1use crate::error::QuantRS2Error;
7use scirs2_core::ndarray::Array2;
8use scirs2_core::random::ChaCha20Rng;
9use scirs2_core::random::{Rng, SeedableRng};
10use scirs2_core::Complex64;
11use std::collections::HashMap;
12use std::f64::consts::PI;
13
14#[derive(Debug, Clone)]
16pub struct GrapeOptimizer {
17 pub control_hamiltonians: Vec<Array2<Complex64>>,
18 pub drift_hamiltonian: Array2<Complex64>,
19 pub target_unitary: Array2<Complex64>,
20 pub pulse_amplitudes: Array2<f64>,
21 pub time_steps: usize,
22 pub total_time: f64,
23 pub convergence_threshold: f64,
24}
25
26impl GrapeOptimizer {
27 pub fn new(
29 control_hamiltonians: Vec<Array2<Complex64>>,
30 drift_hamiltonian: Array2<Complex64>,
31 target_unitary: Array2<Complex64>,
32 time_steps: usize,
33 total_time: f64,
34 ) -> Self {
35 let num_controls = control_hamiltonians.len();
36 let pulse_amplitudes = Array2::zeros((num_controls, time_steps));
37
38 Self {
39 control_hamiltonians,
40 drift_hamiltonian,
41 target_unitary,
42 pulse_amplitudes,
43 time_steps,
44 total_time,
45 convergence_threshold: 1e-8,
46 }
47 }
48
49 pub fn optimize(
51 &mut self,
52 max_iterations: usize,
53 learning_rate: f64,
54 ) -> Result<GrapeResult, QuantRS2Error> {
55 let dt = self.total_time / (self.time_steps as f64);
56 let mut fidelity_history = Vec::new();
57
58 for iteration in 0..max_iterations {
59 let (propagators, final_unitary) = self.forward_propagation(dt)?;
61
62 let fidelity = self.compute_fidelity(&final_unitary);
64 fidelity_history.push(fidelity);
65
66 if fidelity > 1.0 - self.convergence_threshold {
67 return Ok(GrapeResult {
68 optimized_pulses: self.pulse_amplitudes.clone(),
69 final_fidelity: fidelity,
70 iterations: iteration + 1,
71 fidelity_history,
72 });
73 }
74
75 let gradients = self.backward_propagation(&propagators, &final_unitary, dt)?;
77
78 self.update_pulses(&gradients, learning_rate);
80
81 if iteration % 100 == 0 {
82 println!("GRAPE Iteration {iteration}: Fidelity = {fidelity:.6}");
83 }
84 }
85
86 Err(QuantRS2Error::OptimizationFailed(
87 "GRAPE optimization did not converge".to_string(),
88 ))
89 }
90
91 fn forward_propagation(
93 &self,
94 dt: f64,
95 ) -> Result<(Vec<Array2<Complex64>>, Array2<Complex64>), QuantRS2Error> {
96 let n = self.drift_hamiltonian.nrows();
97 let mut propagators = Vec::with_capacity(self.time_steps);
98 let mut unitary = Array2::eye(n);
99
100 for t in 0..self.time_steps {
101 let mut total_h = self.drift_hamiltonian.clone();
103
104 for (i, control_h) in self.control_hamiltonians.iter().enumerate() {
105 let amplitude = self.pulse_amplitudes[[i, t]];
106 total_h = total_h + Complex64::new(amplitude, 0.0) * control_h;
107 }
108
109 let evolution_op = self.matrix_exp(&(-Complex64::i() * dt * &total_h))?;
111 propagators.push(evolution_op.clone());
112
113 unitary = evolution_op.dot(&unitary);
114 }
115
116 Ok((propagators, unitary))
117 }
118
119 fn backward_propagation(
121 &self,
122 propagators: &[Array2<Complex64>],
123 final_unitary: &Array2<Complex64>,
124 dt: f64,
125 ) -> Result<Array2<f64>, QuantRS2Error> {
126 let num_controls = self.control_hamiltonians.len();
127 let mut gradients = Array2::zeros((num_controls, self.time_steps));
128
129 let n = self.drift_hamiltonian.nrows();
131 let mut backward_unitary = Array2::eye(n);
132 let mut backward_props = vec![Array2::eye(n); self.time_steps];
133
134 for t in (0..self.time_steps).rev() {
135 backward_props[t].clone_from(&backward_unitary);
136 backward_unitary = backward_unitary.dot(&propagators[t].t().mapv(|x| x.conj()));
