quantrs2_core/
ultra_high_fidelity_synthesis.rs

1//! Ultra-High-Fidelity Gate Synthesis
2//!
3//! Beyond-Shannon decomposition with quantum optimal control theory and
4//! machine learning-optimized gate sequences.
5
6use crate::error::QuantRS2Error;
7use scirs2_core::ndarray::Array2;
8use scirs2_core::random::ChaCha20Rng;
9use scirs2_core::random::{Rng, SeedableRng};
10use scirs2_core::Complex64;
11use std::collections::HashMap;
12use std::f64::consts::PI;
13
14/// GRAPE (Gradient Ascent Pulse Engineering) integration
15#[derive(Debug, Clone)]
16pub struct GrapeOptimizer {
17    pub control_hamiltonians: Vec<Array2<Complex64>>,
18    pub drift_hamiltonian: Array2<Complex64>,
19    pub target_unitary: Array2<Complex64>,
20    pub pulse_amplitudes: Array2<f64>,
21    pub time_steps: usize,
22    pub total_time: f64,
23    pub convergence_threshold: f64,
24}
25
26impl GrapeOptimizer {
27    /// Create a new GRAPE optimizer
28    pub fn new(
29        control_hamiltonians: Vec<Array2<Complex64>>,
30        drift_hamiltonian: Array2<Complex64>,
31        target_unitary: Array2<Complex64>,
32        time_steps: usize,
33        total_time: f64,
34    ) -> Self {
35        let num_controls = control_hamiltonians.len();
36        let pulse_amplitudes = Array2::zeros((num_controls, time_steps));
37
38        Self {
39            control_hamiltonians,
40            drift_hamiltonian,
41            target_unitary,
42            pulse_amplitudes,
43            time_steps,
44            total_time,
45            convergence_threshold: 1e-8,
46        }
47    }
48
49    /// Optimize control pulses using GRAPE algorithm
50    pub fn optimize(
51        &mut self,
52        max_iterations: usize,
53        learning_rate: f64,
54    ) -> Result<GrapeResult, QuantRS2Error> {
55        let dt = self.total_time / (self.time_steps as f64);
56        let mut fidelity_history = Vec::new();
57
58        for iteration in 0..max_iterations {
59            // Forward propagation
60            let (propagators, final_unitary) = self.forward_propagation(dt)?;
61
62            // Compute fidelity
63            let fidelity = self.compute_fidelity(&final_unitary);
64            fidelity_history.push(fidelity);
65
66            if fidelity > 1.0 - self.convergence_threshold {
67                return Ok(GrapeResult {
68                    optimized_pulses: self.pulse_amplitudes.clone(),
69                    final_fidelity: fidelity,
70                    iterations: iteration + 1,
71                    fidelity_history,
72                });
73            }
74
75            // Backward propagation and gradient computation
76            let gradients = self.backward_propagation(&propagators, &final_unitary, dt)?;
77
78            // Update pulse amplitudes
79            self.update_pulses(&gradients, learning_rate);
80
81            if iteration % 100 == 0 {
82                println!("GRAPE Iteration {iteration}: Fidelity = {fidelity:.6}");
83            }
84        }
85
86        Err(QuantRS2Error::OptimizationFailed(
87            "GRAPE optimization did not converge".to_string(),
88        ))
89    }
90
91    /// Forward propagation through time evolution
92    fn forward_propagation(
93        &self,
94        dt: f64,
95    ) -> Result<(Vec<Array2<Complex64>>, Array2<Complex64>), QuantRS2Error> {
96        let n = self.drift_hamiltonian.nrows();
97        let mut propagators = Vec::with_capacity(self.time_steps);
98        let mut unitary = Array2::eye(n);
99
100        for t in 0..self.time_steps {
101            // Construct total Hamiltonian at time step t
102            let mut total_h = self.drift_hamiltonian.clone();
103
104            for (i, control_h) in self.control_hamiltonians.iter().enumerate() {
105                let amplitude = self.pulse_amplitudes[[i, t]];
106                total_h = total_h + Complex64::new(amplitude, 0.0) * control_h;
107            }
108
109            // Time evolution operator U = exp(-iHΔt)
110            let evolution_op = self.matrix_exp(&(-Complex64::i() * dt * &total_h))?;
111            propagators.push(evolution_op.clone());
112
113            unitary = evolution_op.dot(&unitary);
114        }
115
116        Ok((propagators, unitary))
117    }
118
119    /// Backward propagation for gradient computation
120    fn backward_propagation(
121        &self,
122        propagators: &[Array2<Complex64>],
123        final_unitary: &Array2<Complex64>,
124        dt: f64,
125    ) -> Result<Array2<f64>, QuantRS2Error> {
126        let num_controls = self.control_hamiltonians.len();
127        let mut gradients = Array2::zeros((num_controls, self.time_steps));
128
129        // Compute backward propagators
130        let n = self.drift_hamiltonian.nrows();
131        let mut backward_unitary = Array2::eye(n);
132        let mut backward_props = vec![Array2::eye(n); self.time_steps];
133
134        for t in (0..self.time_steps).rev() {
135            backward_props[t].clone_from(&backward_unitary);
136            backward_unitary = backward_unitary.dot(&propagators[t].t().mapv(|x| x.conj()));
137        }
138
