quantrs2_core/gpu/
mod.rs

1//! GPU acceleration backend for quantum operations
2//!
3//! This module provides an abstraction layer for GPU-accelerated quantum
4//! computations, supporting multiple backends through SciRS2 GPU abstractions.
5//!
6//! NOTE: This module is being migrated to use scirs2_core::gpu as per SciRS2 policy.
7//! New code should use the SciRS2 GPU abstractions directly.
8
9use crate::{
10    error::{QuantRS2Error, QuantRS2Result},
11    gate::GateOp,
12    qubit::QubitId,
13};
14use scirs2_core::ndarray::{Array1, Array2};
15use scirs2_core::Complex64;
16use std::sync::Arc;
17
18// Import SciRS2 GPU abstractions
19// Note: These will be used when full migration to SciRS2 GPU is implemented
20// #[cfg(feature = "gpu")]
21// #[allow(unused_imports)]
22// use scirs2_core::gpu::{GpuDevice, GpuKernel as SciRS2GpuKernel};
23
24// GPU Backend Status for v0.1.0
25// ======================================
26// Current: Stable CPU fallback implementation with SciRS2 adapter layer
27// The GPU backend is fully functional using optimized CPU implementations
28// with memory tracking and performance metrics.
29//
30// Future: Full SciRS2 GPU Integration (post-beta.3)
31// When scirs2_core::gpu API stabilizes, this module will migrate to:
32// 1. Direct GPU memory transfer via scirs2_core::gpu buffers
33// 2. Native GPU kernel execution via scirs2_core::gpu::GpuKernel
34// 3. Hardware-accelerated CUDA/Metal/Vulkan via SciRS2 abstractions
35// 4. Unified device selection via GpuDevice::default()
36//
37// The current implementation is production-ready for beta.3 release.
38
39pub mod cpu_backend;
40pub use cpu_backend::CpuBackend;
41#[cfg(feature = "cuda")]
42pub mod cuda_backend;
43#[cfg(feature = "metal")]
44pub mod metal_backend;
45#[cfg(feature = "metal")]
46pub mod metal_backend_scirs2_ready;
47#[cfg(feature = "vulkan")]
48pub mod vulkan_backend;
49
50// SciRS2 GPU migration adapter
51pub mod scirs2_adapter;
52pub use crate::gpu_stubs::SciRS2GpuConfig;
53
54// Re-export SciRS2 adapter types for external use
55pub use scirs2_adapter::{
56    get_gpu_system_info, is_gpu_available, SciRS2BufferAdapter, SciRS2GpuBackend, SciRS2GpuFactory,
57    SciRS2GpuMetrics, SciRS2KernelAdapter,
58};
59
60// Enhanced GPU optimization modules
61pub mod adaptive_hardware_optimization;
62pub mod adaptive_simd;
63pub mod large_scale_simulation;
64pub mod memory_bandwidth_optimization;
65pub mod specialized_kernels;
66
67// Tests
68#[cfg(test)]
69mod metal_backend_tests;
70
71// Re-export key optimization components
72pub use adaptive_hardware_optimization::{
73    AccessPattern, AdaptiveHardwareOptimizer, AdaptiveOptimizationConfig, CalibrationResult,
74    HardwareAssessment, OptimizationParams, OptimizationReport, OptimizationStrategy,
75    PerformanceProfile, WorkloadCharacteristics,
76};
77pub use adaptive_simd::{
78    apply_batch_gates_adaptive, apply_single_qubit_adaptive, apply_two_qubit_adaptive,
79    get_adaptive_performance_report, initialize_adaptive_simd, AdaptiveSimdDispatcher, CpuFeatures,
80    SimdVariant,
81};
82pub use large_scale_simulation::{
83    LargeScaleGateType, LargeScaleObservable, LargeScalePerformanceStats, LargeScaleSimAccelerator,
84    LargeScaleSimConfig, LargeScaleStateVectorSim, LargeScaleTensorContractor, SimulationTaskType,
85    TensorDecompositionType,
86};
87pub use memory_bandwidth_optimization::{
88    MemoryBandwidthConfig, MemoryBandwidthMetrics, MemoryBandwidthOptimizer, MemoryBufferPool,
89    MemoryLayout, PoolStatistics, StreamingTransfer,
90};
91pub use specialized_kernels::{
92    FusionType, OptimizationConfig, PerformanceReport, PostQuantumCompressionType,
93    SpecializedGpuKernels,
94};
95
96/// GPU memory buffer abstraction
97pub trait GpuBuffer: Send + Sync {
98    /// Get the size of the buffer in bytes
99    fn size(&self) -> usize;
100
101    /// Copy data from host to device
102    fn upload(&mut self, data: &[Complex64]) -> QuantRS2Result<()>;
103
104    /// Copy data from device to host
105    fn download(&self, data: &mut [Complex64]) -> QuantRS2Result<()>;
106
