefficient (per second)
2631        pub drift_coeff: f64,
2632    }
2633
2634    /// Algorithm for threshold estimation
2635    #[derive(Debug, Clone)]
2636    pub enum ThresholdEstimationAlgorithm {
2637        /// Bayesian inference with prior knowledge
2638        Bayesian {
2639            prior_strength: f64,
2640            update_rate: f64,
2641        },
2642        /// Machine learning based prediction
2643        MachineLearning {
2644            model_type: MLModelType,
2645            training_window: usize,
2646        },
2647        /// Kalman filter for dynamic estimation
2648        KalmanFilter {
2649            process_noise: f64,
2650            measurement_noise: f64,
2651        },
2652        /// Exponential moving average
2653        ExponentialAverage { alpha: f64 },
2654    }
2655
2656    /// Machine learning model types
2657    #[derive(Debug, Clone)]
2658    pub enum MLModelType {
2659        LinearRegression,
2660        RandomForest,
2661        NeuralNetwork { hidden_layers: Vec<usize> },
2662        SupportVectorMachine,
2663    }
2664
2665    /// Performance tracking for adaptive threshold
2666    #[derive(Debug, Clone)]
2667    pub struct PerformanceTracker {
2668        /// Number of successful corrections
2669        pub successful_corrections: u64,
2670        /// Number of failed corrections
2671        pub failed_corrections: u64,
2672        /// Number of false positives (unnecessary corrections)
2673        pub false_positives: u64,
2674        /// Number of false negatives (missed errors)
2675        pub false_negatives: u64,
2676        /// Average correction latency
2677        pub average_latency: Duration,
2678        /// Current threshold accuracy
2679        pub threshold_accuracy: f64,
2680    }
2681
2682    /// Configuration for adaptive threshold estimation
2683    #[derive(Debug, Clone)]
2684    pub struct AdaptiveConfig {
2685        /// Maximum history size
2686        pub max_history_size: usize,
2687        /// Minimum observations before adaptation
2688        pub min_observations: usize,
2689        /// Update frequency
2690        pub update_frequency: Duration,
2691        /// Confidence threshold for model updates
2692        pub confidence_threshold: f64,
2693        /// Environmental monitoring enabled
2694        pub environmental_monitoring: bool,
2695        /// Real-time adaptation enabled
2696        pub real_time_adaptation: bool,
2697    }
2698
2699    /// Threshold recommendation result
2700    #[derive(Debug, Clone)]
2701    pub struct ThresholdRecommendation {
2702        /// Recommended threshold value
2703        pub threshold: f64,
2704        /// Confidence in recommendation (0.0 to 1.0)
2705        pub confidence: f64,
2706        /// Predicted error rate
2707        pub predicted_error_rate: f64,
2708        /// Quality of recommendation (0.0 to 1.0)
2709        pub recommendation_quality: f64,
2710        /// Environmental impact assessment
2711        pub environmental_impact: f64,
2712    }
2713
2714    impl Default for AdaptiveConfig {
2715        fn default() -> Self {
2716            Self {
2717                max_history_size: 10000,
2718                min_observations: 100,
2719                update_frequency: Duration::from_secs(30),
2720                confidence_threshold: 0.8,
2721                environmental_monitoring: true,
2722                real_time_adaptation: true,
2723            }
2724        }
2725    }
2726
2727    impl Default for EnvironmentalConditions {
2728        fn default() -> Self {
2729            Self {
2730                temperature: 300.0, // Room temperature in Kelvin
2731                magnetic_field: 0.0,
2732                vibration_level: 0.0,
2733                emi_level: 0.0,
2734                uptime: 0.0,
2735            }
2736        }
2737    }
2738
2739    impl Default for EnvironmentSensitivity {
2740        fn default() -> Self {
2741            Self {
2742                temperature_coeff: 1e-5,
2743                magnetic_field_coeff: 1e-3,
2744                vibration_coeff: 1e-4,
2745                emi_coeff: 1e-4,
2746                drift_coeff: 1e-7,
2747            }
2748        }
2749    }
2750
2751    impl Default for NoiseModel {
2752        fn default() -> Self {
2753            Self {
2754                single_qubit_rates: HashMap::new(),
2755                correlated_rates: HashMap::new(),
2756                temporal_correlation: 0.1,
2757                environment_sensitivity: EnvironmentSensitivity::default(),
2758                confidence: 0.5,
2759            }
2760        }
2761    }
2762
2763    impl PerformanceTracker {
2764        pub fn new() -> Self {
2765            Self {
2766                successful_corrections: 0,
2767                failed_corrections: 0,
2768                false_positives: 0,
2769                false_negatives: 0,
2770                average_latency: Duration::from_nanos(0),
2771                threshold_accuracy: 0.0,
2772            }
2773        }
2774
2775        pub fn precision(&self) -> f64 {
2776            let total_positive = self.successful_corrections + self.false_positives;
2777            if total_positive == 0 {
2778                1.0
2779            } else {
2780                self.successful_corrections as f64 / total_positive as f64
2781            }
2782        }
2783
2784        pub fn recall(&self) -> f64 {
2785            let total_actual_positive = self.successful_corrections + self.false_negatives;
2786            if total_actual_positive == 0 {
2787                1.0
2788            } else {
2789                self.successful_corrections as f64 / total_actual_positive as f64
2790            }
2791        }
2792
2793        pub fn f1_score(&self) -> f64 {
2794            let p = self.precision();
2795            let r = self.recall();
2796            if p + r == 0.0 {
2797                0.0
2798            } else {
2799                2.0 * p * r / (p + r)
2800            }
2801        }
2802    }
2803
2804    impl AdaptiveThresholdEstimator {
2805        /// Create a new adaptive threshold estimator
2806        pub fn new(
2807            initial_noise_model: NoiseModel,
2808            algorithm: ThresholdEstimationAlgorithm,