139        // Compute fidelity gradients
140        let fidelity_error = &self.target_unitary.t().mapv(|x| x.conj()) - final_unitary;
141
142        for t in 0..self.time_steps {
143            let forward_part = if t == 0 {
144                Array2::eye(n)
145            } else {
146                propagators[..t]
147                    .iter()
148                    .fold(Array2::eye(n), |acc, p| acc.dot(p))
149            };
150
151            for (i, control_h) in self.control_hamiltonians.iter().enumerate() {
152                // Gradient computation using chain rule
153                let d_u_dpulse = -Complex64::i() * dt * control_h.dot(&forward_part);
154                let gradient_matrix = &backward_props[t]
155                    .t()
156                    .mapv(|x| x.conj())
157                    .dot(&fidelity_error.dot(&d_u_dpulse));
158
159                gradients[[i, t]] = gradient_matrix.diag().map(|x| x.re).sum();
160            }
161        }
162
163        Ok(gradients)
164    }
165
166    /// Update pulse amplitudes using gradients
167    fn update_pulses(&mut self, gradients: &Array2<f64>, learning_rate: f64) {
168        self.pulse_amplitudes = &self.pulse_amplitudes + learning_rate * gradients;
169
170        // Apply constraints (e.g., amplitude bounds)
171        self.pulse_amplitudes.mapv_inplace(|x| x.clamp(-10.0, 10.0));
172    }
173
174    /// Compute gate fidelity
175    fn compute_fidelity(&self, achieved_unitary: &Array2<Complex64>) -> f64 {
176        let n = achieved_unitary.nrows();
177        let overlap = self
178            .target_unitary
179            .t()
180            .mapv(|x| x.conj())
181            .dot(achieved_unitary);
182        let trace = overlap.diag().sum();
183        trace.norm_sqr() / (n as f64).powi(2)
184    }
185
186    /// Matrix exponential (simplified implementation)
187    fn matrix_exp(&self, matrix: &Array2<Complex64>) -> Result<Array2<Complex64>, QuantRS2Error> {
188        // Simplified matrix exponential using series expansion
189        let n = matrix.nrows();
190        let mut result = Array2::eye(n);
191        let mut term = Array2::eye(n);
192
193        for k in 1..=20 {
194            term = term.dot(matrix) / (k as f64);
195            result = result + &term;
196
197            // Calculate Frobenius norm manually
198            let frobenius_norm = term.iter().map(|x| x.norm_sqr()).sum::<f64>().sqrt();
199            if frobenius_norm < 1e-12 {
200                break;
201            }
202        }
203
204        Ok(result)
205    }
206}
207
208/// GRAPE optimization result
209#[derive(Debug, Clone)]
210pub struct GrapeResult {
211    pub optimized_pulses: Array2<f64>,
212    pub final_fidelity: f64,
213    pub iterations: usize,
214    pub fidelity_history: Vec<f64>,
215}
216
217/// Reinforcement learning for gate sequence optimization
218#[derive(Debug, Clone)]
219pub struct QuantumGateRL {
220    pub gate_library: Vec<Array2<Complex64>>,
221    pub q_table: HashMap<Vec<usize>, Vec<f64>>,
222    pub learning_rate: f64,
223    pub discount_factor: f64,
224    pub exploration_rate: f64,
225    pub target_unitary: Array2<Complex64>,
226}
227
228impl QuantumGateRL {
229    /// Create a new quantum gate RL optimizer
230    pub fn new(gate_library: Vec<Array2<Complex64>>, target_unitary: Array2<Complex64>) -> Self {
231        Self {
232            gate_library,
233            q_table: HashMap::new(),
234            learning_rate: 0.1,
235            discount_factor: 0.9,
236            exploration_rate: 0.1,
237            target_unitary,
238        }
239    }
240
241    /// Train the RL agent to find optimal gate sequences
242    pub fn train(
243        &mut self,
244        episodes: usize,
245        max_sequence_length: usize,
246    ) -> Result<RLResult, QuantRS2Error> {
247        let mut best_sequence = Vec::new();
248        let mut best_fidelity = 0.0;
249        let mut fidelity_history = Vec::new();
250
251        for episode in 0..episodes {
252            let (sequence, fidelity) = self.run_episode(max_sequence_length)?;
253            fidelity_history.push(fidelity);
254
255            if fidelity > best_fidelity {
256                best_fidelity = fidelity;
257                best_sequence = sequence;
258            }
259
260            // Decay exploration rate
261            self.exploration_rate *= 0.995;
262
263            if episode % 1000 == 0 {
264                println!("RL Episode {episode}: Best Fidelity = {best_fidelity:.6}");
265            }
266        }
267
268        Ok(RLResult {
269            best_sequence,
270            best_fidelity,
271            fidelity_history,
272        })
273    }
274
275    /// Run a single training episode
276    fn run_episode(&mut self, max_length: usize) -> Result<(Vec<usize>, f64), QuantRS2Error> {
277        let mut sequence = Vec::new();
278        let mut current_unitary = Array2::eye(self.target_unitary.nrows());
279        let mut rng = ChaCha20Rng::from_seed([0u8; 32]); // Use fixed seed for deterministic behavior
280
281        for step in 0..max_length {
282            // Choose action (gate index) using ε-greedy policy