107    /// Synchronize GPU operations
108    fn sync(&self) -> QuantRS2Result<()>;
109
110    /// Enable downcasting to concrete types
111    fn as_any(&self) -> &dyn std::any::Any;
112
113    /// Enable mutable downcasting to concrete types
114    fn as_any_mut(&mut self) -> &mut dyn std::any::Any;
115}
116
117/// Enhanced GPU kernel for specialized quantum operations
118pub trait SpecializedGpuKernel: Send + Sync {
119    /// Apply a holonomic gate with optimized GPU execution
120    fn apply_holonomic_gate(
121        &self,
122        state: &mut dyn GpuBuffer,
123        holonomy_matrix: &[Complex64],
124        target_qubits: &[QubitId],
125    ) -> QuantRS2Result<()>;
126
127    /// Apply post-quantum cryptographic hash gate
128    fn apply_post_quantum_hash_gate(
129        &self,
130        state: &mut dyn GpuBuffer,
131        hash_circuit: &[Complex64],
132        compression_type: PostQuantumCompressionType,
133    ) -> QuantRS2Result<()>;
134
135    /// Apply quantum ML attention mechanism
136    fn apply_quantum_ml_attention(
137        &self,
138        state: &mut dyn GpuBuffer,
139        query_params: &[Complex64],
140        key_params: &[Complex64],
141        value_params: &[Complex64],
142        num_heads: usize,
143    ) -> QuantRS2Result<()>;
144
145    /// Apply fused gate sequences for optimal performance
146    fn apply_fused_gate_sequence(
147        &self,
148        state: &mut dyn GpuBuffer,
149        gates: &[Box<dyn GateOp>],
150    ) -> QuantRS2Result<()>;
151
152    /// Apply tensor network contraction
153    fn apply_tensor_contraction(
154        &self,
155        tensor_data: &mut dyn GpuBuffer,
156        contraction_indices: &[usize],
157        bond_dimension: usize,
158    ) -> QuantRS2Result<()>;
159}
160
161/// GPU kernel for quantum operations
162pub trait GpuKernel: Send + Sync {
163    /// Apply a single-qubit gate
164    fn apply_single_qubit_gate(
165        &self,
166        state: &mut dyn GpuBuffer,
167        gate_matrix: &[Complex64; 4],
168        qubit: QubitId,
169        n_qubits: usize,
170    ) -> QuantRS2Result<()>;
171
172    /// Apply a two-qubit gate
173    fn apply_two_qubit_gate(
174        &self,
175        state: &mut dyn GpuBuffer,
176        gate_matrix: &[Complex64; 16],
177        control: QubitId,
178        target: QubitId,
179        n_qubits: usize,
180    ) -> QuantRS2Result<()>;
181
182    /// Apply a multi-qubit gate
183    fn apply_multi_qubit_gate(
184        &self,
185        state: &mut dyn GpuBuffer,
186        gate_matrix: &Array2<Complex64>,
187        qubits: &[QubitId],
188        n_qubits: usize,
189    ) -> QuantRS2Result<()>;
190
191    /// Measure a qubit
192    fn measure_qubit(
193        &self,
194        state: &dyn GpuBuffer,
195        qubit: QubitId,
196        n_qubits: usize,
197    ) -> QuantRS2Result<(bool, f64)>;
198
199    /// Calculate expectation value
200    fn expectation_value(
201        &self,
202        state: &dyn GpuBuffer,
203        observable: &Array2<Complex64>,
204        qubits: &[QubitId],
205        n_qubits: usize,
206    ) -> QuantRS2Result<f64>;
207}
208
209/// Enhanced GPU backend trait for specialized quantum computations
210pub trait EnhancedGpuBackend: GpuBackend {
211    /// Get the specialized kernel implementation
212    fn specialized_kernel(&self) -> Option<&dyn SpecializedGpuKernel>;
213
214    /// Apply a holonomic gate with GPU optimization
215    fn apply_holonomic_gate(
216        &self,
217        state: &mut dyn GpuBuffer,
218        holonomy_matrix: &[Complex64],
219        target_qubits: &[QubitId],
220    ) -> QuantRS2Result<()> {
221        self.specialized_kernel().map_or_else(
222            || {
223                Err(QuantRS2Error::UnsupportedOperation(
224                    "Holonomic gates not supported by this backend".to_string(),
225                ))
226            },
227            |kernel| kernel.apply_holonomic_gate(state, holonomy_matrix, target_qubits),
228        )
229    }
230
231    /// Apply post-quantum cryptographic operations
232    fn apply_post_quantum_crypto(
233        &self,