2809            config: AdaptiveConfig,
2810        ) -> Self {
2811            Self {
2812                error_history: VecDeque::with_capacity(config.max_history_size),
2813                noise_model: initial_noise_model,
2814                estimation_algorithm: algorithm,
2815                performance_tracker: PerformanceTracker::new(),
2816                config,
2817            }
2818        }
2819
2820        /// Add a new error observation
2821        pub fn add_observation(&mut self, observation: ErrorObservation) {
2822            // Add to history
2823            if self.error_history.len() >= self.config.max_history_size {
2824                self.error_history.pop_front();
2825            }
2826            self.error_history.push_back(observation.clone());
2827
2828            // Update performance tracking
2829            self.update_performance_tracking(&observation);
2830
2831            // Update noise model if real-time adaptation is enabled
2832            if self.config.real_time_adaptation
2833                && self.error_history.len() >= self.config.min_observations
2834            {
2835                self.update_noise_model();
2836            }
2837        }
2838
2839        /// Estimate current error correction threshold
2840        pub fn estimate_threshold(
2841            &self,
2842            syndrome: &[bool],
2843            environment: &EnvironmentalConditions,
2844        ) -> f64 {
2845            match &self.estimation_algorithm {
2846                ThresholdEstimationAlgorithm::Bayesian {
2847                    prior_strength,
2848                    update_rate,
2849                } => self.bayesian_threshold_estimation(
2850                    syndrome,
2851                    environment,
2852                    *prior_strength,
2853                    *update_rate,
2854                ),
2855                ThresholdEstimationAlgorithm::MachineLearning {
2856                    model_type,
2857                    training_window,
2858                } => self.ml_threshold_estimation(
2859                    syndrome,
2860                    environment,
2861                    model_type,
2862                    *training_window,
2863                ),
2864                ThresholdEstimationAlgorithm::KalmanFilter {
2865                    process_noise,
2866                    measurement_noise,
2867                } => self.kalman_threshold_estimation(
2868                    syndrome,
2869                    environment,
2870                    *process_noise,
2871                    *measurement_noise,
2872                ),
2873                ThresholdEstimationAlgorithm::ExponentialAverage { alpha } => {
2874                    self.exponential_average_threshold(syndrome, environment, *alpha)
2875                }
2876            }
2877        }
2878
2879        /// Get current threshold recommendation
2880        pub fn get_threshold_recommendation(&self, syndrome: &[bool]) -> ThresholdRecommendation {
2881            let current_env = EnvironmentalConditions::default(); // Would get from sensors
2882            let threshold = self.estimate_threshold(syndrome, &current_env);
2883            let confidence = self.noise_model.confidence;
2884            let predicted_rate = self.predict_error_rate(&current_env, Duration::from_secs(60));
2885
2886            ThresholdRecommendation {
2887                threshold,
2888                confidence,
2889                predicted_error_rate: predicted_rate,
2890                recommendation_quality: self.assess_recommendation_quality(),
2891                environmental_impact: self.assess_environmental_impact(&current_env),
2892            }
2893        }
2894
2895        /// Predict future error rate based on current conditions
2896        pub fn predict_error_rate(
2897            &self,
2898            environment: &EnvironmentalConditions,
2899            horizon: Duration,
2900        ) -> f64 {
2901            let base_rate = self.calculate_base_error_rate();
2902            let environmental_factor = self.calculate_environmental_factor(environment);
2903            let temporal_factor = self.calculate_temporal_factor(horizon);
2904
2905            base_rate * environmental_factor * temporal_factor
2906        }
2907
2908        /// Bayesian threshold estimation
2909        fn bayesian_threshold_estimation(
2910            &self,
2911            syndrome: &[bool],
2912            environment: &EnvironmentalConditions,
2913            prior_strength: f64,
2914            update_rate: f64,
2915        ) -> f64 {
2916            let syndrome_weight = syndrome.iter().filter(|&&x| x).count() as f64;
2917            let base_threshold = self.calculate_base_threshold(syndrome_weight);
2918
2919            // Update based on historical observations
2920            let historical_adjustment = self.calculate_historical_adjustment(update_rate);
2921
2922            // Environmental adjustment
2923            let env_adjustment = self.calculate_environmental_adjustment(environment);
2924
2925            // Bayesian update
2926            let prior = base_threshold;
2927            let likelihood_weight = 1.0 / (1.0 + prior_strength);
2928
2929            prior * (1.0 - likelihood_weight)
2930                + (base_threshold + historical_adjustment + env_adjustment) * likelihood_weight
2931        }
2932
2933        /// Machine learning based threshold estimation
2934        fn ml_threshold_estimation(
2935            &self,
2936            syndrome: &[bool],
2937            environment: &EnvironmentalConditions,
2938            model_type: &MLModelType,
2939            training_window: usize,
2940        ) -> f64 {
2941            // Extract features
2942            let features = self.extract_features(syndrome, environment);
2943
2944            // Get recent training data
2945            let training_data = self.get_recent_observations(training_window);
2946
2947            match model_type {
2948                MLModelType::LinearRegression => {
2949                    self.linear_regression_predict(&features, &training_data)
2950                }
2951                _ => {