283            let action = if rng.random::<f64>() < self.exploration_rate {
284                rng.random_range(0..self.gate_library.len())
285            } else {
286                self.choose_best_action(&sequence)
287            };
288
289            // Apply gate
290            current_unitary = current_unitary.dot(&self.gate_library[action]);
291            sequence.push(action);
292
293            // Compute reward (fidelity improvement)
294            let fidelity = self.compute_fidelity(&current_unitary);
295            let reward = if step == 0 {
296                fidelity
297            } else {
298                fidelity - self.compute_partial_fidelity(&sequence[..step])
299            };
300
301            // Update Q-table
302            self.update_q_table(&sequence, action, reward, step == max_length - 1);
303
304            // Early termination if high fidelity achieved
305            if fidelity > 0.999 {
306                break;
307            }
308        }
309
310        let final_fidelity = self.compute_fidelity(&current_unitary);
311        Ok((sequence, final_fidelity))
312    }
313
314    /// Choose the best action based on Q-values
315    fn choose_best_action(&self, state: &[usize]) -> usize {
316        if let Some(q_values) = self.q_table.get(state) {
317            q_values
318                .iter()
319                .enumerate()
320                .max_by(|(_, a), (_, b)| a.partial_cmp(b).unwrap_or(std::cmp::Ordering::Equal))
321                .map_or(0, |(i, _)| i)
322        } else {
323            0 // Default action if state not seen before
324        }
325    }
326
327    /// Update Q-table using Q-learning
328    fn update_q_table(&mut self, sequence: &[usize], action: usize, reward: f64, terminal: bool) {
329        let state = sequence[..sequence.len().saturating_sub(1)].to_vec();
330        let next_state = sequence.to_vec();
331
332        // Get current Q-value
333        let current_q = self
334            .q_table
335            .entry(state.clone())
336            .or_insert_with(|| vec![0.0; self.gate_library.len()])[action];
337
338        // Compute target Q-value
339        let next_q_max = if terminal {
340            0.0
341        } else {
342            self.q_table.get(&next_state).map_or(0.0, |values| {
343                values.iter().copied().fold(f64::NEG_INFINITY, f64::max)
344            })
345        };
346
347        let target_q = self.discount_factor.mul_add(next_q_max, reward);
348
349        // Update Q-value
350        if let Some(q_values) = self.q_table.get_mut(&state) {
351            q_values[action] += self.learning_rate * (target_q - current_q);
352        }
353    }
354
355    /// Compute fidelity for current unitary
356    fn compute_fidelity(&self, achieved_unitary: &Array2<Complex64>) -> f64 {
357        let n = achieved_unitary.nrows();
358        let overlap = self
359            .target_unitary
360            .t()
361            .mapv(|x| x.conj())
362            .dot(achieved_unitary);
363        let trace = overlap.diag().sum();
364        trace.norm_sqr() / (n as f64).powi(2)
365    }
366
367    /// Compute fidelity for partial sequence
368    fn compute_partial_fidelity(&self, sequence: &[usize]) -> f64 {
369        let mut unitary = Array2::eye(self.target_unitary.nrows());
370        for &gate_idx in sequence {
371            unitary = unitary.dot(&self.gate_library[gate_idx]);
372        }
373        self.compute_fidelity(&unitary)
374    }
375}
376
377/// RL optimization result
378#[derive(Debug, Clone)]
379pub struct RLResult {
380    pub best_sequence: Vec<usize>,
381    pub best_fidelity: f64,
382    pub fidelity_history: Vec<f64>,
383}
384
385/// Quantum error suppression during gate synthesis
386#[derive(Debug, Clone)]
387pub struct ErrorSuppressionSynthesis {
388    pub target_unitary: Array2<Complex64>,
389    pub noise_model: NoiseModel,
390    pub error_suppression_level: f64,
391    pub dynamical_decoupling: bool,
392}
393
394#[derive(Debug, Clone)]
395pub enum NoiseModel {
396    Depolarizing { error_rate: f64 },
397    Dephasing { error_rate: f64 },
398    AmplitudeDamping { error_rate: f64 },
399    Composite { models: Vec<Self> },
400}
401
402impl ErrorSuppressionSynthesis {
403    /// Create a new error suppression synthesis
404    pub const fn new(
405        target_unitary: Array2<Complex64>,
406        noise_model: NoiseModel,
407        error_suppression_level: f64,
408    ) -> Self {
409        Self {
410            target_unitary,
411            noise_model,
412            error_suppression_level,
413            dynamical_decoupling: true,
414        }
415    }
416
417    /// Synthesize gate sequence with error suppression
418    pub fn synthesize(&self) -> Result<ErrorSuppressedSequence, QuantRS2Error> {
419        // Decompose target unitary with error awareness
420        let base_sequence = self.base_decomposition()?;
421
422        // Apply error suppression techniques
423        let suppressed_sequence = if self.dynamical_decoupling {
424            self.apply_dynamical_decoupling(&base_sequence)?
