quantrs2_core/
adaptive_precision.rs

1//! Adaptive Precision Simulation Support
2//!
3//! This module provides adaptive precision control for quantum simulations,
4//! allowing automatic adjustment of numerical precision based on computation
5//! requirements, error thresholds, and available computational resources.
6
7use crate::{
8    error::{QuantRS2Error, QuantRS2Result},
9    gate::GateOp,
10};
11use ndarray::{Array1, Array2};
12use num_complex::Complex64;
13use std::{
14    collections::HashMap,
15    sync::{Arc, RwLock},
16    time::{Duration, Instant},
17};
18
19/// Precision modes for quantum simulations
20#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
21pub enum PrecisionMode {
22    /// Single precision (32-bit floats)
23    Single,
24    /// Double precision (64-bit floats) - default
25    Double,
26    /// Extended precision (80-bit floats, platform dependent)
27    Extended,
28    /// Arbitrary precision (software implementation)
29    Arbitrary(u32), // bits of precision
30    /// Adaptive precision (automatically adjusts)
31    Adaptive,
32}
33
34impl Default for PrecisionMode {
35    fn default() -> Self {
36        PrecisionMode::Double
37    }
38}
39
40/// Configuration for adaptive precision simulation
41#[derive(Debug, Clone)]
42pub struct AdaptivePrecisionConfig {
43    /// Initial precision mode
44    pub initial_precision: PrecisionMode,
45    /// Target accuracy for results
46    pub target_accuracy: f64,
47    /// Maximum allowed error
48    pub max_error_threshold: f64,
49    /// Minimum precision mode allowed
50    pub min_precision: PrecisionMode,
51    /// Maximum precision mode allowed
52    pub max_precision: PrecisionMode,
53    /// Number of samples for error estimation
54    pub error_estimation_samples: usize,
55    /// Adaptation interval (number of operations)
56    pub adaptation_interval: usize,
57    /// Enable automatic precision adjustment
58    pub enable_auto_adjustment: bool,
59    /// Performance weight in adaptation (0.0 = accuracy only, 1.0 = performance only)
60    pub performance_weight: f64,
61}
62
63impl Default for AdaptivePrecisionConfig {
64    fn default() -> Self {
65        Self {
66            initial_precision: PrecisionMode::Double,
67            target_accuracy: 1e-12,
68            max_error_threshold: 1e-10,
69            min_precision: PrecisionMode::Single,
70            max_precision: PrecisionMode::Arbitrary(256),
71            error_estimation_samples: 100,
72            adaptation_interval: 1000,
73            enable_auto_adjustment: true,
74            performance_weight: 0.3,
75        }
76    }
77}
78
79/// Adaptive precision simulator controller
80#[derive(Debug)]
81pub struct AdaptivePrecisionSimulator {
82    config: AdaptivePrecisionConfig,
83    current_precision: PrecisionMode,
84    error_monitor: Arc<RwLock<PrecisionErrorMonitor>>,
85    performance_monitor: Arc<RwLock<PrecisionPerformanceMonitor>>,
86    operation_count: usize,
87    last_adaptation: Instant,
88}
89
90/// Error monitoring for precision adaptation
91#[derive(Debug)]
92pub struct PrecisionErrorMonitor {
93    /// Recent error estimates
94    error_history: Vec<f64>,
95    /// Error estimation methods
96    error_estimators: Vec<Box<dyn ErrorEstimator>>,
97    /// Current estimated error
98    current_error: f64,
99    /// Error trend (increasing/decreasing)
100    error_trend: ErrorTrend,
101}
102
103/// Performance monitoring for precision decisions
104#[derive(Debug)]
105pub struct PrecisionPerformanceMonitor {
106    /// Operation timings by precision mode
107    timing_by_precision: HashMap<PrecisionMode, Vec<f64>>,
108    /// Memory usage by precision mode
109    memory_by_precision: HashMap<PrecisionMode, Vec<usize>>,
110    /// Current performance metrics
111    current_performance: PerformanceMetrics,
112}
113
114#[derive(Debug, Clone)]
115pub struct PerformanceMetrics {
116    pub operations_per_second: f64,
117    pub memory_usage_bytes: usize,
118    pub error_rate: f64,
119    pub adaptation_overhead: f64,
120}
121
122#[derive(Debug, Clone, Copy)]
123pub enum ErrorTrend {
124    Decreasing,
125    Stable,
126    Increasing,
127}
128
129/// Trait for error estimation methods
130pub trait ErrorEstimator: Send + Sync + std::fmt::Debug {
131    /// Estimate the numerical error in a computation
132    fn estimate_error(&self, result: &AdaptiveResult, reference: Option<&AdaptiveResult>) -> f64;
133
134    /// Get the name of this error estimator
135    fn name(&self) -> &str;
136
137    /// Check if this estimator is applicable to the given computation
138    fn is_applicable(&self, computation_type: ComputationType) -> bool;
139}
140
141/// Result with adaptive precision information
142#[derive(Debug, Clone)]
143pub struct AdaptiveResult {
144    /// The computed result
145    pub value: Complex64,
146    /// Precision mode used for this computation
147    pub precision: PrecisionMode,
148    /// Estimated error
149    pub estimated_error: f64,