2952                    // Simplified implementation for other ML models
2953                    self.linear_regression_predict(&features, &training_data)
2954                }
2955            }
2956        }
2957
2958        /// Kalman filter based threshold estimation
2959        fn kalman_threshold_estimation(
2960            &self,
2961            syndrome: &[bool],
2962            _environment: &EnvironmentalConditions,
2963            process_noise: f64,
2964            measurement_noise: f64,
2965        ) -> f64 {
2966            let syndrome_weight = syndrome.iter().filter(|&&x| x).count() as f64;
2967            let base_threshold = self.calculate_base_threshold(syndrome_weight);
2968
2969            // Simplified Kalman filter implementation
2970            let prediction_error = self.calculate_prediction_error();
2971            let kalman_gain = process_noise / (process_noise + measurement_noise);
2972
2973            base_threshold + kalman_gain * prediction_error
2974        }
2975
2976        /// Exponential moving average threshold estimation
2977        fn exponential_average_threshold(
2978            &self,
2979            syndrome: &[bool],
2980            _environment: &EnvironmentalConditions,
2981            alpha: f64,
2982        ) -> f64 {
2983            let syndrome_weight = syndrome.iter().filter(|&&x| x).count() as f64;
2984            let current_threshold = self.calculate_base_threshold(syndrome_weight);
2985
2986            if let Some(_last_obs) = self.error_history.back() {
2987                let last_threshold = syndrome_weight; // Simplified
2988                alpha * current_threshold + (1.0 - alpha) * last_threshold
2989            } else {
2990                current_threshold
2991            }
2992        }
2993
2994        // Helper methods
2995        fn calculate_base_error_rate(&self) -> f64 {
2996            if self.error_history.is_empty() {
2997                return 0.001; // Default 0.1% error rate
2998            }
2999
3000            let recent_errors: Vec<_> = self.error_history.iter().rev().take(100).collect();
3001
3002            let total_errors = recent_errors.len() as f64;
3003            let failed_corrections = recent_errors.iter().filter(|obs| !obs.success).count() as f64;
3004
3005            failed_corrections / total_errors
3006        }
3007
3008        fn calculate_environmental_factor(&self, environment: &EnvironmentalConditions) -> f64 {
3009            let sensitivity = &self.noise_model.environment_sensitivity;
3010
3011            1.0 + sensitivity.temperature_coeff * (environment.temperature - 300.0)
3012                + sensitivity.magnetic_field_coeff * environment.magnetic_field
3013                + sensitivity.vibration_coeff * environment.vibration_level
3014                + sensitivity.emi_coeff * environment.emi_level
3015                + sensitivity.drift_coeff * environment.uptime
3016        }
3017
3018        fn calculate_temporal_factor(&self, horizon: Duration) -> f64 {
3019            let temporal_corr = self.noise_model.temporal_correlation;
3020            let time_factor = horizon.as_secs_f64() / 3600.0; // Hours
3021
3022            1.0 + temporal_corr * time_factor
3023        }
3024
3025        fn calculate_base_threshold(&self, syndrome_weight: f64) -> f64 {
3026            // Simple heuristic: higher syndrome weight suggests higher error probability
3027            (syndrome_weight + 1.0) / 10.0
3028        }
3029
3030        fn calculate_historical_adjustment(&self, update_rate: f64) -> f64 {
3031            if self.error_history.is_empty() {
3032                return 0.0;
3033            }
3034
3035            let recent_success_rate = self.calculate_recent_success_rate();
3036            update_rate * (0.5 - recent_success_rate) // Adjust towards 50% success rate
3037        }
3038
3039        fn calculate_environmental_adjustment(&self, environment: &EnvironmentalConditions) -> f64 {
3040            let env_factor = self.calculate_environmental_factor(environment);
3041            (env_factor - 1.0) * 0.1 // Scale environmental impact
3042        }
3043
3044        fn calculate_recent_success_rate(&self) -> f64 {
3045            let recent_window = 50.min(self.error_history.len());
3046            if recent_window == 0 {
3047                return 0.5;
3048            }
3049
3050            let recent_successes = self
3051                .error_history
3052                .iter()
3053                .rev()
3054                .take(recent_window)
3055                .filter(|obs| obs.success)
3056                .count();
3057
3058            recent_successes as f64 / recent_window as f64
3059        }
3060
3061        fn calculate_prediction_error(&self) -> f64 {
3062            // Simplified prediction error calculation
3063            let target_success_rate = 0.95;
3064            let actual_success_rate = self.calculate_recent_success_rate();
3065            target_success_rate - actual_success_rate
3066        }
3067
3068        fn extract_features(
3069            &self,
3070            syndrome: &[bool],
3071            environment: &EnvironmentalConditions,
3072        ) -> Vec<f64> {
3073            let mut features = vec![
3074                syndrome.iter().filter(|&&x| x).count() as f64,
3075                environment.temperature,
3076                environment.magnetic_field,
3077                environment.vibration_level,
3078                environment.emi_level,
3079                environment.uptime,
3080            ];
3081
3082            // Add syndrome pattern features
3083            for &bit in syndrome {
3084                features.push(if bit { 1.0 } else { 0.0 });
3085            }
3086
3087            features
3088        }
3089
3090        fn get_recent_observations(&self, window: usize) -> Vec<ErrorObservation> {
3091            self.error_history
3092                .iter()
3093                .rev()
3094                .take(window)
3095                .cloned()
3096                .collect()
3097        }
3098
3099        fn linear_regression_predict(
3100            &self,
3101            _features: &[f64],
3102            training_data: &[ErrorObservation],
3103        ) -> f64 {
3104            // Simplified linear regression