137 }
138
139 let fidelity_error = &self.target_unitary.t().mapv(|x| x.conj()) - final_unitary;
141
142 for t in 0..self.time_steps {
143 let forward_part = if t == 0 {
144 Array2::eye(n)
145 } else {
146 propagators[..t]
147 .iter()
148 .fold(Array2::eye(n), |acc, p| acc.dot(p))
149 };
150
151 for (i, control_h) in self.control_hamiltonians.iter().enumerate() {
152 let d_u_dpulse = -Complex64::i() * dt * control_h.dot(&forward_part);
154 let gradient_matrix = &backward_props[t]
155 .t()
156 .mapv(|x| x.conj())
157 .dot(&fidelity_error.dot(&d_u_dpulse));
158
159 gradients[[i, t]] = gradient_matrix.diag().map(|x| x.re).sum();
160 }
161 }
162
163 Ok(gradients)
164 }
165
166 fn update_pulses(&mut self, gradients: &Array2<f64>, learning_rate: f64) {
168 self.pulse_amplitudes = &self.pulse_amplitudes + learning_rate * gradients;
169
170 self.pulse_amplitudes.mapv_inplace(|x| x.clamp(-10.0, 10.0));
172 }
173
174 fn compute_fidelity(&self, achieved_unitary: &Array2<Complex64>) -> f64 {
176 let n = achieved_unitary.nrows();
177 let overlap = self
178 .target_unitary
179 .t()
180 .mapv(|x| x.conj())
181 .dot(achieved_unitary);
182 let trace = overlap.diag().sum();
183 trace.norm_sqr() / (n as f64).powi(2)
184 }
185
186 fn matrix_exp(&self, matrix: &Array2<Complex64>) -> Result<Array2<Complex64>, QuantRS2Error> {
188 let n = matrix.nrows();
190 let mut result = Array2::eye(n);
191 let mut term = Array2::eye(n);
192
193 for k in 1..=20 {
194 term = term.dot(matrix) / (k as f64);
195 result = result + &term;
196
197 let frobenius_norm = term.iter().map(|x| x.norm_sqr()).sum::<f64>().sqrt();
199 if frobenius_norm < 1e-12 {
200 break;
201 }
202 }
203
204 Ok(result)
205 }
206}
207
208#[derive(Debug, Clone)]
210pub struct GrapeResult {
211 pub optimized_pulses: Array2<f64>,
212 pub final_fidelity: f64,
213 pub iterations: usize,
214 pub fidelity_history: Vec<f64>,
215}
216
217#[derive(Debug, Clone)]
219pub struct QuantumGateRL {
220 pub gate_library: Vec<Array2<Complex64>>,
221 pub q_table: HashMap<Vec<usize>, Vec<f64>>,
222 pub learning_rate: f64,
223 pub discount_factor: f64,
224 pub exploration_rate: f64,
225 pub target_unitary: Array2<Complex64>,
226}
227
228impl QuantumGateRL {
229 pub fn new(gate_library: Vec<Array2<Complex64>>, target_unitary: Array2<Complex64>) -> Self {
231 Self {
232 gate_library,
233 q_table: HashMap::new(),
234 learning_rate: 0.1,
235 discount_factor: 0.9,
236 exploration_rate: 0.1,
237 target_unitary,
238 }
239 }
240
241 pub fn train(
243 &mut self,
244 episodes: usize,
245 max_sequence_length: usize,
246 ) -> Result<RLResult, QuantRS2Error> {
247 let mut best_sequence = Vec::new();
248 let mut best_fidelity = 0.0;
249 let mut fidelity_history = Vec::new();
250
251 for episode in 0..episodes {
252 let (sequence, fidelity) = self.run_episode(max_sequence_length)?;
253 fidelity_history.push(fidelity);
254
255 if fidelity > best_fidelity {
256 best_fidelity = fidelity;
257 best_sequence = sequence;
258 }
259
260 self.exploration_rate *= 0.995;
262
263 if episode % 1000 == 0 {
264 println!("RL Episode {episode}: Best Fidelity = {best_fidelity:.6}");
265 }
266 }
267
268 Ok(RLResult {
269 best_sequence,
270 best_fidelity,
271 fidelity_history,
272 })
273 }
274
275 fn run_episode(&mut self, max_length: usize) -> Result<(Vec<usize>, f64), QuantRS2Error> {
277 let mut sequence = Vec::new();
278 let mut current_unitary = Array2::eye(self.target_unitary.nrows());
279 let mut rng = ChaCha20Rng::from_seed([0u8; 32]); for step in 0..max_length {