234        state: &mut dyn GpuBuffer,
235        hash_circuit: &[Complex64],
236        compression_type: PostQuantumCompressionType,
237    ) -> QuantRS2Result<()> {
238        self.specialized_kernel().map_or_else(
239            || {
240                Err(QuantRS2Error::UnsupportedOperation(
241                    "Post-quantum crypto gates not supported by this backend".to_string(),
242                ))
243            },
244            |kernel| kernel.apply_post_quantum_hash_gate(state, hash_circuit, compression_type),
245        )
246    }
247
248    /// Apply quantum ML operations
249    fn apply_quantum_ml_attention(
250        &self,
251        state: &mut dyn GpuBuffer,
252        query_params: &[Complex64],
253        key_params: &[Complex64],
254        value_params: &[Complex64],
255        num_heads: usize,
256    ) -> QuantRS2Result<()> {
257        self.specialized_kernel().map_or_else(
258            || {
259                Err(QuantRS2Error::UnsupportedOperation(
260                    "Quantum ML attention not supported by this backend".to_string(),
261                ))
262            },
263            |kernel| {
264                kernel.apply_quantum_ml_attention(
265                    state,
266                    query_params,
267                    key_params,
268                    value_params,
269                    num_heads,
270                )
271            },
272        )
273    }
274
275    /// Apply optimized gate fusion
276    fn apply_fused_gates(
277        &self,
278        state: &mut dyn GpuBuffer,
279        gates: &[Box<dyn GateOp>],
280    ) -> QuantRS2Result<()> {
281        if let Some(kernel) = self.specialized_kernel() {
282            kernel.apply_fused_gate_sequence(state, gates)
283        } else {
284            // Fallback to applying gates individually
285            for gate in gates {
286                let qubits = gate.qubits();
287                self.apply_gate(state, gate.as_ref(), &qubits, qubits.len())?;
288            }
289            Ok(())
290        }
291    }
292
293    /// Get optimization configuration
294    fn optimization_config(&self) -> OptimizationConfig {
295        OptimizationConfig::default()
296    }
297
298    /// Get performance statistics
299    fn performance_stats(&self) -> PerformanceReport {
300        PerformanceReport {
301            average_kernel_times: std::collections::HashMap::new(),
302            cache_hit_rate: 0.0,
303            tensor_core_utilization: 0.0,
304            memory_bandwidth_utilization: 0.0,
305        }
306    }
307}
308
309/// GPU backend trait for quantum computations
310pub trait GpuBackend: Send + Sync {
311    /// Check if this backend is available on the current system
312    fn is_available() -> bool
313    where
314        Self: Sized;
315
316    /// Get the name of this backend
317    fn name(&self) -> &str;
318
319    /// Get device information
320    fn device_info(&self) -> String;
321
322    /// Allocate a GPU buffer for a state vector
323    fn allocate_state_vector(&self, n_qubits: usize) -> QuantRS2Result<Box<dyn GpuBuffer>>;
324
325    /// Allocate a GPU buffer for a density matrix
326    fn allocate_density_matrix(&self, n_qubits: usize) -> QuantRS2Result<Box<dyn GpuBuffer>>;
327
328    /// Get the kernel implementation
329    fn kernel(&self) -> &dyn GpuKernel;
330
331    /// Apply a quantum gate
332    fn apply_gate(
333        &self,
334        state: &mut dyn GpuBuffer,
335        gate: &dyn GateOp,
336        qubits: &[QubitId],
337        n_qubits: usize,
338    ) -> QuantRS2Result<()> {
339        match qubits.len() {
340            1 => {
341                let matrix = gate.matrix()?;
342                let gate_array: [Complex64; 4] = [matrix[0], matrix[1], matrix[2], matrix[3]];
343                self.kernel()
344                    .apply_single_qubit_gate(state, &gate_array, qubits[0], n_qubits)
345            }
346            2 => {
347                let matrix = gate.matrix()?;
348                let mut gate_array = [Complex64::new(0.0, 0.0); 16];