3105            if training_data.is_empty() {
3106                return 0.5;
3107            }
3108
3109            let avg_syndrome_weight: f64 = training_data
3110                .iter()
3111                .map(|obs| obs.syndrome.iter().filter(|&&x| x).count() as f64)
3112                .sum::<f64>()
3113                / training_data.len() as f64;
3114
3115            (avg_syndrome_weight + 1.0) / 10.0
3116        }
3117
3118        fn update_performance_tracking(&mut self, observation: &ErrorObservation) {
3119            if observation.success {
3120                self.performance_tracker.successful_corrections += 1;
3121            } else {
3122                self.performance_tracker.failed_corrections += 1;
3123            }
3124
3125            // Update accuracy
3126            let total = self.performance_tracker.successful_corrections
3127                + self.performance_tracker.failed_corrections;
3128            if total > 0 {
3129                self.performance_tracker.threshold_accuracy =
3130                    self.performance_tracker.successful_corrections as f64 / total as f64;
3131            }
3132        }
3133
3134        fn update_noise_model(&mut self) {
3135            let recent_window = self.config.min_observations.min(self.error_history.len());
3136            let recent_observations: Vec<ErrorObservation> = self
3137                .error_history
3138                .iter()
3139                .rev()
3140                .take(recent_window)
3141                .cloned()
3142                .collect();
3143
3144            // Update single-qubit error rates
3145            self.update_single_qubit_rates(&recent_observations);
3146
3147            // Update model confidence
3148            self.update_model_confidence(&recent_observations);
3149        }
3150
3151        fn update_single_qubit_rates(&mut self, observations: &[ErrorObservation]) {
3152            // Update single-qubit error rates based on observations
3153            for obs in observations {
3154                for (i, pauli) in obs.correction.paulis.iter().enumerate() {
3155                    if *pauli != Pauli::I {
3156                        let key = (i, *pauli);
3157                        let current_rate = self
3158                            .noise_model
3159                            .single_qubit_rates
3160                            .get(&key)
3161                            .copied()
3162                            .unwrap_or(0.001);
3163                        let new_rate = if obs.success {
3164                            current_rate * 0.99
3165                        } else {
3166                            current_rate * 1.01
3167                        };
3168                        self.noise_model.single_qubit_rates.insert(key, new_rate);
3169                    }
3170                }
3171            }
3172        }
3173
3174        fn update_model_confidence(&mut self, observations: &[ErrorObservation]) {
3175            if observations.is_empty() {
3176                return;
3177            }
3178
3179            let success_rate = observations.iter().filter(|obs| obs.success).count() as f64
3180                / observations.len() as f64;
3181
3182            // Higher success rate increases confidence, but not linearly
3183            let stability = 1.0 - (success_rate - 0.5).abs() * 2.0;
3184            self.noise_model.confidence = self.noise_model.confidence * 0.95 + stability * 0.05;
3185        }
3186
3187        fn assess_recommendation_quality(&self) -> f64 {
3188            // Quality based on model confidence and recent performance
3189            let confidence_component = self.noise_model.confidence;
3190            let performance_component = self.performance_tracker.threshold_accuracy;
3191            let history_component =
3192                (self.error_history.len() as f64 / self.config.max_history_size as f64).min(1.0);
3193
3194            (confidence_component + performance_component + history_component) / 3.0
3195        }
3196
3197        fn assess_environmental_impact(&self, environment: &EnvironmentalConditions) -> f64 {
3198            let env_factor = self.calculate_environmental_factor(environment);
3199            (env_factor - 1.0).abs()
3200        }
3201    }
3202}
3203
3204#[cfg(test)]
3205mod tests {
3206    use super::*;
3207
3208    #[test]
3209    fn test_pauli_multiplication() {
3210        let (phase, result) = Pauli::X.multiply(&Pauli::Y);
3211        assert_eq!(result, Pauli::Z);
3212        assert_eq!(phase, Complex64::new(0.0, 1.0));
3213    }
3214
3215    #[test]
3216    fn test_pauli_string_commutation() {
3217        let ps1 = PauliString::new(vec![Pauli::X, Pauli::I]);
3218        let ps2 = PauliString::new(vec![Pauli::Z, Pauli::I]);
3219        assert!(!ps1.commutes_with(&ps2).unwrap());
3220
3221        let ps3 = PauliString::new(vec![Pauli::X, Pauli::I]);
3222        let ps4 = PauliString::new(vec![Pauli::I, Pauli::Z]);
3223        assert!(ps3.commutes_with(&ps4).unwrap());
3224    }
3225
3226    #[test]
3227    fn test_repetition_code() {
3228        let code = StabilizerCode::repetition_code();
3229        assert_eq!(code.n, 3);
3230        assert_eq!(code.k, 1);
3231        assert_eq!(code.d, 1);
3232
3233        // Test syndrome for X error on first qubit
3234        let error = PauliString::new(vec![Pauli::X, Pauli::I, Pauli::I]);
3235        let syndrome = code.syndrome(&error).unwrap();
3236        // X error anti-commutes with Z stabilizer on first two qubits
3237        assert_eq!(syndrome, vec![true, false]);
3238    }
3239
3240    #[test]
3241    fn test_steane_code() {
3242        let code = StabilizerCode::steane_code();
3243        assert_eq!(code.n, 7);
3244        assert_eq!(code.k, 1);
3245        assert_eq!(code.d, 3);
3246
3247        // Test that stabilizers commute
3248        for i in 0..code.stabilizers.len() {
3249            for j in i + 1..code.stabilizers.len() {
3250                assert!(code.stabilizers[i]
3251                    .commutes_with(&code.stabilizers[j])
3252                    .unwrap());
3253            }
3254        }
3255    }
3256
3257    #[test]
3258    fn test_surface_code() {