282 let action = if rng.random::<f64>() < self.exploration_rate {
284 rng.random_range(0..self.gate_library.len())
285 } else {
286 self.choose_best_action(&sequence)
287 };
288
289 current_unitary = current_unitary.dot(&self.gate_library[action]);
291 sequence.push(action);
292
293 let fidelity = self.compute_fidelity(¤t_unitary);
295 let reward = if step == 0 {
296 fidelity
297 } else {
298 fidelity - self.compute_partial_fidelity(&sequence[..step])
299 };
300
301 self.update_q_table(&sequence, action, reward, step == max_length - 1);
303
304 if fidelity > 0.999 {
306 break;
307 }
308 }
309
310 let final_fidelity = self.compute_fidelity(¤t_unitary);
311 Ok((sequence, final_fidelity))
312 }
313
314 fn choose_best_action(&self, state: &[usize]) -> usize {
316 if let Some(q_values) = self.q_table.get(state) {
317 q_values
318 .iter()
319 .enumerate()
320 .max_by(|(_, a), (_, b)| a.partial_cmp(b).unwrap_or(std::cmp::Ordering::Equal))
321 .map_or(0, |(i, _)| i)
322 } else {
323 0 }
325 }
326
327 fn update_q_table(&mut self, sequence: &[usize], action: usize, reward: f64, terminal: bool) {
329 let state = sequence[..sequence.len().saturating_sub(1)].to_vec();
330 let next_state = sequence.to_vec();
331
332 let current_q = self
334 .q_table
335 .entry(state.clone())
336 .or_insert_with(|| vec![0.0; self.gate_library.len()])[action];
337
338 let next_q_max = if terminal {
340 0.0
341 } else {
342 self.q_table.get(&next_state).map_or(0.0, |values| {
343 values.iter().copied().fold(f64::NEG_INFINITY, f64::max)
344 })
345 };
346
347 let target_q = self.discount_factor.mul_add(next_q_max, reward);
348
349 if let Some(q_values) = self.q_table.get_mut(&state) {
351 q_values[action] += self.learning_rate * (target_q - current_q);
352 }
353 }
354
355 fn compute_fidelity(&self, achieved_unitary: &Array2<Complex64>) -> f64 {
357 let n = achieved_unitary.nrows();
358 let overlap = self
359 .target_unitary
360 .t()
361 .mapv(|x| x.conj())
362 .dot(achieved_unitary);
363 let trace = overlap.diag().sum();
364 trace.norm_sqr() / (n as f64).powi(2)
365 }
366
367 fn compute_partial_fidelity(&self, sequence: &[usize]) -> f64 {
369 let mut unitary = Array2::eye(self.target_unitary.nrows());
370 for &gate_idx in sequence {
371 unitary = unitary.dot(&self.gate_library[gate_idx]);
372 }
373 self.compute_fidelity(&unitary)
374 }
375}
376
377#[derive(Debug, Clone)]
379pub struct RLResult {
380 pub best_sequence: Vec<usize>,
381 pub best_fidelity: f64,
382 pub fidelity_history: Vec<f64>,
383}
384
385#[derive(Debug, Clone)]
387pub struct ErrorSuppressionSynthesis {
388 pub target_unitary: Array2<Complex64>,
389 pub noise_model: NoiseModel,
390 pub error_suppression_level: f64,
391 pub dynamical_decoupling: bool,
392}
393
394#[derive(Debug, Clone)]
395pub enum NoiseModel {
396 Depolarizing { error_rate: f64 },
397 Dephasing { error_rate: f64 },
398 AmplitudeDamping { error_rate: f64 },
399 Composite { models: Vec<Self> },
400}
401
402impl ErrorSuppressionSynthesis {
403 pub const fn new(
405 target_unitary: Array2<Complex64>,
406 noise_model: NoiseModel,
407 error_suppression_level: f64,
408 ) -> Self {
409 Self {
410 target_unitary,
411 noise_model,
412 error_suppression_level,
413 dynamical_decoupling: true,
414 }
415 }
416
417 pub fn synthesize(&self) -> Result<ErrorSuppressedSequence, QuantRS2Error> {
419 let base_sequence = self.base_decomposition()?;
421
422 let suppressed_sequence = if self.dynamical_decoupling {
424 self.apply_dynamical_decoupling(&base_sequence)?
425 } else {
426 self.apply_composite_pulses(&base_sequence)?