349                for (i, &val) in matrix.iter().enumerate() {
350                    gate_array[i] = val;
351                }
352                self.kernel().apply_two_qubit_gate(
353                    state,
354                    &gate_array,
355                    qubits[0],
356                    qubits[1],
357                    n_qubits,
358                )
359            }
360            _ => {
361                let matrix_vec = gate.matrix()?;
362                let size = (1 << qubits.len(), 1 << qubits.len());
363                let matrix = Array2::from_shape_vec(size, matrix_vec)?;
364                self.kernel()
365                    .apply_multi_qubit_gate(state, &matrix, qubits, n_qubits)
366            }
367        }
368    }
369
370    /// Measure a qubit and collapse the state
371    fn measure(
372        &self,
373        state: &mut dyn GpuBuffer,
374        qubit: QubitId,
375        n_qubits: usize,
376    ) -> QuantRS2Result<bool> {
377        let (outcome, _prob) = self.kernel().measure_qubit(state, qubit, n_qubits)?;
378        Ok(outcome)
379    }
380
381    /// Get measurement probability without collapsing
382    fn get_probability(
383        &self,
384        state: &dyn GpuBuffer,
385        qubit: QubitId,
386        n_qubits: usize,
387    ) -> QuantRS2Result<f64> {
388        let (_outcome, prob) = self.kernel().measure_qubit(state, qubit, n_qubits)?;
389        Ok(prob)
390    }
391}
392
393/// GPU-accelerated state vector
394pub struct GpuStateVector {
395    /// The GPU backend
396    backend: Arc<dyn GpuBackend>,
397    /// The GPU buffer holding the state
398    buffer: Box<dyn GpuBuffer>,
399    /// Number of qubits
400    n_qubits: usize,
401}
402
403impl GpuStateVector {
404    /// Create a new GPU state vector
405    pub fn new(backend: Arc<dyn GpuBackend>, n_qubits: usize) -> QuantRS2Result<Self> {
406        let buffer = backend.allocate_state_vector(n_qubits)?;
407        Ok(Self {
408            backend,
409            buffer,
410            n_qubits,
411        })
412    }
413
414    /// Initialize to |00...0⟩ state
415    pub fn initialize_zero_state(&mut self) -> QuantRS2Result<()> {
416        let size = 1 << self.n_qubits;
417        let mut data = vec![Complex64::new(0.0, 0.0); size];
418        data[0] = Complex64::new(1.0, 0.0);
419        self.buffer.upload(&data)
420    }
421
422    /// Apply a gate
423    pub fn apply_gate(&mut self, gate: &dyn GateOp, qubits: &[QubitId]) -> QuantRS2Result<()> {
424        self.backend
425            .apply_gate(self.buffer.as_mut(), gate, qubits, self.n_qubits)
426    }
427
428    /// Measure a qubit
429    pub fn measure(&mut self, qubit: QubitId) -> QuantRS2Result<bool> {
430        self.backend
431            .measure(self.buffer.as_mut(), qubit, self.n_qubits)
432    }
433
434    /// Get the state vector as a host array
435    pub fn to_array(&self) -> QuantRS2Result<Array1<Complex64>> {
436        let size = 1 << self.n_qubits;
437        let mut data = vec![Complex64::new(0.0, 0.0); size];
438        self.buffer.download(&mut data)?;
439        Ok(Array1::from_vec(data))
440    }
441
442    /// Get measurement probabilities for all basis states
443    pub fn get_probabilities(&self) -> QuantRS2Result<Vec<f64>> {
444        let state = self.to_array()?;
445        Ok(state.iter().map(|c| c.norm_sqr()).collect())
446    }
447}
448
449/// GPU backend factory
450pub struct GpuBackendFactory;
451
452impl GpuBackendFactory {
453    /// Create the best available GPU backend
454    pub fn create_best_available() -> QuantRS2Result<Arc<dyn GpuBackend>> {
455        // Try backends in order of preference
456        #[cfg(feature = "cuda")]
457        if cuda_backend::CudaBackend::is_available() {
458            return Ok(Arc::new(cuda_backend::CudaBackend::new()?));
459        }
460
461        #[cfg(feature = "metal")]
462        if metal_backend::MetalBackend::is_available() {
463            return Ok(Arc::new(metal_backend::MetalBackend::new()?));
464        }
465
466        #[cfg(feature = "vulkan")]
467        if vulkan_backend::VulkanBackend::is_available() {