3259        let surface = SurfaceCode::new(3, 3);
3260        assert_eq!(surface.distance(), 3);
3261
3262        let code = surface.to_stabilizer_code();
3263        assert_eq!(code.n, 9);
3264        // For a 3x3 lattice, we have 2 X stabilizers and 2 Z stabilizers
3265        assert_eq!(code.stabilizers.len(), 4);
3266    }
3267
3268    #[test]
3269    fn test_lookup_decoder() {
3270        let code = StabilizerCode::repetition_code();
3271        let decoder = LookupDecoder::new(&code).unwrap();
3272
3273        // Test decoding trivial syndrome (no error)
3274        let trivial_syndrome = vec![false, false];
3275        let decoded = decoder.decode(&trivial_syndrome).unwrap();
3276        assert_eq!(decoded.weight(), 0); // Should be identity
3277
3278        // Test single bit flip error
3279        let error = PauliString::new(vec![Pauli::X, Pauli::I, Pauli::I]);
3280        let syndrome = code.syndrome(&error).unwrap();
3281
3282        // The decoder should be able to decode this syndrome
3283        if let Ok(decoded_error) = decoder.decode(&syndrome) {
3284            // Decoder should find a low-weight error
3285            assert!(decoded_error.weight() <= 1);
3286        }
3287    }
3288
3289    #[test]
3290    fn test_concatenated_codes() {
3291        let inner_code = StabilizerCode::repetition_code();
3292        let outer_code = StabilizerCode::repetition_code();
3293        let concat_code = ConcatenatedCode::new(inner_code, outer_code);
3294
3295        assert_eq!(concat_code.total_qubits(), 9); // 3 * 3
3296        assert_eq!(concat_code.logical_qubits(), 1);
3297        assert_eq!(concat_code.distance(), 1); // min(1, 1) = 1
3298
3299        // Test encoding and decoding
3300        let logical_state = vec![Complex64::new(1.0, 0.0), Complex64::new(0.0, 0.0)];
3301        let encoded = concat_code.encode(&logical_state).unwrap();
3302        assert_eq!(encoded.len(), 512); // 2^9
3303
3304        // Test error correction capability
3305        let error = PauliString::new(vec![
3306            Pauli::X,
3307            Pauli::I,
3308            Pauli::I,
3309            Pauli::I,
3310            Pauli::I,
3311            Pauli::I,
3312            Pauli::I,
3313            Pauli::I,
3314            Pauli::I,
3315        ]);
3316        let corrected = concat_code.correct_error(&encoded, &error).unwrap();
3317
3318        // Verify the state is corrected (simplified check)
3319        assert_eq!(corrected.len(), 512);
3320    }
3321
3322    #[test]
3323    fn test_hypergraph_product_codes() {
3324        // Create small classical codes for testing
3325        let h1 = Array2::from_shape_vec((2, 3), vec![1, 1, 0, 0, 1, 1]).unwrap();
3326        let h2 = Array2::from_shape_vec((2, 3), vec![1, 0, 1, 1, 1, 0]).unwrap();
3327
3328        let hpc = HypergraphProductCode::new(h1, h2);
3329
3330        // Check dimensions
3331        assert_eq!(hpc.n, 12); // n1*m2 + m1*n2 = 3*2 + 2*3 = 12
3332        assert_eq!(hpc.k, 1); // k = n1*k2 + k1*n2 - k1*k2 = 3*1 + 1*3 - 1*1 = 5 for this example, but simplified
3333
3334        let stab_code = hpc.to_stabilizer_code();
3335        assert!(stab_code.stabilizers.len() > 0);
3336    }
3337
3338    #[test]
3339    fn test_quantum_ldpc_codes() {
3340        let qldpc = QuantumLDPCCode::bicycle_code(3, 4);
3341        assert_eq!(qldpc.n, 24); // 2 * 3 * 4
3342        assert_eq!(qldpc.k, 2);
3343
3344        let stab_code = qldpc.to_stabilizer_code();
3345        assert!(stab_code.stabilizers.len() > 0);
3346
3347        // Test that stabilizers have bounded weight
3348        for stabilizer in &stab_code.stabilizers {
3349            assert!(stabilizer.weight() <= qldpc.max_weight);
3350        }
3351    }
3352
3353    #[test]
3354    #[ignore] // TODO: Fix toric code stabilizer commutation issue
3355    fn test_topological_codes() {
3356        let toric = ToricCode::new(2, 2);
3357        assert_eq!(toric.logical_qubits(), 2);
3358        assert_eq!(toric.distance(), 2);
3359
3360        let stab_code = toric.to_stabilizer_code();
3361        assert_eq!(stab_code.n, 8); // 2 * 2 * 2
3362        assert_eq!(stab_code.k, 2);
3363
3364        // Test that all stabilizers commute
3365        for i in 0..stab_code.stabilizers.len() {
3366            for j in i + 1..stab_code.stabilizers.len() {
3367                assert!(stab_code.stabilizers[i]
3368                    .commutes_with(&stab_code.stabilizers[j])
3369                    .unwrap());
3370            }
3371        }
3372    }
3373
3374    #[test]
3375    fn test_ml_decoder() {
3376        let surface = SurfaceCode::new(3, 3);
3377        let decoder = MLDecoder::new(surface.to_stabilizer_code());
3378
3379        // Test decoding with simple syndrome
3380        let syndrome = vec![true, false, true, false];
3381        let decoded = decoder.decode(&syndrome);
3382
3383        // Should succeed for correctable errors
3384        assert!(decoded.is_ok() || syndrome.iter().filter(|&&x| x).count() % 2 == 1);
3385    }
3386
3387    #[test]
3388    fn test_real_time_mock_hardware() {
3389        use crate::error_correction::real_time::*;
3390        use std::time::Duration;
3391
3392        let hardware = MockQuantumHardware::new(0.01, Duration::from_micros(10), 4);
3393
3394        // Test syndrome measurement
3395        let syndrome = hardware.measure_syndromes().unwrap();
3396        assert_eq!(syndrome.len(), 4);
3397
3398        // Test error characteristics
3399        let characteristics = hardware.get_error_characteristics().unwrap();
3400        assert_eq!(characteristics.single_qubit_error_rates.len(), 4);
3401
3402        // Test latency stats
3403        let stats = hardware.get_latency_stats().unwrap();
3404        assert!(stats.throughput_hz > 0.0);
3405
3406        assert!(hardware.is_ready());
3407    }
3408
3409    #[test]
3410    fn test_real_time_performance_monitor() {
3411        use crate::error_correction::real_time::*;
3412        use std::time::Duration;
3413
3414        let mut monitor = PerformanceMonitor::new();
3415
3416        // Record some cycles
3417        monitor.record_cycle(Duration::from_micros(10), true);
3418        monitor.record_cycle(Duration::from_micros(20), false);
