Module quantum_autodiff

Source
Expand description

Enhanced Automatic Differentiation for Quantum Gradients

This module provides advanced automatic differentiation capabilities specifically designed for quantum computing, including parameter-shift rules, finite differences, and hybrid classical-quantum gradients.

Structs§

CacheEntry
ComputationEdge
ComputationGraph
Computation graph for tracking quantum operations
ComputationNode
GradientCache
Cache for computed gradients
GradientResult
Result of gradient computation
HigherOrderResult
Higher-order derivative result
Parameter
ParameterRegistry
Registry for tracking parameters
QuantumAutoDiff
Quantum automatic differentiation engine
QuantumAutoDiffConfig
Configuration for quantum automatic differentiation
QuantumAutoDiffFactory
Factory for creating quantum autodiff engines with different configurations

Enums§

DifferentiationMethod
Methods for computing quantum gradients
OptimizerType
QuantumOperation