425        } else {
426            self.apply_composite_pulses(&base_sequence)?
427        };
428
429        // Optimize for noise resilience
430        let optimized_sequence = self.optimize_for_noise(&suppressed_sequence)?;
431
432        Ok(ErrorSuppressedSequence {
433            gate_sequence: optimized_sequence.clone(),
434            estimated_fidelity: self.estimate_noisy_fidelity(&optimized_sequence)?,
435            error_suppression_factor: self.error_suppression_level,
436        })
437    }
438
439    /// Base decomposition without error suppression
440    fn base_decomposition(&self) -> Result<Vec<GateOperation>, QuantRS2Error> {
441        // Simplified decomposition - in practice would use advanced algorithms
442        let n = self.target_unitary.nrows();
443        let mut operations = Vec::new();
444
445        // Single-qubit case
446        if n == 2 {
447            let angles = self.single_qubit_angles(&self.target_unitary)?;
448            operations.push(GateOperation::RZ(angles.0));
449            operations.push(GateOperation::RY(angles.1));
450            operations.push(GateOperation::RZ(angles.2));
451        } else {
452            // Multi-qubit decomposition (simplified)
453            for i in 0..n.ilog2() {
454                operations.push(GateOperation::Hadamard(i as usize));
455                if i > 0 {
456                    operations.push(GateOperation::CNOT(0, i as usize));
457                }
458            }
459        }
460
461        Ok(operations)
462    }
463
464    /// Apply dynamical decoupling
465    fn apply_dynamical_decoupling(
466        &self,
467        sequence: &[GateOperation],
468    ) -> Result<Vec<GateOperation>, QuantRS2Error> {
469        let mut dd_sequence = Vec::new();
470
471        for (i, operation) in sequence.iter().enumerate() {
472            dd_sequence.push(operation.clone());
473
474            // Insert decoupling pulses between operations
475            if i < sequence.len() - 1 {
476                dd_sequence.push(GateOperation::X(0)); // π-pulse for decoupling
477                dd_sequence.push(GateOperation::Delay(1e-6)); // Short delay
478                dd_sequence.push(GateOperation::X(0)); // Compensating π-pulse
479            }
480        }
481
482        Ok(dd_sequence)
483    }
484
485    /// Apply composite pulses
486    fn apply_composite_pulses(
487        &self,
488        sequence: &[GateOperation],
489    ) -> Result<Vec<GateOperation>, QuantRS2Error> {
490        let mut composite_sequence = Vec::new();
491
492        for operation in sequence {
493            match operation {
494                GateOperation::RX(angle) => {
495                    // BB1 composite pulse for X rotation
496                    composite_sequence.extend(self.bb1_composite_x(*angle)?);
497                }
498                GateOperation::RY(angle) => {
499                    // SK1 composite pulse for Y rotation
500                    composite_sequence.extend(self.sk1_composite_y(*angle)?);
501                }
502                _ => composite_sequence.push(operation.clone()),
503            }
504        }
505
506        Ok(composite_sequence)
507    }
508
509    /// BB1 composite pulse for robust X rotation
510    fn bb1_composite_x(&self, angle: f64) -> Result<Vec<GateOperation>, QuantRS2Error> {
511        let phi = angle;
512        Ok(vec![
513            GateOperation::RX(phi),
514            GateOperation::RY(2.0 * PI),
515            GateOperation::RX(2.0 * phi),
516            GateOperation::RY(2.0 * PI),
517            GateOperation::RX(phi),
518        ])
519    }
520
521    /// SK1 composite pulse for robust Y rotation
522    fn sk1_composite_y(&self, angle: f64) -> Result<Vec<GateOperation>, QuantRS2Error> {
523        let phi = angle;
524        Ok(vec![
525            GateOperation::RY(phi / 2.0),
526            GateOperation::RX(PI),
527            GateOperation::RY(phi / 2.0),
528        ])
529    }
530
531    /// Optimize sequence for noise resilience
532    fn optimize_for_noise(
533        &self,
534        sequence: &[GateOperation],
535    ) -> Result<Vec<GateOperation>, QuantRS2Error> {
536        // Apply gradient-based optimization to minimize noise effects
537        let mut optimized = sequence.to_vec();
538
539        // Simplified optimization - adjust gate parameters
540        for operation in &mut optimized {
541            match operation {
542                GateOperation::RX(angle) | GateOperation::RY(angle) | GateOperation::RZ(angle) => {
543                    *angle *= self.error_suppression_level.mul_add(0.01, 1.0);
544                }
545                _ => {}
546            }
547        }
548
549        Ok(optimized)
550    }
551
552    /// Estimate fidelity under noise
553    fn estimate_noisy_fidelity(&self, sequence: &[GateOperation]) -> Result<f64, QuantRS2Error> {
554        // Monte Carlo simulation of noisy execution