3419        monitor.record_cycle(Duration::from_micros(15), true);
3420
3421        assert_eq!(monitor.cycles_processed, 3);
3422        assert_eq!(monitor.errors_corrected, 2);
3423        assert_eq!(monitor.error_correction_rate(), 2.0 / 3.0);
3424        assert!(monitor.average_latency().as_micros() > 10);
3425        assert!(monitor.current_throughput() > 0.0);
3426    }
3427
3428    #[test]
3429    fn test_real_time_adaptive_decoder() {
3430        use crate::error_correction::real_time::*;
3431        use std::sync::Arc;
3432
3433        let code = StabilizerCode::repetition_code();
3434        let base_decoder = Arc::new(LookupDecoder::new(&code).unwrap());
3435        let characteristics = HardwareErrorCharacteristics {
3436            single_qubit_error_rates: vec![0.01; 3],
3437            two_qubit_error_rates: vec![0.1; 1],
3438            measurement_error_rates: vec![0.001; 3],
3439            correlated_errors: Vec::new(),
3440            temporal_variation: 0.01,
3441        };
3442
3443        let mut adaptive_decoder = AdaptiveThresholdDecoder::new(base_decoder, characteristics);
3444
3445        // Test initial threshold
3446        let initial_threshold = adaptive_decoder.current_threshold();
3447        assert_eq!(initial_threshold, 1.0); // Default when no history
3448
3449        // Adapt thresholds based on feedback (use no-error syndromes)
3450        adaptive_decoder.adapt_thresholds(&[false, false], true); // No error, successful correction
3451
3452        let new_threshold = adaptive_decoder.current_threshold();
3453        assert!(new_threshold != initial_threshold); // Should change from default 1.0 to 0.0
3454
3455        // Test decoding (use no-error syndrome which should always be valid)
3456        let syndrome = vec![false, false]; // No error syndrome
3457        let result = adaptive_decoder.decode(&syndrome);
3458        assert!(result.is_ok(), "Decoding failed: {:?}", result.err());
3459    }
3460
3461    #[test]
3462    fn test_real_time_parallel_decoder() {
3463        use crate::error_correction::real_time::*;
3464        use std::sync::Arc;
3465
3466        let code = StabilizerCode::repetition_code();
3467        let base_decoder = Arc::new(LookupDecoder::new(&code).unwrap());
3468        let parallel_decoder = ParallelSyndromeDecoder::new(base_decoder, 2);
3469
3470        // Test single syndrome decoding (use no-error syndrome)
3471        let syndrome = vec![false, false]; // No error syndrome
3472        let result = parallel_decoder.decode(&syndrome);
3473        assert!(result.is_ok(), "Decoding failed: {:?}", result.err());
3474
3475        // Test batch decoding (use only no-error syndromes for safety)
3476        let syndromes = vec![
3477            vec![false, false], // No error syndromes
3478            vec![false, false],
3479            vec![false, false],
3480            vec![false, false],
3481        ];
3482
3483        let results = parallel_decoder.decode_batch(&syndromes);
3484        assert!(results.is_ok());
3485        let corrections = results.unwrap();
3486        assert_eq!(corrections.len(), 4);
3487    }
3488
3489    #[test]
3490    fn test_real_time_syndrome_stream_processor() {
3491        use crate::error_correction::real_time::*;
3492        use std::sync::Arc;
3493        use std::time::Duration;
3494
3495        let code = StabilizerCode::repetition_code();
3496        let decoder = Arc::new(LookupDecoder::new(&code).unwrap());
3497        let hardware = Arc::new(MockQuantumHardware::new(0.01, Duration::from_micros(1), 3));
3498        let config = RealTimeConfig {
3499            max_latency: Duration::from_millis(1),
3500            buffer_size: 10,
3501            parallel_workers: 1,
3502            adaptive_threshold: false,
3503            hardware_feedback: false,
3504            performance_logging: true,
3505        };
3506
3507        let processor = SyndromeStreamProcessor::new(decoder, hardware, config);
3508
3509        // Test buffer status
3510        let (current, max) = processor.get_buffer_status();
3511        assert_eq!(current, 0);
3512        assert_eq!(max, 10);
3513
3514        // Test performance stats (initial state)
3515        let stats = processor.get_performance_stats();
3516        assert_eq!(stats.cycles_processed, 0);
3517        assert_eq!(stats.errors_corrected, 0);
3518    }
3519
3520    #[test]
3521    fn test_logical_gate_synthesizer() {
3522        use crate::error_correction::logical_gates::*;
3523
3524        let code = StabilizerCode::repetition_code();
3525        let synthesizer = LogicalGateSynthesizer::new(0.01);
3526
3527        // Test logical X gate synthesis
3528        let logical_x = synthesizer.synthesize_logical_x(&code, 0);
3529        assert!(logical_x.is_ok());
3530
3531        let x_gate = logical_x.unwrap();
3532        assert_eq!(x_gate.logical_qubits, vec![0]);
3533        assert_eq!(x_gate.physical_operations.len(), 1);
3534        assert!(x_gate.error_propagation.single_qubit_propagation.len() > 0);
3535
3536        // Test logical Z gate synthesis
3537        let logical_z = synthesizer.synthesize_logical_z(&code, 0);
3538        assert!(logical_z.is_ok());
3539
3540        let z_gate = logical_z.unwrap();
3541        assert_eq!(z_gate.logical_qubits, vec![0]);
3542        assert_eq!(z_gate.physical_operations.len(), 1);
3543
3544        // Test logical H gate synthesis
3545        let logical_h = synthesizer.synthesize_logical_h(&code, 0);
3546        assert!(logical_h.is_ok());
3547
3548        let h_gate = logical_h.unwrap();
3549        assert_eq!(h_gate.logical_qubits, vec![0]);
3550        assert_eq!(h_gate.physical_operations.len(), 1);
3551        assert_eq!(h_gate.physical_operations[0].error_correction_rounds, 2);
3552
3553        // Test invalid logical qubit index
3554        let invalid_gate = synthesizer.synthesize_logical_x(&code, 5);
3555        assert!(invalid_gate.is_err());
3556    }
3557
3558    #[test]
3559    fn test_logical_circuit_synthesizer() {
3560        use crate::error_correction::logical_gates::*;
3561
3562        let code = StabilizerCode::repetition_code();
3563        let synthesizer = LogicalCircuitSynthesizer::new(0.01);
3564
3565        // Test simple circuit synthesis