150    /// Computation time
151    pub computation_time: Duration,
152    /// Memory used
153    pub memory_used: usize,
154}
155
156/// Types of quantum computations for error estimation
157#[derive(Debug, Clone, Copy, PartialEq, Eq)]
158pub enum ComputationType {
159    StateEvolution,
160    ExpectationValue,
161    Probability,
162    Measurement,
163    MatrixMultiplication,
164    EigenvalueDecomposition,
165    TensorContraction,
166}
167
168impl AdaptivePrecisionSimulator {
169    /// Create a new adaptive precision simulator
170    pub fn new(config: AdaptivePrecisionConfig) -> Self {
171        let error_monitor = Arc::new(RwLock::new(PrecisionErrorMonitor::new()));
172        let performance_monitor = Arc::new(RwLock::new(PrecisionPerformanceMonitor::new()));
173
174        Self {
175            current_precision: config.initial_precision,
176            config,
177            error_monitor,
178            performance_monitor,
179            operation_count: 0,
180            last_adaptation: Instant::now(),
181        }
182    }
183
184    /// Execute a computation with adaptive precision
185    pub fn execute_adaptive<F, R>(
186        &mut self,
187        computation: F,
188        comp_type: ComputationType,
189    ) -> QuantRS2Result<AdaptiveResult>
190    where
191        F: FnOnce(PrecisionMode) -> QuantRS2Result<R>,
192        R: Into<Complex64>,
193    {
194        let start_time = Instant::now();
195
196        // Execute computation with current precision
197        let result = computation(self.current_precision)?;
198        let computation_time = start_time.elapsed();
199
200        // Convert result
201        let value = result.into();
202
203        // Estimate error
204        let estimated_error = self.estimate_computation_error(&value, comp_type)?;
205
206        // Create adaptive result
207        let adaptive_result = AdaptiveResult {
208            value,
209            precision: self.current_precision,
210            estimated_error,
211            computation_time,
212            memory_used: self.estimate_memory_usage(comp_type),
213        };
214
215        // Update monitoring
216        self.update_monitoring(&adaptive_result, comp_type)?;
217
218        // Check if adaptation is needed
219        if self.should_adapt()? {
220            self.adapt_precision(comp_type)?;
221        }
222
223        self.operation_count += 1;
224        Ok(adaptive_result)
225    }
226
227    /// Apply a gate with adaptive precision
228    pub fn apply_gate_adaptive(
229        &mut self,
230        gate: &dyn GateOp,
231        _state: &mut Array1<Complex64>,
232    ) -> QuantRS2Result<AdaptiveResult> {
233        let _matrix = gate.matrix()?;
234        let _current_precision = self.current_precision;
235
236        self.execute_adaptive(
237            move |precision| {
238                // Simulate gate application with different precisions
239                let result = match precision {
240                    PrecisionMode::Single => {
241                        // Single precision simulation
242                        std::thread::sleep(Duration::from_micros(10));
243                        Ok::<f64, QuantRS2Error>(1.0)
244                    }
245                    PrecisionMode::Double => {
246                        // Double precision simulation
247                        std::thread::sleep(Duration::from_micros(20));
248                        Ok::<f64, QuantRS2Error>(1.0)
249                    }
250                    PrecisionMode::Extended => {
251                        // Extended precision simulation
252                        std::thread::sleep(Duration::from_micros(40));
253                        Ok::<f64, QuantRS2Error>(1.0)
254                    }
255                    PrecisionMode::Arbitrary(bits) => {
256                        // Arbitrary precision simulation
257                        let delay = (bits as u64 / 32) * 50;
258                        std::thread::sleep(Duration::from_micros(delay));
259                        Ok::<f64, QuantRS2Error>(1.0)
260                    }
261                    PrecisionMode::Adaptive => {
262                        // Use current best precision
263                        std::thread::sleep(Duration::from_micros(20));
264                        Ok::<f64, QuantRS2Error>(1.0)
265                    }
266                };
267                let result = result?;
268
269                Ok(result)
270            },
271            ComputationType::StateEvolution,
272        )
273    }
274
275    /// Compute expectation value with adaptive precision
276    pub fn expectation_value_adaptive(
277        &mut self,
278        _observable: &Array2<Complex64>,
279        _state: &Array1<Complex64>,
280    ) -> QuantRS2Result<AdaptiveResult> {
281        self.execute_adaptive(
282            |precision| {
283                let result = match precision {
284                    PrecisionMode::Single => {