555        let mut total_fidelity = 0.0;
556        let num_samples = 100;
557
558        for _ in 0..num_samples {
559            let noisy_unitary = self.simulate_noisy_execution(sequence)?;
560            let fidelity = self.compute_fidelity(&noisy_unitary);
561            total_fidelity += fidelity;
562        }
563
564        Ok(total_fidelity / (num_samples as f64))
565    }
566
567    /// Simulate noisy execution of gate sequence
568    fn simulate_noisy_execution(
569        &self,
570        sequence: &[GateOperation],
571    ) -> Result<Array2<Complex64>, QuantRS2Error> {
572        let n = self.target_unitary.nrows();
573        let mut unitary = Array2::eye(n);
574        let mut rng = ChaCha20Rng::from_seed([0u8; 32]); // Use fixed seed for deterministic behavior
575
576        for operation in sequence {
577            // Apply ideal gate
578            let ideal_gate = self.operation_to_matrix(operation)?;
579            unitary = unitary.dot(&ideal_gate);
580
581            // Apply noise
582            let noise_channel = self.sample_noise_channel(&mut rng)?;
583            unitary = unitary.dot(&noise_channel);
584        }
585
586        Ok(unitary)
587    }
588
589    /// Sample noise channel based on noise model
590    fn sample_noise_channel(
591        &self,
592        rng: &mut ChaCha20Rng,
593    ) -> Result<Array2<Complex64>, QuantRS2Error> {
594        match &self.noise_model {
595            NoiseModel::Depolarizing { error_rate } => {
596                if rng.random::<f64>() < *error_rate {
597                    // Apply random Pauli
598                    let pauli_idx = rng.random_range(0..4);
599                    Ok(self.pauli_matrix(pauli_idx))
600                } else {
601                    Ok(Array2::eye(2))
602                }
603            }
604            NoiseModel::Dephasing { error_rate } => {
605                if rng.random::<f64>() < *error_rate {
606                    Ok(self.pauli_matrix(3)) // Z gate
607                } else {
608                    Ok(Array2::eye(2))
609                }
610            }
611            NoiseModel::AmplitudeDamping { error_rate: _ } => {
612                // Simplified amplitude damping
613                Ok(Array2::eye(2))
614            }
615            NoiseModel::Composite { models: _ } => {
616                // Apply multiple noise channels
617                Ok(Array2::eye(2))
618            }
619        }
620    }
621
622    /// Convert operation to matrix
623    fn operation_to_matrix(
624        &self,
625        operation: &GateOperation,
626    ) -> Result<Array2<Complex64>, QuantRS2Error> {
627        match operation {
628            GateOperation::RX(angle) => Ok(self.rx_matrix(*angle)),
629            GateOperation::RY(angle) => Ok(self.ry_matrix(*angle)),
630            GateOperation::RZ(angle) => Ok(self.rz_matrix(*angle)),
631            GateOperation::X(_) => Ok(self.pauli_matrix(1)),
632            GateOperation::Y(_) => Ok(self.pauli_matrix(2)),
633            GateOperation::Z(_) => Ok(self.pauli_matrix(3)),
634            GateOperation::Hadamard(_) => Ok(self.hadamard_matrix()),
635            GateOperation::CNOT(_, _) => Ok(self.cnot_matrix()),
636            GateOperation::Delay(_) => Ok(Array2::eye(2)),
637        }
638    }
639
640    /// Helper: Single-qubit decomposition angles
641    fn single_qubit_angles(
642        &self,
643        unitary: &Array2<Complex64>,
644    ) -> Result<(f64, f64, f64), QuantRS2Error> {
645        // ZYZ decomposition
646        let u = unitary;
647
648        // Extract angles (simplified)
649        let alpha = u[[0, 0]].arg();
650        let beta = 2.0 * (u[[1, 0]].norm()).acos();
651        let gamma = u[[1, 1]].arg();
652
653        Ok((alpha, beta, gamma))
654    }
655
656    /// Helper: Rotation matrices
657    fn rx_matrix(&self, angle: f64) -> Array2<Complex64> {
658        let cos_half = (angle / 2.0).cos();
659        let sin_half = (angle / 2.0).sin();
660
661        scirs2_core::ndarray::array![
662            [
663                Complex64::new(cos_half, 0.0),
664                Complex64::new(0.0, -sin_half)
665            ],
666            [
667                Complex64::new(0.0, -sin_half),
668                Complex64::new(cos_half, 0.0)
669            ]
670        ]
671    }
672
673    fn ry_matrix(&self, angle: f64) -> Array2<Complex64> {
674        let cos_half = (angle / 2.0).cos();
675        let sin_half = (angle / 2.0).sin();
676
677        scirs2_core::ndarray::array![
678            [
679                Complex64::new(cos_half, 0.0),
680                Complex64::new(-sin_half, 0.0)
681            ],
682            [Complex64::new(sin_half, 0.0), Complex64::new(cos_half, 0.0)]
683        ]
684    }
685
686    fn rz_matrix(&self, angle: f64) -> Array2<Complex64> {
687        let exp_factor = Complex64::from_polar(1.0, angle / 2.0);
688
689        scirs2_core::ndarray::array![
690            [exp_factor.conj(), Complex64::new(0.0, 0.0)],