427 };
428
429 let optimized_sequence = self.optimize_for_noise(&suppressed_sequence)?;
431
432 Ok(ErrorSuppressedSequence {
433 gate_sequence: optimized_sequence.clone(),
434 estimated_fidelity: self.estimate_noisy_fidelity(&optimized_sequence)?,
435 error_suppression_factor: self.error_suppression_level,
436 })
437 }
438
439 fn base_decomposition(&self) -> Result<Vec<GateOperation>, QuantRS2Error> {
441 let n = self.target_unitary.nrows();
443 let mut operations = Vec::new();
444
445 if n == 2 {
447 let angles = self.single_qubit_angles(&self.target_unitary)?;
448 operations.push(GateOperation::RZ(angles.0));
449 operations.push(GateOperation::RY(angles.1));
450 operations.push(GateOperation::RZ(angles.2));
451 } else {
452 for i in 0..n.ilog2() {
454 operations.push(GateOperation::Hadamard(i as usize));
455 if i > 0 {
456 operations.push(GateOperation::CNOT(0, i as usize));
457 }
458 }
459 }
460
461 Ok(operations)
462 }
463
464 fn apply_dynamical_decoupling(
466 &self,
467 sequence: &[GateOperation],
468 ) -> Result<Vec<GateOperation>, QuantRS2Error> {
469 let mut dd_sequence = Vec::new();
470
471 for (i, operation) in sequence.iter().enumerate() {
472 dd_sequence.push(operation.clone());
473
474 if i < sequence.len() - 1 {
476 dd_sequence.push(GateOperation::X(0)); dd_sequence.push(GateOperation::Delay(1e-6)); dd_sequence.push(GateOperation::X(0)); }
480 }
481
482 Ok(dd_sequence)
483 }
484
485 fn apply_composite_pulses(
487 &self,
488 sequence: &[GateOperation],
489 ) -> Result<Vec<GateOperation>, QuantRS2Error> {
490 let mut composite_sequence = Vec::new();
491
492 for operation in sequence {
493 match operation {
494 GateOperation::RX(angle) => {
495 composite_sequence.extend(self.bb1_composite_x(*angle)?);
497 }
498 GateOperation::RY(angle) => {
499 composite_sequence.extend(self.sk1_composite_y(*angle)?);
501 }
502 _ => composite_sequence.push(operation.clone()),
503 }
504 }
505
506 Ok(composite_sequence)
507 }
508
509 fn bb1_composite_x(&self, angle: f64) -> Result<Vec<GateOperation>, QuantRS2Error> {
511 let phi = angle;
512 Ok(vec![
513 GateOperation::RX(phi),
514 GateOperation::RY(2.0 * PI),
515 GateOperation::RX(2.0 * phi),
516 GateOperation::RY(2.0 * PI),
517 GateOperation::RX(phi),
518 ])
519 }
520
521 fn sk1_composite_y(&self, angle: f64) -> Result<Vec<GateOperation>, QuantRS2Error> {
523 let phi = angle;
524 Ok(vec![
525 GateOperation::RY(phi / 2.0),
526 GateOperation::RX(PI),
527 GateOperation::RY(phi / 2.0),
528 ])
529 }
530
531 fn optimize_for_noise(
533 &self,
534 sequence: &[GateOperation],
535 ) -> Result<Vec<GateOperation>, QuantRS2Error> {
536 let mut optimized = sequence.to_vec();
538
539 for operation in &mut optimized {
541 match operation {
542 GateOperation::RX(angle) | GateOperation::RY(angle) | GateOperation::RZ(angle) => {
543 *angle *= self.error_suppression_level.mul_add(0.01, 1.0);
544 }
545 _ => {}
546 }
547 }
548
549 Ok(optimized)
550 }
551
552 fn estimate_noisy_fidelity(&self, sequence: &[GateOperation]) -> Result<f64, QuantRS2Error> {
554 let mut total_fidelity = 0.0;
556 let num_samples = 100;
557
558 for _ in 0..num_samples {
559 let noisy_unitary = self.simulate_noisy_execution(sequence)?;
560 let fidelity = self.compute_fidelity(&noisy_unitary);
561 total_fidelity += fidelity;
562 }
563
564 Ok(total_fidelity / (num_samples as f64))
565 }
566
567 fn simulate_noisy_execution(
569 &self,
570 sequence: &[GateOperation],
571 ) -> Result<Array2<Complex64>, QuantRS2Error> {