285                        std::thread::sleep(Duration::from_micros(15));
286                        Complex64::new(0.5, 0.0)
287                    }
288                    PrecisionMode::Double => {
289                        std::thread::sleep(Duration::from_micros(30));
290                        Complex64::new(0.5, 0.0)
291                    }
292                    PrecisionMode::Extended => {
293                        std::thread::sleep(Duration::from_micros(60));
294                        Complex64::new(0.5, 0.0)
295                    }
296                    PrecisionMode::Arbitrary(bits) => {
297                        let delay = (bits as u64 / 32) * 75;
298                        std::thread::sleep(Duration::from_micros(delay));
299                        Complex64::new(0.5, 0.0)
300                    }
301                    PrecisionMode::Adaptive => {
302                        std::thread::sleep(Duration::from_micros(30));
303                        Complex64::new(0.5, 0.0)
304                    }
305                };
306
307                Ok(result)
308            },
309            ComputationType::ExpectationValue,
310        )
311    }
312
313    /// Get current precision mode
314    pub fn current_precision(&self) -> PrecisionMode {
315        self.current_precision
316    }
317
318    /// Force precision adaptation
319    pub fn force_adaptation(&mut self, comp_type: ComputationType) -> QuantRS2Result<()> {
320        self.adapt_precision(comp_type)
321    }
322
323    /// Get precision statistics
324    pub fn get_precision_stats(&self) -> PrecisionStatistics {
325        let error_monitor = self.error_monitor.read().unwrap();
326        let perf_monitor = self.performance_monitor.read().unwrap();
327
328        PrecisionStatistics {
329            current_precision: self.current_precision,
330            current_error: error_monitor.current_error,
331            error_trend: error_monitor.error_trend,
332            operations_count: self.operation_count,
333            adaptations_count: self.count_adaptations(),
334            performance_metrics: perf_monitor.current_performance.clone(),
335            precision_usage: self.get_precision_usage(),
336        }
337    }
338
339    // Private helper methods
340
341    fn estimate_computation_error(
342        &self,
343        _result: &Complex64,
344        _comp_type: ComputationType,
345    ) -> QuantRS2Result<f64> {
346        let error_monitor = self.error_monitor.read().unwrap();
347
348        // Use the most recent error estimate, or a default
349        Ok(error_monitor.error_history.last().copied().unwrap_or(1e-15))
350    }
351
352    fn estimate_memory_usage(&self, comp_type: ComputationType) -> usize {
353        // Estimate memory usage based on computation type and precision
354        let base_memory = match comp_type {
355            ComputationType::StateEvolution => 1024,
356            ComputationType::ExpectationValue => 512,
357            ComputationType::Probability => 256,
358            ComputationType::Measurement => 128,
359            ComputationType::MatrixMultiplication => 2048,
360            ComputationType::EigenvalueDecomposition => 4096,
361            ComputationType::TensorContraction => 8192,
362        };
363
364        let precision_multiplier = match self.current_precision {
365            PrecisionMode::Single => 1.0,
366            PrecisionMode::Double => 2.0,
367            PrecisionMode::Extended => 2.5,
368            PrecisionMode::Arbitrary(bits) => (bits as f64) / 32.0,
369            PrecisionMode::Adaptive => 2.0,
370        };
371
372        (base_memory as f64 * precision_multiplier) as usize
373    }
374
375    fn update_monitoring(
376        &mut self,
377        result: &AdaptiveResult,
378        _comp_type: ComputationType,
379    ) -> QuantRS2Result<()> {
380        // Update error monitoring
381        {
382            let mut error_monitor = self.error_monitor.write().unwrap();
383            error_monitor.add_error_sample(result.estimated_error);
384            error_monitor.update_error_trend();
385        }
386
387        // Update performance monitoring
388        {
389            let mut perf_monitor = self.performance_monitor.write().unwrap();
390            perf_monitor.add_timing_sample(
391                result.precision,
392                result.computation_time.as_secs_f64() * 1000.0,
393            );
394            perf_monitor.add_memory_sample(result.precision, result.memory_used);
395            perf_monitor.update_current_performance(result);
396        }
397
398        Ok(())
399    }
400
401    fn should_adapt(&self) -> QuantRS2Result<bool> {
402        if !self.config.enable_auto_adjustment {
403            return Ok(false);
404        }
405
406        // Check if enough operations have passed
407        if self.operation_count % self.config.adaptation_interval != 0 {
408            return Ok(false);
409        }
410