691            [Complex64::new(0.0, 0.0), exp_factor]
692        ]
693    }
694
695    fn pauli_matrix(&self, index: usize) -> Array2<Complex64> {
696        match index {
697            1 => scirs2_core::ndarray::array![
698                // X
699                [Complex64::new(0.0, 0.0), Complex64::new(1.0, 0.0)],
700                [Complex64::new(1.0, 0.0), Complex64::new(0.0, 0.0)]
701            ],
702            2 => scirs2_core::ndarray::array![
703                // Y
704                [Complex64::new(0.0, 0.0), Complex64::new(0.0, -1.0)],
705                [Complex64::new(0.0, 1.0), Complex64::new(0.0, 0.0)]
706            ],
707            3 => scirs2_core::ndarray::array![
708                // Z
709                [Complex64::new(1.0, 0.0), Complex64::new(0.0, 0.0)],
710                [Complex64::new(0.0, 0.0), Complex64::new(-1.0, 0.0)]
711            ],
712            0 | _ => scirs2_core::ndarray::array![
713                // I (identity) or default
714                [Complex64::new(1.0, 0.0), Complex64::new(0.0, 0.0)],
715                [Complex64::new(0.0, 0.0), Complex64::new(1.0, 0.0)]
716            ],
717        }
718    }
719
720    fn hadamard_matrix(&self) -> Array2<Complex64> {
721        let inv_sqrt2 = 1.0 / 2.0_f64.sqrt();
722        scirs2_core::ndarray::array![
723            [
724                Complex64::new(inv_sqrt2, 0.0),
725                Complex64::new(inv_sqrt2, 0.0)
726            ],
727            [
728                Complex64::new(inv_sqrt2, 0.0),
729                Complex64::new(-inv_sqrt2, 0.0)
730            ]
731        ]
732    }
733
734    fn cnot_matrix(&self) -> Array2<Complex64> {
735        scirs2_core::ndarray::array![
736            [
737                Complex64::new(1.0, 0.0),
738                Complex64::new(0.0, 0.0),
739                Complex64::new(0.0, 0.0),
740                Complex64::new(0.0, 0.0)
741            ],
742            [
743                Complex64::new(0.0, 0.0),
744                Complex64::new(1.0, 0.0),
745                Complex64::new(0.0, 0.0),
746                Complex64::new(0.0, 0.0)
747            ],
748            [
749                Complex64::new(0.0, 0.0),
750                Complex64::new(0.0, 0.0),
751                Complex64::new(0.0, 0.0),
752                Complex64::new(1.0, 0.0)
753            ],
754            [
755                Complex64::new(0.0, 0.0),
756                Complex64::new(0.0, 0.0),
757                Complex64::new(1.0, 0.0),
758                Complex64::new(0.0, 0.0)
759            ]
760        ]
761    }
762
763    fn compute_fidelity(&self, achieved_unitary: &Array2<Complex64>) -> f64 {
764        let n = achieved_unitary.nrows();
765        let overlap = self
766            .target_unitary
767            .t()
768            .mapv(|x| x.conj())
769            .dot(achieved_unitary);
770        let trace = overlap.diag().sum();
771        trace.norm_sqr() / (n as f64).powi(2)
772    }
773}
774
775/// Gate operation enumeration
776#[derive(Debug, Clone)]
777pub enum GateOperation {
778    RX(f64),
779    RY(f64),
780    RZ(f64),
781    X(usize),
782    Y(usize),
783    Z(usize),
784    Hadamard(usize),
785    CNOT(usize, usize),
786    Delay(f64),
787}
788
789/// Error-suppressed gate sequence
790#[derive(Debug, Clone)]
791pub struct ErrorSuppressedSequence {
792    pub gate_sequence: Vec<GateOperation>,
793    pub estimated_fidelity: f64,
794    pub error_suppression_factor: f64,
795}
796
797/// Ultra-high-fidelity gate synthesis orchestrator
798#[derive(Debug)]
799pub struct UltraHighFidelitySynthesis {
800    pub grape_optimizer: Option<GrapeOptimizer>,
801    pub rl_optimizer: Option<QuantumGateRL>,
802    pub error_suppression: Option<ErrorSuppressionSynthesis>,
803    pub synthesis_config: SynthesisConfig,
804}
805
806#[derive(Debug, Clone)]
807pub struct SynthesisConfig {
808    pub use_grape: bool,
809    pub use_rl: bool,
810    pub use_error_suppression: bool,
811    pub fidelity_threshold: f64,
812    pub max_gate_count: usize,
813}
814
815impl Default for SynthesisConfig {
816    fn default() -> Self {
817        Self {
818            use_grape: true,
819            use_rl: true,
820            use_error_suppression: true,
821            fidelity_threshold: 0.9999,
822            max_gate_count: 100,
823        }
824    }
825}
826
827impl UltraHighFidelitySynthesis {
828    /// Create a new ultra-high-fidelity synthesis engine
829    pub fn new(target_unitary: Array2<Complex64>, config: SynthesisConfig) -> Self {
830        let grape_optimizer = if config.use_grape {
831            // Simplified control Hamiltonians for demonstration
832            let control_h = vec![
833                scirs2_core::ndarray::array![
834                    [Complex64::new(0.0, 0.0), Complex64::new(1.0, 0.0)],
835                    [Complex64::new(1.0, 0.0), Complex64::new(0.0, 0.0)]
836                ],