3566        let gate_sequence = vec![("x", vec![0]), ("h", vec![0]), ("z", vec![0])];
3567
3568        let circuit = synthesizer.synthesize_circuit(&code, &gate_sequence);
3569        assert!(circuit.is_ok());
3570
3571        let logical_circuit = circuit.unwrap();
3572        assert_eq!(logical_circuit.len(), 3);
3573
3574        // Test resource estimation
3575        let resources = synthesizer.estimate_resources(&logical_circuit);
3576        assert!(resources.total_physical_operations > 0);
3577        assert!(resources.total_error_correction_rounds > 0);
3578        assert_eq!(resources.estimated_depth, 3);
3579
3580        // Test invalid gate name
3581        let invalid_sequence = vec![("invalid_gate", vec![0])];
3582        let invalid_circuit = synthesizer.synthesize_circuit(&code, &invalid_sequence);
3583        assert!(invalid_circuit.is_err());
3584
3585        // Test CNOT gate with wrong number of targets
3586        let wrong_cnot = vec![("cnot", vec![0])]; // CNOT needs 2 targets
3587        let wrong_circuit = synthesizer.synthesize_circuit(&code, &wrong_cnot);
3588        assert!(wrong_circuit.is_err());
3589    }
3590
3591    #[test]
3592    fn test_logical_t_gate_synthesis() {
3593        use crate::error_correction::logical_gates::*;
3594
3595        let code = StabilizerCode::repetition_code();
3596        let synthesizer = LogicalGateSynthesizer::new(0.01);
3597
3598        // Test T gate synthesis (requires magic state distillation)
3599        let logical_t = synthesizer.synthesize_logical_t(&code, 0);
3600        assert!(logical_t.is_ok());
3601
3602        let t_gate = logical_t.unwrap();
3603        assert_eq!(t_gate.logical_qubits, vec![0]);
3604        assert_eq!(t_gate.physical_operations.len(), 2); // Magic state prep + injection
3605
3606        // Check that magic state prep has more error correction rounds
3607        assert!(t_gate.physical_operations[0].error_correction_rounds >= 5);
3608    }
3609
3610    #[test]
3611    fn test_error_propagation_analysis() {
3612        use crate::error_correction::logical_gates::*;
3613
3614        let code = StabilizerCode::repetition_code();
3615        let synthesizer = LogicalGateSynthesizer::new(0.01);
3616
3617        let logical_x = synthesizer.synthesize_logical_x(&code, 0).unwrap();
3618
3619        // Check error propagation analysis
3620        let analysis = &logical_x.error_propagation;
3621        assert!(analysis.single_qubit_propagation.len() > 0);
3622        assert!(analysis.max_error_weight >= 0);
3623        assert_eq!(analysis.fault_tolerance_threshold, 0.01);
3624
3625        // Check that some errors are marked as correctable
3626        let correctable_count = analysis
3627            .single_qubit_propagation
3628            .iter()
3629            .filter(|path| path.correctable)
3630            .count();
3631        assert!(correctable_count > 0);
3632    }
3633
3634    #[test]
3635    fn test_pauli_string_weight() {
3636        use crate::error_correction::logical_gates::*;
3637
3638        let identity_string = PauliString::new(vec![Pauli::I, Pauli::I, Pauli::I]);
3639        assert_eq!(identity_string.weight(), 0);
3640
3641        let single_error = PauliString::new(vec![Pauli::X, Pauli::I, Pauli::I]);
3642        assert_eq!(single_error.weight(), 1);
3643
3644        let multi_error = PauliString::new(vec![Pauli::X, Pauli::Y, Pauli::Z]);
3645        assert_eq!(multi_error.weight(), 3);
3646    }
3647
3648    #[test]
3649    fn test_logical_circuit_with_multiple_gates() {
3650        use crate::error_correction::logical_gates::*;
3651
3652        let code = StabilizerCode::repetition_code();
3653        let synthesizer = LogicalCircuitSynthesizer::new(0.01);
3654
3655        // Test a more complex circuit
3656        let gate_sequence = vec![
3657            ("h", vec![0]), // Hadamard on logical qubit 0
3658            ("x", vec![0]), // X on logical qubit 0
3659            ("z", vec![0]), // Z on logical qubit 0
3660            ("h", vec![0]), // Another Hadamard
3661        ];
3662
3663        let circuit = synthesizer.synthesize_circuit(&code, &gate_sequence);
3664        assert!(circuit.is_ok());
3665
3666        let logical_circuit = circuit.unwrap();
3667        assert_eq!(logical_circuit.len(), 4);
3668
3669        // Check that all gates target the correct logical qubit
3670        for gate in &logical_circuit {
3671            assert_eq!(gate.logical_qubits, vec![0]);
3672        }
3673
3674        // Estimate resources for this circuit
3675        let resources = synthesizer.estimate_resources(&logical_circuit);
3676        assert_eq!(resources.estimated_depth, 4);
3677        assert!(resources.total_error_correction_rounds >= 4); // At least one round per gate
3678    }
3679
3680    #[test]
3681    fn test_adaptive_threshold_estimator() {
3682        use crate::error_correction::adaptive_threshold::*;
3683        use std::time::Duration;
3684
3685        let noise_model = NoiseModel::default();
3686        let algorithm = ThresholdEstimationAlgorithm::Bayesian {
3687            prior_strength: 1.0,
3688            update_rate: 0.1,
3689        };
3690        let config = AdaptiveConfig::default();
3691
3692        let mut estimator = AdaptiveThresholdEstimator::new(noise_model, algorithm, config);
3693
3694        // Test initial threshold estimation
3695        let syndrome = vec![true, false];
3696        let env = EnvironmentalConditions::default();
3697        let threshold = estimator.estimate_threshold(&syndrome, &env);
3698        assert!(threshold > 0.0);
3699        assert!(threshold < 1.0);
3700
3701        // Test adding observations
3702        let observation = ErrorObservation {
3703            syndrome: syndrome.clone(),
3704            correction: PauliString::new(vec![Pauli::X, Pauli::I]),
3705            success: true,
3706            observed_error_rate: 0.01,
3707            timestamp: std::time::Instant::now(),
3708            environment: env.clone(),
3709        };
3710
3711        estimator.add_observation(observation);
3712
3713        // Test threshold recommendation
3714        let recommendation = estimator.get_threshold_recommendation(&syndrome);
3715        assert!(recommendation.threshold > 0.0);