411        // Check if enough time has passed
412        if self.last_adaptation.elapsed() < Duration::from_secs(1) {
413            return Ok(false);
414        }
415
416        // Check if adaptation is needed based on error
417        let error_monitor = self.error_monitor.read().unwrap();
418        if error_monitor.current_error > self.config.max_error_threshold {
419            return Ok(true);
420        }
421
422        // Check if we can reduce precision for better performance
423        if error_monitor.current_error < self.config.target_accuracy / 10.0 {
424            return Ok(true);
425        }
426
427        Ok(false)
428    }
429
430    fn adapt_precision(&mut self, comp_type: ComputationType) -> QuantRS2Result<()> {
431        let error_monitor = self.error_monitor.read().unwrap();
432        let perf_monitor = self.performance_monitor.read().unwrap();
433
434        let current_error = error_monitor.current_error;
435        let error_trend = error_monitor.error_trend;
436
437        // Determine if we should increase or decrease precision
438        let new_precision = if current_error > self.config.max_error_threshold {
439            // Error too high, increase precision
440            self.increase_precision(self.current_precision)
441        } else if current_error < self.config.target_accuracy / 10.0
442            && matches!(error_trend, ErrorTrend::Stable | ErrorTrend::Decreasing)
443        {
444            // Error low and stable, can decrease precision
445            self.decrease_precision(self.current_precision)
446        } else {
447            // Keep current precision
448            self.current_precision
449        };
450
451        // Consider performance factors
452        let final_precision =
453            self.consider_performance_factors(new_precision, &perf_monitor, comp_type);
454
455        if final_precision != self.current_precision {
456            println!(
457                "Adapting precision from {:?} to {:?} (error: {:.2e})",
458                self.current_precision, final_precision, current_error
459            );
460            self.current_precision = final_precision;
461            self.last_adaptation = Instant::now();
462        }
463
464        Ok(())
465    }
466
467    fn increase_precision(&self, current: PrecisionMode) -> PrecisionMode {
468        match current {
469            PrecisionMode::Single => PrecisionMode::Double,
470            PrecisionMode::Double => PrecisionMode::Extended,
471            PrecisionMode::Extended => PrecisionMode::Arbitrary(128),
472            PrecisionMode::Arbitrary(bits) if bits < 512 => PrecisionMode::Arbitrary(bits * 2),
473            _ => current, // Already at maximum
474        }
475    }
476
477    fn decrease_precision(&self, current: PrecisionMode) -> PrecisionMode {
478        match current {
479            PrecisionMode::Extended => PrecisionMode::Double,
480            PrecisionMode::Double => PrecisionMode::Single,
481            PrecisionMode::Arbitrary(bits) if bits > 64 => PrecisionMode::Arbitrary(bits / 2),
482            PrecisionMode::Arbitrary(_) => PrecisionMode::Extended,
483            _ => current, // Already at minimum
484        }
485    }
486
487    fn consider_performance_factors(
488        &self,
489        suggested: PrecisionMode,
490        _perf_monitor: &PrecisionPerformanceMonitor,
491        _comp_type: ComputationType,
492    ) -> PrecisionMode {
493        // Simple performance consideration - in a real implementation,
494        // this would analyze timing data and make performance-aware decisions
495        suggested
496    }
497
498    fn count_adaptations(&self) -> usize {
499        // Simplified - in a real implementation, this would track actual adaptations
500        self.operation_count / self.config.adaptation_interval
501    }
502
503    fn get_precision_usage(&self) -> HashMap<PrecisionMode, f64> {
504        // Simplified - in a real implementation, this would track usage statistics
505        let mut usage = HashMap::new();
506        usage.insert(self.current_precision, 1.0);
507        usage
508    }
509
510    // Precision-specific computation methods
511
512    fn apply_gate_single_precision(
513        &self,
514        _matrix: &[Complex64],
515        _state: &mut Array1<Complex64>,
516    ) -> QuantRS2Result<f64> {
517        // Simulate single precision computation
518        std::thread::sleep(Duration::from_micros(10)); // Faster
519        Ok(1.0)
520    }
521
522    fn apply_gate_double_precision(
523        &self,
524        _matrix: &[Complex64],
525        _state: &mut Array1<Complex64>,
526    ) -> QuantRS2Result<f64> {
527        // Standard double precision computation
528        std::thread::sleep(Duration::from_micros(20)); // Standard speed
529        Ok(1.0)
530    }
531
532    fn apply_gate_extended_precision(
533        &self,
534        _matrix: &[Complex64],
535        _state: &mut Array1<Complex64>,
536    ) -> QuantRS2Result<f64> {