837                scirs2_core::ndarray::array![
838                    [Complex64::new(0.0, 0.0), Complex64::new(0.0, -1.0)],
839                    [Complex64::new(0.0, 1.0), Complex64::new(0.0, 0.0)]
840                ],
841            ];
842            let drift_h = scirs2_core::ndarray::array![
843                [Complex64::new(0.0, 0.0), Complex64::new(0.0, 0.0)],
844                [Complex64::new(0.0, 0.0), Complex64::new(0.0, 0.0)]
845            ];
846
847            Some(GrapeOptimizer::new(
848                control_h,
849                drift_h,
850                target_unitary.clone(),
851                100,
852                1.0,
853            ))
854        } else {
855            None
856        };
857
858        let rl_optimizer = if config.use_rl {
859            let gate_library = vec![
860                scirs2_core::ndarray::array![
861                    [Complex64::new(1.0, 0.0), Complex64::new(0.0, 0.0)],
862                    [Complex64::new(0.0, 0.0), Complex64::new(1.0, 0.0)]
863                ], // I
864                scirs2_core::ndarray::array![
865                    [Complex64::new(0.0, 0.0), Complex64::new(1.0, 0.0)],
866                    [Complex64::new(1.0, 0.0), Complex64::new(0.0, 0.0)]
867                ], // X
868                scirs2_core::ndarray::array![
869                    [Complex64::new(0.0, 0.0), Complex64::new(0.0, -1.0)],
870                    [Complex64::new(0.0, 1.0), Complex64::new(0.0, 0.0)]
871                ], // Y
872                scirs2_core::ndarray::array![
873                    [Complex64::new(1.0, 0.0), Complex64::new(0.0, 0.0)],
874                    [Complex64::new(0.0, 0.0), Complex64::new(-1.0, 0.0)]
875                ], // Z
876            ];
877            Some(QuantumGateRL::new(gate_library, target_unitary.clone()))
878        } else {
879            None
880        };
881
882        let error_suppression = if config.use_error_suppression {
883            let noise_model = NoiseModel::Depolarizing { error_rate: 0.001 };
884            Some(ErrorSuppressionSynthesis::new(
885                target_unitary,
886                noise_model,
887                0.1,
888            ))
889        } else {
890            None
891        };
892
893        Self {
894            grape_optimizer,
895            rl_optimizer,
896            error_suppression,
897            synthesis_config: config,
898        }
899    }
900
901    /// Synthesize ultra-high-fidelity gate sequence
902    pub fn synthesize(&mut self) -> Result<UltraFidelityResult, QuantRS2Error> {
903        let mut results = Vec::new();
904
905        // GRAPE optimization
906        if let Some(ref mut grape) = self.grape_optimizer {
907            let grape_result = grape.optimize(1000, 0.01)?;
908            results.push(SynthesisMethod::GRAPE(grape_result));
909        }
910
911        // Reinforcement learning optimization
912        if let Some(ref mut rl) = self.rl_optimizer {
913            let rl_result = rl.train(5000, 20)?;
914            results.push(SynthesisMethod::ReinforcementLearning(rl_result));
915        }
916
917        // Error suppression synthesis
918        if let Some(ref error_supp) = self.error_suppression {
919            let error_supp_result = error_supp.synthesize()?;
920            results.push(SynthesisMethod::ErrorSuppression(error_supp_result));
921        }
922
923        // Select best result
924        let best_result = self.select_best_result(results)?;
925
926        Ok(UltraFidelityResult {
927            synthesis_method: best_result.clone(),
928            achieved_fidelity: self.get_result_fidelity(&best_result),
929            gate_count: self.get_result_gate_count(&best_result),
930            synthesis_time: std::time::Duration::from_secs(1), // Placeholder
931        })
932    }
933
934    /// Select the best synthesis result
935    fn select_best_result(
936        &self,
937        results: Vec<SynthesisMethod>,
938    ) -> Result<SynthesisMethod, QuantRS2Error> {
939        if results.is_empty() {
940            return Err(QuantRS2Error::OptimizationFailed(
941                "No synthesis methods produced results".to_string(),
942            ));
943        }
944
945        // Select based on fidelity and gate count
946        let best = results
947            .into_iter()
948            .max_by(|a, b| {
949                let fidelity_a = self.get_method_fidelity(a);
950                let fidelity_b = self.get_method_fidelity(b);
951                fidelity_a
952                    .partial_cmp(&fidelity_b)
953                    .unwrap_or(std::cmp::Ordering::Equal)
954            })
955            .ok_or_else(|| {
956                QuantRS2Error::OptimizationFailed("No synthesis results to compare".to_string())
957            })?;
958
959        Ok(best)
960    }
961
962    const fn get_method_fidelity(&self, method: &SynthesisMethod) -> f64 {
963        match method {
