Expand description
Variational quantum gates with automatic differentiation support
This module provides variational quantum gates whose parameters can be optimized using gradient-based methods. It includes automatic differentiation for computing parameter gradients efficiently.
Structs§
- Computation
Graph - Computation graph for reverse-mode autodiff
- Dual
- Dual number for forward-mode autodiff
- Hardware
Efficient Ansatz - Hardware-efficient ansatz for VQE
- Node
- Computation graph node for reverse-mode autodiff
- QAOA
Ansatz - QAOA (Quantum Approximate Optimization Algorithm) ansatz
- Quantum
Autoencoder - Quantum autoencoder for data compression and feature learning
- Variational
Circuit - Variational quantum circuit with multiple parameterized gates
- Variational
Gate - Variational quantum gate with autodiff support
- Variational
Optimizer - Gradient-based optimizer for variational circuits
- Variational
Quantum Eigensolver - Variational Quantum Eigensolver (VQE) with improved optimization