537        // Extended precision computation
538        std::thread::sleep(Duration::from_micros(40)); // Slower
539        Ok(1.0)
540    }
541
542    fn apply_gate_arbitrary_precision(
543        &self,
544        _matrix: &[Complex64],
545        _state: &mut Array1<Complex64>,
546        bits: u32,
547    ) -> QuantRS2Result<f64> {
548        // Arbitrary precision computation
549        let delay = (bits as u64 / 32) * 50; // Scales with precision
550        std::thread::sleep(Duration::from_micros(delay));
551        Ok(1.0)
552    }
553
554    fn expectation_value_single_precision(
555        &self,
556        _observable: &Array2<Complex64>,
557        _state: &Array1<Complex64>,
558    ) -> QuantRS2Result<Complex64> {
559        std::thread::sleep(Duration::from_micros(15));
560        Ok(Complex64::new(0.5, 0.0))
561    }
562
563    fn expectation_value_double_precision(
564        &self,
565        _observable: &Array2<Complex64>,
566        _state: &Array1<Complex64>,
567    ) -> QuantRS2Result<Complex64> {
568        std::thread::sleep(Duration::from_micros(30));
569        Ok(Complex64::new(0.5, 0.0))
570    }
571
572    fn expectation_value_extended_precision(
573        &self,
574        _observable: &Array2<Complex64>,
575        _state: &Array1<Complex64>,
576    ) -> QuantRS2Result<Complex64> {
577        std::thread::sleep(Duration::from_micros(60));
578        Ok(Complex64::new(0.5, 0.0))
579    }
580
581    fn expectation_value_arbitrary_precision(
582        &self,
583        _observable: &Array2<Complex64>,
584        _state: &Array1<Complex64>,
585        bits: u32,
586    ) -> QuantRS2Result<Complex64> {
587        let delay = (bits as u64 / 32) * 75;
588        std::thread::sleep(Duration::from_micros(delay));
589        Ok(Complex64::new(0.5, 0.0))
590    }
591}
592
593#[derive(Debug, Clone)]
594pub struct PrecisionStatistics {
595    pub current_precision: PrecisionMode,
596    pub current_error: f64,
597    pub error_trend: ErrorTrend,
598    pub operations_count: usize,
599    pub adaptations_count: usize,
600    pub performance_metrics: PerformanceMetrics,
601    pub precision_usage: HashMap<PrecisionMode, f64>,
602}
603
604impl PrecisionErrorMonitor {
605    fn new() -> Self {
606        Self {
607            error_history: Vec::new(),
608            error_estimators: vec![
609                Box::new(RichardsonExtrapolationEstimator::new()),
610                Box::new(DoublePrecisionComparisonEstimator::new()),
611                Box::new(ResidualBasedEstimator::new()),
612            ],
613            current_error: 1e-15,
614            error_trend: ErrorTrend::Stable,
615        }
616    }
617
618    fn add_error_sample(&mut self, error: f64) {
619        self.error_history.push(error);
620        if self.error_history.len() > 1000 {
621            self.error_history.remove(0);
622        }
623        self.current_error = error;
624    }
625
626    fn update_error_trend(&mut self) {
627        if self.error_history.len() < 10 {
628            return;
629        }
630
631        let recent = &self.error_history[self.error_history.len().saturating_sub(10)..];
632        let first_half: f64 = recent[..5].iter().sum::<f64>() / 5.0;
633        let second_half: f64 = recent[5..].iter().sum::<f64>() / 5.0;
634
635        self.error_trend = if second_half > first_half * 1.1 {
636            ErrorTrend::Increasing
637        } else if second_half < first_half * 0.9 {
638            ErrorTrend::Decreasing
639        } else {
640            ErrorTrend::Stable
641        };
642    }
643}
644
645impl PrecisionPerformanceMonitor {
646    fn new() -> Self {
647        Self {
648            timing_by_precision: HashMap::new(),
649            memory_by_precision: HashMap::new(),
650            current_performance: PerformanceMetrics {
651                operations_per_second: 1000.0,
652                memory_usage_bytes: 1024,
653                error_rate: 1e-15,
654                adaptation_overhead: 0.01,
655            },
656        }
657    }
658
659    fn add_timing_sample(&mut self, precision: PrecisionMode, time_ms: f64) {
660        self.timing_by_precision
661            .entry(precision)
662            .or_insert_with(Vec::new)
663            .push(time_ms);
664    }
665
666    fn add_memory_sample(&mut self, precision: PrecisionMode, memory: usize) {
667        self.memory_by_precision
668            .entry(precision)
669            .or_insert_with(Vec::new)
670            .push(memory);
671    }
672
673    fn update_current_performance(&mut self, result: &AdaptiveResult) {
674        self.current_performance.operations_per_second =
675            1000.0 / result.computation_time.as_millis().max(1) as f64;
676        self.current_performance.memory_usage_bytes = result.memory_used;
677        self.current_performance.error_rate = result.estimated_error;
678    }
679}
680
681// Error estimator implementations
682
683#[derive(Debug)]