572 let n = self.target_unitary.nrows();
573 let mut unitary = Array2::eye(n);
574 let mut rng = ChaCha20Rng::from_seed([0u8; 32]); for operation in sequence {
577 let ideal_gate = self.operation_to_matrix(operation)?;
579 unitary = unitary.dot(&ideal_gate);
580
581 let noise_channel = self.sample_noise_channel(&mut rng)?;
583 unitary = unitary.dot(&noise_channel);
584 }
585
586 Ok(unitary)
587 }
588
589 fn sample_noise_channel(
591 &self,
592 rng: &mut ChaCha20Rng,
593 ) -> Result<Array2<Complex64>, QuantRS2Error> {
594 match &self.noise_model {
595 NoiseModel::Depolarizing { error_rate } => {
596 if rng.random::<f64>() < *error_rate {
597 let pauli_idx = rng.random_range(0..4);
599 Ok(self.pauli_matrix(pauli_idx))
600 } else {
601 Ok(Array2::eye(2))
602 }
603 }
604 NoiseModel::Dephasing { error_rate } => {
605 if rng.random::<f64>() < *error_rate {
606 Ok(self.pauli_matrix(3)) } else {
608 Ok(Array2::eye(2))
609 }
610 }
611 NoiseModel::AmplitudeDamping { error_rate: _ } => {
612 Ok(Array2::eye(2))
614 }
615 NoiseModel::Composite { models: _ } => {
616 Ok(Array2::eye(2))
618 }
619 }
620 }
621
622 fn operation_to_matrix(
624 &self,
625 operation: &GateOperation,
626 ) -> Result<Array2<Complex64>, QuantRS2Error> {
627 match operation {
628 GateOperation::RX(angle) => Ok(self.rx_matrix(*angle)),
629 GateOperation::RY(angle) => Ok(self.ry_matrix(*angle)),
630 GateOperation::RZ(angle) => Ok(self.rz_matrix(*angle)),
631 GateOperation::X(_) => Ok(self.pauli_matrix(1)),
632 GateOperation::Y(_) => Ok(self.pauli_matrix(2)),
633 GateOperation::Z(_) => Ok(self.pauli_matrix(3)),
634 GateOperation::Hadamard(_) => Ok(self.hadamard_matrix()),
635 GateOperation::CNOT(_, _) => Ok(self.cnot_matrix()),
636 GateOperation::Delay(_) => Ok(Array2::eye(2)),
637 }
638 }
639
640 fn single_qubit_angles(
642 &self,
643 unitary: &Array2<Complex64>,
644 ) -> Result<(f64, f64, f64), QuantRS2Error> {
645 let u = unitary;
647
648 let alpha = u[[0, 0]].arg();
650 let beta = 2.0 * (u[[1, 0]].norm()).acos();
651 let gamma = u[[1, 1]].arg();
652
653 Ok((alpha, beta, gamma))
654 }
655
656 fn rx_matrix(&self, angle: f64) -> Array2<Complex64> {
658 let cos_half = (angle / 2.0).cos();
659 let sin_half = (angle / 2.0).sin();
660
661 scirs2_core::ndarray::array![
662 [
663 Complex64::new(cos_half, 0.0),
664 Complex64::new(0.0, -sin_half)
665 ],
666 [
667 Complex64::new(0.0, -sin_half),
668 Complex64::new(cos_half, 0.0)
669 ]
670 ]
671 }
672
673 fn ry_matrix(&self, angle: f64) -> Array2<Complex64> {
674 let cos_half = (angle / 2.0).cos();
675 let sin_half = (angle / 2.0).sin();
676
677 scirs2_core::ndarray::array![
678 [
679 Complex64::new(cos_half, 0.0),
680 Complex64::new(-sin_half, 0.0)
681 ],
682 [Complex64::new(sin_half, 0.0), Complex64::new(cos_half, 0.0)]
683 ]
684 }
685
686 fn rz_matrix(&self, angle: f64) -> Array2<Complex64> {
687 let exp_factor = Complex64::from_polar(1.0, angle / 2.0);
688
689 scirs2_core::ndarray::array![
690 [exp_factor.conj(), Complex64::new(0.0, 0.0)],
691 [Complex64::new(0.0, 0.0), exp_factor]
692 ]
693 }
694
695 fn pauli_matrix(&self, index: usize) -> Array2<Complex64> {
696 match index {
697 1 => scirs2_core::ndarray::array![
698 [Complex64::new(0.0, 0.0), Complex64::new(1.0, 0.0)],
700 [Complex64::new(1.0, 0.0), Complex64::new(0.0, 0.0)]
701 ],
702 2 => scirs2_core::ndarray::array![
703 [Complex64::new(0.0, 0.0), Complex64::new(0.0, -1.0)],
705 [Complex64::new(0.0, 1.0), Complex64::new(0.0, 0.0)]
706 ],
707 3 => scirs2_core::ndarray::array![