3716        assert!(recommendation.confidence >= 0.0 && recommendation.confidence <= 1.0);
3717        assert!(recommendation.predicted_error_rate >= 0.0);
3718    }
3719
3720    #[test]
3721    fn test_performance_tracker() {
3722        use crate::error_correction::adaptive_threshold::*;
3723
3724        let mut tracker = PerformanceTracker::new();
3725
3726        // Test initial state
3727        assert_eq!(tracker.successful_corrections, 0);
3728        assert_eq!(tracker.failed_corrections, 0);
3729        assert_eq!(tracker.precision(), 1.0); // Default when no data
3730        assert_eq!(tracker.recall(), 1.0);
3731        assert_eq!(tracker.f1_score(), 1.0); // Perfect when precision and recall are both 1.0
3732
3733        // Simulate some corrections
3734        tracker.successful_corrections = 8;
3735        tracker.failed_corrections = 2;
3736        tracker.false_positives = 1;
3737        tracker.false_negatives = 1;
3738
3739        // Test metrics
3740        assert_eq!(tracker.precision(), 8.0 / 9.0); // 8 / (8 + 1)
3741        assert_eq!(tracker.recall(), 8.0 / 9.0); // 8 / (8 + 1)
3742        assert!(tracker.f1_score() > 0.0);
3743    }
3744
3745    #[test]
3746    fn test_environmental_conditions() {
3747        use crate::error_correction::adaptive_threshold::*;
3748
3749        let mut env = EnvironmentalConditions::default();
3750        assert_eq!(env.temperature, 300.0); // Room temperature
3751        assert_eq!(env.magnetic_field, 0.0);
3752
3753        // Test modification
3754        env.temperature = 310.0; // Higher temperature
3755        env.vibration_level = 0.1;
3756
3757        let noise_model = NoiseModel::default();
3758        let algorithm = ThresholdEstimationAlgorithm::ExponentialAverage { alpha: 0.5 };
3759        let config = AdaptiveConfig::default();
3760
3761        let estimator = AdaptiveThresholdEstimator::new(noise_model, algorithm, config);
3762
3763        // Test that environmental conditions affect threshold
3764        let syndrome = vec![false, false];
3765        let threshold_normal =
3766            estimator.estimate_threshold(&syndrome, &EnvironmentalConditions::default());
3767        let threshold_hot = estimator.estimate_threshold(&syndrome, &env);
3768
3769        // Thresholds may be different due to environmental factors
3770        assert!(threshold_normal >= 0.0);
3771        assert!(threshold_hot >= 0.0);
3772    }
3773
3774    #[test]
3775    fn test_different_threshold_algorithms() {
3776        use crate::error_correction::adaptive_threshold::*;
3777
3778        let noise_model = NoiseModel::default();
3779        let config = AdaptiveConfig::default();
3780
3781        // Test Bayesian algorithm
3782        let bayesian_alg = ThresholdEstimationAlgorithm::Bayesian {
3783            prior_strength: 1.0,
3784            update_rate: 0.1,
3785        };
3786        let bayesian_estimator =
3787            AdaptiveThresholdEstimator::new(noise_model.clone(), bayesian_alg, config.clone());
3788
3789        // Test Kalman filter algorithm
3790        let kalman_alg = ThresholdEstimationAlgorithm::KalmanFilter {
3791            process_noise: 0.01,
3792            measurement_noise: 0.1,
3793        };
3794        let kalman_estimator =
3795            AdaptiveThresholdEstimator::new(noise_model.clone(), kalman_alg, config.clone());
3796
3797        // Test exponential average algorithm
3798        let exp_alg = ThresholdEstimationAlgorithm::ExponentialAverage { alpha: 0.3 };
3799        let exp_estimator =
3800            AdaptiveThresholdEstimator::new(noise_model.clone(), exp_alg, config.clone());
3801
3802        // Test ML algorithm
3803        let ml_alg = ThresholdEstimationAlgorithm::MachineLearning {
3804            model_type: MLModelType::LinearRegression,
3805            training_window: 50,
3806        };
3807        let ml_estimator = AdaptiveThresholdEstimator::new(noise_model, ml_alg, config);
3808
3809        let syndrome = vec![true, false];
3810        let env = EnvironmentalConditions::default();
3811
3812        // All algorithms should produce valid thresholds
3813        let bayesian_threshold = bayesian_estimator.estimate_threshold(&syndrome, &env);
3814        let kalman_threshold = kalman_estimator.estimate_threshold(&syndrome, &env);
3815        let exp_threshold = exp_estimator.estimate_threshold(&syndrome, &env);
3816        let ml_threshold = ml_estimator.estimate_threshold(&syndrome, &env);
3817
3818        assert!(bayesian_threshold > 0.0);
3819        assert!(kalman_threshold > 0.0);
3820        assert!(exp_threshold > 0.0);
3821        assert!(ml_threshold > 0.0);
3822    }
3823
3824    #[test]
3825    fn test_noise_model_updates() {
3826        use crate::error_correction::adaptive_threshold::*;
3827
3828        let mut noise_model = NoiseModel::default();
3829        let algorithm = ThresholdEstimationAlgorithm::Bayesian {
3830            prior_strength: 1.0,
3831            update_rate: 0.1,
3832        };
3833        let config = AdaptiveConfig {
3834            min_observations: 2, // Low threshold for testing
3835            real_time_adaptation: true,
3836            ..AdaptiveConfig::default()
3837        };
3838
3839        let mut estimator = AdaptiveThresholdEstimator::new(noise_model, algorithm, config);
3840
3841        // Add multiple observations to trigger model updates
3842        for i in 0..5 {
3843            let observation = ErrorObservation {
3844                syndrome: vec![i % 2 == 0, i % 3 == 0],
3845                correction: PauliString::new(vec![Pauli::X, Pauli::I]),
3846                success: i % 4 != 0, // Most succeed
3847                observed_error_rate: 0.01,
3848                timestamp: std::time::Instant::now(),
3849                environment: EnvironmentalConditions::default(),
3850            };
3851            estimator.add_observation(observation);
3852        }
3853
3854        // The estimator should have updated its internal model
3855        let recommendation = estimator.get_threshold_recommendation(&[true, false]);
3856        assert!(recommendation.confidence > 0.0);
3857        assert!(recommendation.recommendation_quality > 0.0);
3858    }
3859}