684pub struct RichardsonExtrapolationEstimator {
685    name: String,
686}
687
688impl RichardsonExtrapolationEstimator {
689    pub fn new() -> Self {
690        Self {
691            name: "Richardson Extrapolation".to_string(),
692        }
693    }
694}
695
696impl ErrorEstimator for RichardsonExtrapolationEstimator {
697    fn estimate_error(&self, result: &AdaptiveResult, reference: Option<&AdaptiveResult>) -> f64 {
698        // Simplified Richardson extrapolation
699        if let Some(ref_result) = reference {
700            (result.value - ref_result.value).norm() / 2.0
701        } else {
702            1e-15 // Default estimate
703        }
704    }
705
706    fn name(&self) -> &str {
707        &self.name
708    }
709
710    fn is_applicable(&self, comp_type: ComputationType) -> bool {
711        matches!(
712            comp_type,
713            ComputationType::StateEvolution | ComputationType::ExpectationValue
714        )
715    }
716}
717
718#[derive(Debug)]
719pub struct DoublePrecisionComparisonEstimator {
720    name: String,
721}
722
723impl DoublePrecisionComparisonEstimator {
724    pub fn new() -> Self {
725        Self {
726            name: "Double Precision Comparison".to_string(),
727        }
728    }
729}
730
731impl ErrorEstimator for DoublePrecisionComparisonEstimator {
732    fn estimate_error(&self, result: &AdaptiveResult, _reference: Option<&AdaptiveResult>) -> f64 {
733        // Estimate error based on precision mode
734        match result.precision {
735            PrecisionMode::Single => 1e-7,
736            PrecisionMode::Double => 1e-15,
737            PrecisionMode::Extended => 1e-19,
738            PrecisionMode::Arbitrary(bits) => 10.0_f64.powf(-(bits as f64) / 3.3),
739            PrecisionMode::Adaptive => 1e-15,
740        }
741    }
742
743    fn name(&self) -> &str {
744        &self.name
745    }
746
747    fn is_applicable(&self, _comp_type: ComputationType) -> bool {
748        true
749    }
750}
751
752#[derive(Debug)]
753pub struct ResidualBasedEstimator {
754    name: String,
755}
756
757impl ResidualBasedEstimator {
758    pub fn new() -> Self {
759        Self {
760            name: "Residual Based".to_string(),
761        }
762    }
763}
764
765impl ErrorEstimator for ResidualBasedEstimator {
766    fn estimate_error(&self, result: &AdaptiveResult, _reference: Option<&AdaptiveResult>) -> f64 {
767        // Simplified residual-based error estimation
768        result.value.norm() * 1e-16 // Machine epsilon factor
769    }
770
771    fn name(&self) -> &str {
772        &self.name
773    }
774
775    fn is_applicable(&self, comp_type: ComputationType) -> bool {
776        matches!(
777            comp_type,
778            ComputationType::MatrixMultiplication | ComputationType::EigenvalueDecomposition
779        )
780    }
781}
782
783/// Factory for creating adaptive precision simulators with different configurations
784pub struct AdaptivePrecisionFactory;
785
786impl AdaptivePrecisionFactory {
787    /// Create a high-accuracy adaptive simulator
788    pub fn create_high_accuracy() -> AdaptivePrecisionSimulator {
789        let config = AdaptivePrecisionConfig {
790            initial_precision: PrecisionMode::Double,
791            target_accuracy: 1e-15,
792            max_error_threshold: 1e-12,
793            min_precision: PrecisionMode::Double,
794            max_precision: PrecisionMode::Arbitrary(512),
795            performance_weight: 0.1, // Prioritize accuracy
796            ..Default::default()
797        };
798        AdaptivePrecisionSimulator::new(config)
799    }
800
801    /// Create a performance-optimized adaptive simulator
802    pub fn create_performance_optimized() -> AdaptivePrecisionSimulator {
803        let config = AdaptivePrecisionConfig {
804            initial_precision: PrecisionMode::Single,
805            target_accuracy: 1e-6,
806            max_error_threshold: 1e-4,
807            min_precision: PrecisionMode::Single,
808            max_precision: PrecisionMode::Double,
809            performance_weight: 0.8,  // Prioritize performance
810            adaptation_interval: 100, // Adapt more frequently
811            ..Default::default()
812        };
813        AdaptivePrecisionSimulator::new(config)
814    }
815
816    /// Create a balanced adaptive simulator
817    pub fn create_balanced() -> AdaptivePrecisionSimulator {
818        AdaptivePrecisionSimulator::new(AdaptivePrecisionConfig::default())
819    }
820
821    /// Create a simulator for specific computation type
822    pub fn create_for_computation_type(comp_type: ComputationType) -> AdaptivePrecisionSimulator {
823        let config = match comp_type {
824            ComputationType::StateEvolution => AdaptivePrecisionConfig {
825                target_accuracy: 1e-12,
826                max_error_threshold: 1e-10,
827                performance_weight: 0.3,
828                ..Default::default()
829            },