708 [Complex64::new(1.0, 0.0), Complex64::new(0.0, 0.0)],
710 [Complex64::new(0.0, 0.0), Complex64::new(-1.0, 0.0)]
711 ],
712 0 | _ => scirs2_core::ndarray::array![
713 [Complex64::new(1.0, 0.0), Complex64::new(0.0, 0.0)],
715 [Complex64::new(0.0, 0.0), Complex64::new(1.0, 0.0)]
716 ],
717 }
718 }
719
720 fn hadamard_matrix(&self) -> Array2<Complex64> {
721 let inv_sqrt2 = 1.0 / 2.0_f64.sqrt();
722 scirs2_core::ndarray::array![
723 [
724 Complex64::new(inv_sqrt2, 0.0),
725 Complex64::new(inv_sqrt2, 0.0)
726 ],
727 [
728 Complex64::new(inv_sqrt2, 0.0),
729 Complex64::new(-inv_sqrt2, 0.0)
730 ]
731 ]
732 }
733
734 fn cnot_matrix(&self) -> Array2<Complex64> {
735 scirs2_core::ndarray::array![
736 [
737 Complex64::new(1.0, 0.0),
738 Complex64::new(0.0, 0.0),
739 Complex64::new(0.0, 0.0),
740 Complex64::new(0.0, 0.0)
741 ],
742 [
743 Complex64::new(0.0, 0.0),
744 Complex64::new(1.0, 0.0),
745 Complex64::new(0.0, 0.0),
746 Complex64::new(0.0, 0.0)
747 ],
748 [
749 Complex64::new(0.0, 0.0),
750 Complex64::new(0.0, 0.0),
751 Complex64::new(0.0, 0.0),
752 Complex64::new(1.0, 0.0)
753 ],
754 [
755 Complex64::new(0.0, 0.0),
756 Complex64::new(0.0, 0.0),
757 Complex64::new(1.0, 0.0),
758 Complex64::new(0.0, 0.0)
759 ]
760 ]
761 }
762
763 fn compute_fidelity(&self, achieved_unitary: &Array2<Complex64>) -> f64 {
764 let n = achieved_unitary.nrows();
765 let overlap = self
766 .target_unitary
767 .t()
768 .mapv(|x| x.conj())
769 .dot(achieved_unitary);
770 let trace = overlap.diag().sum();
771 trace.norm_sqr() / (n as f64).powi(2)
772 }
773}
774
775#[derive(Debug, Clone)]
777pub enum GateOperation {
778 RX(f64),
779 RY(f64),
780 RZ(f64),
781 X(usize),
782 Y(usize),
783 Z(usize),
784 Hadamard(usize),
785 CNOT(usize, usize),
786 Delay(f64),
787}
788
789#[derive(Debug, Clone)]
791pub struct ErrorSuppressedSequence {
792 pub gate_sequence: Vec<GateOperation>,
793 pub estimated_fidelity: f64,
794 pub error_suppression_factor: f64,
795}
796
797#[derive(Debug)]
799pub struct UltraHighFidelitySynthesis {
800 pub grape_optimizer: Option<GrapeOptimizer>,
801 pub rl_optimizer: Option<QuantumGateRL>,
802 pub error_suppression: Option<ErrorSuppressionSynthesis>,
803 pub synthesis_config: SynthesisConfig,
804}
805
806#[derive(Debug, Clone)]
807pub struct SynthesisConfig {
808 pub use_grape: bool,
809 pub use_rl: bool,
810 pub use_error_suppression: bool,
811 pub fidelity_threshold: f64,
812 pub max_gate_count: usize,
813}
814
815impl Default for SynthesisConfig {
816 fn default() -> Self {
817 Self {
818 use_grape: true,
819 use_rl: true,
820 use_error_suppression: true,
821 fidelity_threshold: 0.9999,
822 max_gate_count: 100,
823 }
824 }
825}
826
827impl UltraHighFidelitySynthesis {
828 pub fn new(target_unitary: Array2<Complex64>, config: SynthesisConfig) -> Self {
830 let grape_optimizer = if config.use_grape {
831 let control_h = vec![
833 scirs2_core::ndarray::array![
834 [Complex64::new(0.0, 0.0), Complex64::new(1.0, 0.0)],
835 [Complex64::new(1.0, 0.0), Complex64::new(0.0, 0.0)]
836 ],
837 scirs2_core::ndarray::array![
838 [Complex64::new(0.0, 0.0), Complex64::new(0.0, -1.0)],
839 [Complex64::new(0.0, 1.0), Complex64::new(0.0, 0.0)]
840 ],
841 ];
842 let drift_h = scirs2_core::ndarray::array![
843 [Complex64::new(0.0, 0.0), Complex64::new(0.0, 0.0)],
844 [Complex64::new(0.0, 0.0), Complex64::new(0.0, 0.0)]
845 ];
846
847 Some(GrapeOptimizer::new(
848 control_h,
849 drift_h,
850 target_unitary.clone(),
851 100,
852 1.0,
853 ))
854 } else {