468            return Ok(Arc::new(vulkan_backend::VulkanBackend::new()?));
469        }
470
471        // Fallback to CPU backend
472        Ok(Arc::new(cpu_backend::CpuBackend::new()))
473    }
474
475    /// Create a specific backend
476    pub fn create_backend(backend_type: &str) -> QuantRS2Result<Arc<dyn GpuBackend>> {
477        match backend_type.to_lowercase().as_str() {
478            #[cfg(feature = "cuda")]
479            "cuda" => Ok(Arc::new(cuda_backend::CudaBackend::new()?)),
480
481            #[cfg(feature = "metal")]
482            "metal" => Ok(Arc::new(metal_backend::MetalBackend::new()?)),
483
484            #[cfg(feature = "vulkan")]
485            "vulkan" => Ok(Arc::new(vulkan_backend::VulkanBackend::new()?)),
486
487            "cpu" => Ok(Arc::new(cpu_backend::CpuBackend::new())),
488
489            _ => Err(QuantRS2Error::InvalidInput(format!(
490                "Unknown backend type: {backend_type}"
491            ))),
492        }
493    }
494
495    /// List available backends
496    pub fn available_backends() -> Vec<&'static str> {
497        #[allow(unused_mut)]
498        let mut backends = vec!["cpu"];
499
500        #[cfg(feature = "cuda")]
501        if cuda_backend::CudaBackend::is_available() {
502            backends.push("cuda");
503        }
504
505        #[cfg(feature = "metal")]
506        if metal_backend::MetalBackend::is_available() {
507            backends.push("metal");
508        }
509
510        #[cfg(feature = "vulkan")]
511        if vulkan_backend::VulkanBackend::is_available() {
512            backends.push("vulkan");
513        }
514
515        backends
516    }
517}
518
519/// Configuration for GPU operations
520#[derive(Debug, Clone)]
521pub struct GpuConfig {
522    /// Preferred backend (None for auto-selection)
523    pub backend: Option<String>,
524    /// Maximum GPU memory to use (in bytes)
525    pub max_memory: Option<usize>,
526    /// Number of GPU threads/work items
527    pub num_threads: Option<usize>,
528    /// Enable profiling
529    pub enable_profiling: bool,
530}
531
532impl Default for GpuConfig {
533    fn default() -> Self {
534        Self {
535            backend: None,
536            max_memory: None,
537            num_threads: None,
538            enable_profiling: false,
539        }
540    }
541}
542
543#[cfg(test)]
544mod tests {
545    use super::*;
546    use crate::gate::single::Hadamard;
547
548    #[test]
549    fn test_gpu_backend_factory() {
550        let backends = GpuBackendFactory::available_backends();
551        assert!(backends.contains(&"cpu"));
552
553        // Should always be able to create CPU backend
554        let backend =
555            GpuBackendFactory::create_backend("cpu").expect("Failed to create CPU backend");
556        assert_eq!(backend.name(), "CPU");
557    }
558
559    #[test]
560    fn test_gpu_state_vector() {
561        let backend =
562            GpuBackendFactory::create_best_available().expect("Failed to create GPU backend");
563        let mut state = GpuStateVector::new(backend, 2).expect("Failed to create GPU state vector");
564
565        // Initialize to |00⟩
566        state
567            .initialize_zero_state()
568            .expect("Failed to initialize zero state");
569
570        // Apply Hadamard to first qubit
571        let h_gate = Hadamard { target: QubitId(0) };
572        state
573            .apply_gate(&h_gate, &[QubitId(0)])
574            .expect("Failed to apply Hadamard gate");
575
576        // Get probabilities
577        let probs = state
578            .get_probabilities()
579            .expect("Failed to get probabilities");
580        assert_eq!(probs.len(), 4);
581
582        // Should be in equal superposition on first qubit
583        // With our bit ordering (LSB), |00⟩ and |01⟩ should have probability 0.5 each
584        assert!((probs[0] - 0.5).abs() < 1e-10); // |00⟩
585        assert!((probs[1] - 0.5).abs() < 1e-10); // |01⟩
586        assert!((probs[2] - 0.0).abs() < 1e-10); // |10⟩
587        assert!((probs[3] - 0.0).abs() < 1e-10); // |11⟩
588    }
589}