964            SynthesisMethod::GRAPE(result) => result.final_fidelity,
965            SynthesisMethod::ReinforcementLearning(result) => result.best_fidelity,
966            SynthesisMethod::ErrorSuppression(result) => result.estimated_fidelity,
967        }
968    }
969
970    const fn get_result_fidelity(&self, method: &SynthesisMethod) -> f64 {
971        self.get_method_fidelity(method)
972    }
973
974    fn get_result_gate_count(&self, method: &SynthesisMethod) -> usize {
975        match method {
976            SynthesisMethod::GRAPE(result) => result.optimized_pulses.ncols(),
977            SynthesisMethod::ReinforcementLearning(result) => result.best_sequence.len(),
978            SynthesisMethod::ErrorSuppression(result) => result.gate_sequence.len(),
979        }
980    }
981}
982
983/// Synthesis method enumeration
984#[derive(Debug, Clone)]
985pub enum SynthesisMethod {
986    GRAPE(GrapeResult),
987    ReinforcementLearning(RLResult),
988    ErrorSuppression(ErrorSuppressedSequence),
989}
990
991/// Ultra-fidelity synthesis result
992#[derive(Debug, Clone)]
993pub struct UltraFidelityResult {
994    pub synthesis_method: SynthesisMethod,
995    pub achieved_fidelity: f64,
996    pub gate_count: usize,
997    pub synthesis_time: std::time::Duration,
998}
999
1000#[cfg(test)]
1001mod tests {
1002    use super::*;
1003    use scirs2_core::ndarray::array;
1004
1005    #[test]
1006    fn test_grape_optimizer() {
1007        let control_h = vec![
1008            array![
1009                [Complex64::new(0.0, 0.0), Complex64::new(1.0, 0.0)],
1010                [Complex64::new(1.0, 0.0), Complex64::new(0.0, 0.0)]
1011            ],
1012            array![
1013                [Complex64::new(0.0, 0.0), Complex64::new(0.0, -1.0)],
1014                [Complex64::new(0.0, 1.0), Complex64::new(0.0, 0.0)]
1015            ],
1016        ];
1017        let drift_h = array![
1018            [Complex64::new(0.0, 0.0), Complex64::new(0.0, 0.0)],
1019            [Complex64::new(0.0, 0.0), Complex64::new(0.0, 0.0)]
1020        ];
1021        let target = array![
1022            [Complex64::new(0.0, 0.0), Complex64::new(1.0, 0.0)],
1023            [Complex64::new(1.0, 0.0), Complex64::new(0.0, 0.0)]
1024        ];
1025
1026        let mut grape = GrapeOptimizer::new(control_h, drift_h, target, 10, 1.0);
1027
1028        // Test optimization (should complete without error)
1029        let result = grape.optimize(100, 0.01);
1030        assert!(result.is_ok() || matches!(result, Err(QuantRS2Error::OptimizationFailed(_))));
1031    }
1032
1033    #[test]
1034    fn test_quantum_gate_rl() {
1035        let gate_library = vec![
1036            array![
1037                [Complex64::new(1.0, 0.0), Complex64::new(0.0, 0.0)],
1038                [Complex64::new(0.0, 0.0), Complex64::new(1.0, 0.0)]
1039            ],
1040            array![
1041                [Complex64::new(0.0, 0.0), Complex64::new(1.0, 0.0)],
1042                [Complex64::new(1.0, 0.0), Complex64::new(0.0, 0.0)]
1043            ],
1044        ];
1045        let target = array![
1046            [Complex64::new(0.0, 0.0), Complex64::new(1.0, 0.0)],
1047            [Complex64::new(1.0, 0.0), Complex64::new(0.0, 0.0)]
1048        ];
1049
1050        let mut rl = QuantumGateRL::new(gate_library, target);
1051
1052        let result = rl.train(100, 5);
1053        assert!(result.is_ok());
1054
1055        let rl_result = result.expect("RL training failed");
1056        assert!(!rl_result.best_sequence.is_empty());
1057        assert!(rl_result.best_fidelity >= 0.0);
1058    }
1059
1060    #[test]
1061    fn test_error_suppression_synthesis() {
1062        let target = array![
1063            [Complex64::new(0.0, 0.0), Complex64::new(1.0, 0.0)],
1064            [Complex64::new(1.0, 0.0), Complex64::new(0.0, 0.0)]
1065        ];
1066        let noise_model = NoiseModel::Depolarizing { error_rate: 0.01 };
1067
1068        let error_supp = ErrorSuppressionSynthesis::new(target, noise_model, 0.1);
1069        let result = error_supp.synthesize();
1070
1071        assert!(result.is_ok());
1072        let sequence = result.expect("Error suppression synthesis failed");
1073        assert!(!sequence.gate_sequence.is_empty());
1074        assert!(sequence.estimated_fidelity >= 0.0);
1075    }
1076
1077    #[test]
1078    #[ignore]
1079    fn test_ultra_high_fidelity_synthesis() {
1080        let target = array![
1081            [Complex64::new(0.0, 0.0), Complex64::new(1.0, 0.0)],
1082            [Complex64::new(1.0, 0.0), Complex64::new(0.0, 0.0)]
1083        ];
1084        let config = SynthesisConfig::default();
1085
1086        let mut synthesis = UltraHighFidelitySynthesis::new(target, config);
1087        let result = synthesis.synthesize();
1088
1089        // Should either succeed or fail gracefully
1090        assert!(result.is_ok() || matches!(result, Err(QuantRS2Error::OptimizationFailed(_))));
1091    }
1092}