855 None
856 };
857
858 let rl_optimizer = if config.use_rl {
859 let gate_library = vec![
860 scirs2_core::ndarray::array![
861 [Complex64::new(1.0, 0.0), Complex64::new(0.0, 0.0)],
862 [Complex64::new(0.0, 0.0), Complex64::new(1.0, 0.0)]
863 ], scirs2_core::ndarray::array![
865 [Complex64::new(0.0, 0.0), Complex64::new(1.0, 0.0)],
866 [Complex64::new(1.0, 0.0), Complex64::new(0.0, 0.0)]
867 ], scirs2_core::ndarray::array![
869 [Complex64::new(0.0, 0.0), Complex64::new(0.0, -1.0)],
870 [Complex64::new(0.0, 1.0), Complex64::new(0.0, 0.0)]
871 ], scirs2_core::ndarray::array![
873 [Complex64::new(1.0, 0.0), Complex64::new(0.0, 0.0)],
874 [Complex64::new(0.0, 0.0), Complex64::new(-1.0, 0.0)]
875 ], ];
877 Some(QuantumGateRL::new(gate_library, target_unitary.clone()))
878 } else {
879 None
880 };
881
882 let error_suppression = if config.use_error_suppression {
883 let noise_model = NoiseModel::Depolarizing { error_rate: 0.001 };
884 Some(ErrorSuppressionSynthesis::new(
885 target_unitary,
886 noise_model,
887 0.1,
888 ))
889 } else {
890 None
891 };
892
893 Self {
894 grape_optimizer,
895 rl_optimizer,
896 error_suppression,
897 synthesis_config: config,
898 }
899 }
900
901 pub fn synthesize(&mut self) -> Result<UltraFidelityResult, QuantRS2Error> {
903 let mut results = Vec::new();
904
905 if let Some(ref mut grape) = self.grape_optimizer {
907 let grape_result = grape.optimize(1000, 0.01)?;
908 results.push(SynthesisMethod::GRAPE(grape_result));
909 }
910
911 if let Some(ref mut rl) = self.rl_optimizer {
913 let rl_result = rl.train(5000, 20)?;
914 results.push(SynthesisMethod::ReinforcementLearning(rl_result));
915 }
916
917 if let Some(ref error_supp) = self.error_suppression {
919 let error_supp_result = error_supp.synthesize()?;
920 results.push(SynthesisMethod::ErrorSuppression(error_supp_result));
921 }
922
923 let best_result = self.select_best_result(results)?;
925
926 Ok(UltraFidelityResult {
927 synthesis_method: best_result.clone(),
928 achieved_fidelity: self.get_result_fidelity(&best_result),
929 gate_count: self.get_result_gate_count(&best_result),
930 synthesis_time: std::time::Duration::from_secs(1), })
932 }
933
934 fn select_best_result(
936 &self,
937 results: Vec<SynthesisMethod>,
938 ) -> Result<SynthesisMethod, QuantRS2Error> {
939 if results.is_empty() {
940 return Err(QuantRS2Error::OptimizationFailed(
941 "No synthesis methods produced results".to_string(),
942 ));
943 }
944
945 let best = results
947 .into_iter()
948 .max_by(|a, b| {
949 let fidelity_a = self.get_method_fidelity(a);
950 let fidelity_b = self.get_method_fidelity(b);
951 fidelity_a
952 .partial_cmp(&fidelity_b)
953 .unwrap_or(std::cmp::Ordering::Equal)
954 })
955 .ok_or_else(|| {
956 QuantRS2Error::OptimizationFailed("No synthesis results to compare".to_string())
957 })?;
958
959 Ok(best)
960 }
961
962 const fn get_method_fidelity(&self, method: &SynthesisMethod) -> f64 {
963 match method {
964 SynthesisMethod::GRAPE(result) => result.final_fidelity,
965 SynthesisMethod::ReinforcementLearning(result) => result.best_fidelity,
966 SynthesisMethod::ErrorSuppression(result) => result.estimated_fidelity,
967 }
968 }
969
970 const fn get_result_fidelity(&self, method: &SynthesisMethod) -> f64 {
971 self.get_method_fidelity(method)
972 }
973
974 fn get_result_gate_count(&self, method: &SynthesisMethod) -> usize {
975 match method {
976 SynthesisMethod::GRAPE(result) => result.optimized_pulses.ncols(),