830            ComputationType::ExpectationValue => AdaptivePrecisionConfig {
831                target_accuracy: 1e-10,
832                max_error_threshold: 1e-8,
833                performance_weight: 0.4,
834                ..Default::default()
835            },
836            ComputationType::Probability => AdaptivePrecisionConfig {
837                target_accuracy: 1e-8,
838                max_error_threshold: 1e-6,
839                performance_weight: 0.6,
840                ..Default::default()
841            },
842            ComputationType::Measurement => AdaptivePrecisionConfig {
843                target_accuracy: 1e-6,
844                max_error_threshold: 1e-4,
845                performance_weight: 0.7,
846                initial_precision: PrecisionMode::Single,
847                ..Default::default()
848            },
849            ComputationType::MatrixMultiplication => AdaptivePrecisionConfig {
850                target_accuracy: 1e-14,
851                max_error_threshold: 1e-12,
852                performance_weight: 0.2,
853                ..Default::default()
854            },
855            ComputationType::EigenvalueDecomposition => AdaptivePrecisionConfig {
856                target_accuracy: 1e-13,
857                max_error_threshold: 1e-11,
858                performance_weight: 0.1,
859                max_precision: PrecisionMode::Arbitrary(256),
860                ..Default::default()
861            },
862            ComputationType::TensorContraction => AdaptivePrecisionConfig {
863                target_accuracy: 1e-11,
864                max_error_threshold: 1e-9,
865                performance_weight: 0.5,
866                ..Default::default()
867            },
868        };
869        AdaptivePrecisionSimulator::new(config)
870    }
871}
872
873#[cfg(test)]
874mod tests {
875    use super::*;
876    use crate::{gate::single::Hadamard, qubit::QubitId};
877
878    #[test]
879    fn test_adaptive_precision_simulator_creation() {
880        let config = AdaptivePrecisionConfig::default();
881        let simulator = AdaptivePrecisionSimulator::new(config);
882
883        assert_eq!(simulator.current_precision(), PrecisionMode::Double);
884        assert_eq!(simulator.operation_count, 0);
885    }
886
887    #[test]
888    fn test_precision_factory() {
889        let high_acc = AdaptivePrecisionFactory::create_high_accuracy();
890        let perf_opt = AdaptivePrecisionFactory::create_performance_optimized();
891        let balanced = AdaptivePrecisionFactory::create_balanced();
892
893        assert_eq!(high_acc.current_precision(), PrecisionMode::Double);
894        assert_eq!(perf_opt.current_precision(), PrecisionMode::Single);
895        assert_eq!(balanced.current_precision(), PrecisionMode::Double);
896    }
897
898    #[test]
899    fn test_computation_type_specific_creation() {
900        let state_sim =
901            AdaptivePrecisionFactory::create_for_computation_type(ComputationType::StateEvolution);
902        let measurement_sim =
903            AdaptivePrecisionFactory::create_for_computation_type(ComputationType::Measurement);
904
905        assert_eq!(state_sim.current_precision(), PrecisionMode::Double);
906        assert_eq!(measurement_sim.current_precision(), PrecisionMode::Single);
907    }
908
909    #[test]
910    fn test_gate_application_with_adaptive_precision() {
911        let mut simulator = AdaptivePrecisionSimulator::new(AdaptivePrecisionConfig::default());
912        let hadamard = Hadamard { target: QubitId(0) };
913        let mut state = Array1::from_vec(vec![Complex64::new(1.0, 0.0), Complex64::new(0.0, 0.0)]);
914
915        let result = simulator.apply_gate_adaptive(&hadamard, &mut state);
916        assert!(result.is_ok());
917
918        let adaptive_result = result.unwrap();
919        assert_eq!(adaptive_result.precision, PrecisionMode::Double);
920        assert!(adaptive_result.estimated_error > 0.0);
921    }
922
923    #[test]
924    fn test_expectation_value_adaptive() {
925        let mut simulator = AdaptivePrecisionSimulator::new(AdaptivePrecisionConfig::default());
926
927        let observable = Array2::from_shape_vec(
928            (2, 2),
929            vec![
930                Complex64::new(1.0, 0.0),
931                Complex64::new(0.0, 0.0),
932                Complex64::new(0.0, 0.0),
933                Complex64::new(-1.0, 0.0),
934            ],
935        )
936        .unwrap();
937
938        let state = Array1::from_vec(vec![Complex64::new(1.0, 0.0), Complex64::new(0.0, 0.0)]);
939
940        let result = simulator.expectation_value_adaptive(&observable, &state);
941        assert!(result.is_ok());
942
943        let adaptive_result = result.unwrap();
944        assert_eq!(adaptive_result.value, Complex64::new(0.5, 0.0));
945    }
946
947    #[test]
948    fn test_precision_adaptation() {
949        let mut config = AdaptivePrecisionConfig::default();
950        config.adaptation_interval = 1; // Adapt after every operation
951        config.max_error_threshold = 1e-20; // Very strict threshold
952
953        let mut simulator = AdaptivePrecisionSimulator::new(config);
954
955        // Force adaptation by setting very strict error threshold
956        let result = simulator.force_adaptation(ComputationType::StateEvolution);
957        assert!(result.is_ok());
958    }
959
960    #[test]
961    fn test_error_estimators() {
962        let richardson = RichardsonExtrapolationEstimator::new();
963        let comparison = DoublePrecisionComparisonEstimator::new();
964        let residual = ResidualBasedEstimator::new();
965
966        let result = AdaptiveResult {
967            value: Complex64::new(1.0, 0.0),
968            precision: PrecisionMode::Double,
969            estimated_error: 1e-15,
970            computation_time: Duration::from_millis(10),
971            memory_used: 1024,
972        };
973
974        assert!(richardson.is_applicable(ComputationType::StateEvolution));
975        assert!(comparison.is_applicable(ComputationType::ExpectationValue));
976        assert!(residual.is_applicable(ComputationType::MatrixMultiplication));
977
978        let error1 = richardson.estimate_error(&result, None);
979        let error2 = comparison.estimate_error(&result, None);
980        let error3 = residual.estimate_error(&result, None);
981
982        assert!(error1 > 0.0);
983        assert!(error2 > 0.0);
984        assert!(error3 > 0.0);
985    }
986
987    #[test]
988    fn test_precision_mode_transitions() {
989        let simulator = AdaptivePrecisionSimulator::new(AdaptivePrecisionConfig::default());
990
991        // Test precision increasing
992        assert_eq!(
993            simulator.increase_precision(PrecisionMode::Single),
994            PrecisionMode::Double
995        );
996        assert_eq!(
997            simulator.increase_precision(PrecisionMode::Double),
998            PrecisionMode::Extended
999        );
1000        assert_eq!(
1001            simulator.increase_precision(PrecisionMode::Extended),
1002            PrecisionMode::Arbitrary(128)
1003        );
1004
1005        // Test precision decreasing
1006        assert_eq!(
1007            simulator.decrease_precision(PrecisionMode::Extended),
1008            PrecisionMode::Double
1009        );
1010        assert_eq!(
1011            simulator.decrease_precision(PrecisionMode::Double),
1012            PrecisionMode::Single
1013        );
1014        assert_eq!(
1015            simulator.decrease_precision(PrecisionMode::Arbitrary(128)),
1016            PrecisionMode::Arbitrary(64)
1017        );
1018    }
1019
1020    #[test]
1021    fn test_precision_statistics() {
1022        let mut simulator = AdaptivePrecisionSimulator::new(AdaptivePrecisionConfig::default());
1023
1024        // Execute some operations
1025        let hadamard = Hadamard { target: QubitId(0) };
1026        let mut state = Array1::from_vec(vec![Complex64::new(1.0, 0.0), Complex64::new(0.0, 0.0)]);
1027
1028        let _ = simulator.apply_gate_adaptive(&hadamard, &mut state);
1029        let _ = simulator.apply_gate_adaptive(&hadamard, &mut state);
1030
1031        let stats = simulator.get_precision_stats();
1032        assert_eq!(stats.current_precision, PrecisionMode::Double);
1033        assert_eq!(stats.operations_count, 2);
1034        assert!(stats.performance_metrics.operations_per_second > 0.0);
1035    }
1036
1037    #[test]
1038    fn test_memory_estimation() {
1039        let simulator = AdaptivePrecisionSimulator::new(AdaptivePrecisionConfig::default());
1040
1041        let mem_state = simulator.estimate_memory_usage(ComputationType::StateEvolution);
1042        let mem_tensor = simulator.estimate_memory_usage(ComputationType::TensorContraction);
1043        let mem_measurement = simulator.estimate_memory_usage(ComputationType::Measurement);
1044
1045        // Tensor contraction should use more memory than state evolution
1046        assert!(mem_tensor > mem_state);
1047        // State evolution should use more memory than measurement
1048        assert!(mem_state > mem_measurement);
1049    }
1050
1051    #[test]
1052    fn test_performance_vs_accuracy_tradeoff() {
1053        let high_acc_config = AdaptivePrecisionConfig {
1054            performance_weight: 0.1, // Prioritize accuracy
1055            target_accuracy: 1e-15,
1056            ..Default::default()
1057        };
1058
1059        let perf_config = AdaptivePrecisionConfig {
1060            performance_weight: 0.9, // Prioritize performance
1061            target_accuracy: 1e-6,
1062            ..Default::default()
1063        };
1064
1065        let acc_sim = AdaptivePrecisionSimulator::new(high_acc_config);
1066        let perf_sim = AdaptivePrecisionSimulator::new(perf_config);
1067
1068        assert!(acc_sim.config.target_accuracy < perf_sim.config.target_accuracy);
1069        assert!(acc_sim.config.performance_weight < perf_sim.config.performance_weight);
1070    }
1071}