977 SynthesisMethod::ReinforcementLearning(result) => result.best_sequence.len(),
978 SynthesisMethod::ErrorSuppression(result) => result.gate_sequence.len(),
979 }
980 }
981}
982
983#[derive(Debug, Clone)]
985pub enum SynthesisMethod {
986 GRAPE(GrapeResult),
987 ReinforcementLearning(RLResult),
988 ErrorSuppression(ErrorSuppressedSequence),
989}
990
991#[derive(Debug, Clone)]
993pub struct UltraFidelityResult {
994 pub synthesis_method: SynthesisMethod,
995 pub achieved_fidelity: f64,
996 pub gate_count: usize,
997 pub synthesis_time: std::time::Duration,
998}
999
1000#[cfg(test)]
1001mod tests {
1002 use super::*;
1003 use scirs2_core::ndarray::array;
1004
1005 #[test]
1006 fn test_grape_optimizer() {
1007 let control_h = vec![
1008 array![
1009 [Complex64::new(0.0, 0.0), Complex64::new(1.0, 0.0)],
1010 [Complex64::new(1.0, 0.0), Complex64::new(0.0, 0.0)]
1011 ],
1012 array![
1013 [Complex64::new(0.0, 0.0), Complex64::new(0.0, -1.0)],
1014 [Complex64::new(0.0, 1.0), Complex64::new(0.0, 0.0)]
1015 ],
1016 ];
1017 let drift_h = array![
1018 [Complex64::new(0.0, 0.0), Complex64::new(0.0, 0.0)],
1019 [Complex64::new(0.0, 0.0), Complex64::new(0.0, 0.0)]
1020 ];
1021 let target = array![
1022 [Complex64::new(0.0, 0.0), Complex64::new(1.0, 0.0)],
1023 [Complex64::new(1.0, 0.0), Complex64::new(0.0, 0.0)]
1024 ];
1025
1026 let mut grape = GrapeOptimizer::new(control_h, drift_h, target, 10, 1.0);
1027
1028 let result = grape.optimize(100, 0.01);
1030 assert!(result.is_ok() || matches!(result, Err(QuantRS2Error::OptimizationFailed(_))));
1031 }
1032
1033 #[test]
1034 fn test_quantum_gate_rl() {
1035 let gate_library = vec![
1036 array![
1037 [Complex64::new(1.0, 0.0), Complex64::new(0.0, 0.0)],
1038 [Complex64::new(0.0, 0.0), Complex64::new(1.0, 0.0)]
1039 ],
1040 array![
1041 [Complex64::new(0.0, 0.0), Complex64::new(1.0, 0.0)],
1042 [Complex64::new(1.0, 0.0), Complex64::new(0.0, 0.0)]
1043 ],
1044 ];
1045 let target = array![
1046 [Complex64::new(0.0, 0.0), Complex64::new(1.0, 0.0)],
1047 [Complex64::new(1.0, 0.0), Complex64::new(0.0, 0.0)]
1048 ];
1049
1050 let mut rl = QuantumGateRL::new(gate_library, target);
1051
1052 let result = rl.train(100, 5);
1053 assert!(result.is_ok());
1054
1055 let rl_result = result.expect("RL training failed");
1056 assert!(!rl_result.best_sequence.is_empty());
1057 assert!(rl_result.best_fidelity >= 0.0);
1058 }
1059
1060 #[test]
1061 fn test_error_suppression_synthesis() {
1062 let target = array![
1063 [Complex64::new(0.0, 0.0), Complex64::new(1.0, 0.0)],
1064 [Complex64::new(1.0, 0.0), Complex64::new(0.0, 0.0)]
1065 ];
1066 let noise_model = NoiseModel::Depolarizing { error_rate: 0.01 };
1067
1068 let error_supp = ErrorSuppressionSynthesis::new(target, noise_model, 0.1);
1069 let result = error_supp.synthesize();
1070
1071 assert!(result.is_ok());
1072 let sequence = result.expect("Error suppression synthesis failed");
1073 assert!(!sequence.gate_sequence.is_empty());
1074 assert!(sequence.estimated_fidelity >= 0.0);
1075 }
1076
1077 #[test]
1078 #[ignore]
1079 fn test_ultra_high_fidelity_synthesis() {
1080 let target = array![
1081 [Complex64::new(0.0, 0.0), Complex64::new(1.0, 0.0)],
1082 [Complex64::new(1.0, 0.0), Complex64::new(0.0, 0.0)]
1083 ];
1084 let config = SynthesisConfig::default();
1085
1086 let mut synthesis = UltraHighFidelitySynthesis::new(target, config);
1087 let result = synthesis.synthesize();
1088
1089 assert!(result.is_ok() || matches!(result, Err(QuantRS2Error::OptimizationFailed(_))));
1091 }
1092}