1use crate::{
10 error::{QuantRS2Error, QuantRS2Result},
11 gate::GateOp,
12 qubit::QubitId,
13};
14use scirs2_core::ndarray::{Array1, Array2};
15use scirs2_core::Complex64;
16use std::sync::Arc;
17
18pub mod cpu_backend;
40pub use cpu_backend::CpuBackend;
41#[cfg(feature = "cuda")]
42pub mod cuda_backend;
43#[cfg(feature = "metal")]
44pub mod metal_backend;
45#[cfg(feature = "metal")]
46pub mod metal_backend_scirs2_ready;
47#[cfg(feature = "vulkan")]
48pub mod vulkan_backend;
49
50pub mod scirs2_adapter;
52pub use crate::gpu_stubs::SciRS2GpuConfig;
53
54pub use scirs2_adapter::{
56 get_gpu_system_info, is_gpu_available, SciRS2BufferAdapter, SciRS2GpuBackend, SciRS2GpuFactory,
57 SciRS2GpuMetrics, SciRS2KernelAdapter,
58};
59
60pub mod adaptive_hardware_optimization;
62pub mod adaptive_simd;
63pub mod large_scale_simulation;
64pub mod memory_bandwidth_optimization;
65pub mod specialized_kernels;
66
67#[cfg(test)]
69mod metal_backend_tests;
70
71pub use adaptive_hardware_optimization::{
73 AccessPattern, AdaptiveHardwareOptimizer, AdaptiveOptimizationConfig, CalibrationResult,
74 HardwareAssessment, OptimizationParams, OptimizationReport, OptimizationStrategy,
75 PerformanceProfile, WorkloadCharacteristics,
76};
77pub use adaptive_simd::{
78 apply_batch_gates_adaptive, apply_single_qubit_adaptive, apply_two_qubit_adaptive,
79 get_adaptive_performance_report, initialize_adaptive_simd, AdaptiveSimdDispatcher, CpuFeatures,
80 SimdVariant,
81};
82pub use large_scale_simulation::{
83 LargeScaleGateType, LargeScaleObservable, LargeScalePerformanceStats, LargeScaleSimAccelerator,
84 LargeScaleSimConfig, LargeScaleStateVectorSim, LargeScaleTensorContractor, SimulationTaskType,
85 TensorDecompositionType,
86};
87pub use memory_bandwidth_optimization::{
88 MemoryBandwidthConfig, MemoryBandwidthMetrics, MemoryBandwidthOptimizer, MemoryBufferPool,
89 MemoryLayout, PoolStatistics, StreamingTransfer,
90};
91pub use specialized_kernels::{
92 FusionType, OptimizationConfig, PerformanceReport, PostQuantumCompressionType,
93 SpecializedGpuKernels,
94};
95
96pub trait GpuBuffer: Send + Sync {
98 fn size(&self) -> usize;
100
101 fn upload(&mut self, data: &[Complex64]) -> QuantRS2Result<()>;
103
104 fn download(&self, data: &mut [Complex64]) -> QuantRS2Result<()>;
106
107 fn sync(&self) -> QuantRS2Result<()>;
109
110 fn as_any(&self) -> &dyn std::any::Any;
112
113 fn as_any_mut(&mut self) -> &mut dyn std::any::Any;
115}
116
117pub trait SpecializedGpuKernel: Send + Sync {
119 fn apply_holonomic_gate(
121 &self,
122 state: &mut dyn GpuBuffer,
123 holonomy_matrix: &[Complex64],
124 target_qubits: &[QubitId],
125 ) -> QuantRS2Result<()>;
126
127 fn apply_post_quantum_hash_gate(
129 &self,
130 state: &mut dyn GpuBuffer,
131 hash_circuit: &[Complex64],
132 compression_type: PostQuantumCompressionType,
133 ) -> QuantRS2Result<()>;
134
135 fn apply_quantum_ml_attention(
137 &self,
138 state: &mut dyn GpuBuffer,
139 query_params: &[Complex64],
140 key_params: &[Complex64],
141 value_params: &[Complex64],
142 num_heads: usize,
143 ) -> QuantRS2Result<()>;
144
145 fn apply_fused_gate_sequence(
147 &self,
148 state: &mut dyn GpuBuffer,
149 gates: &[Box<dyn GateOp>],
150 ) -> QuantRS2Result<()>;
151
152 fn apply_tensor_contraction(
154 &self,
155 tensor_data: &mut dyn GpuBuffer,
156 contraction_indices: &[usize],
157 bond_dimension: usize,
158 ) -> QuantRS2Result<()>;
159}
160
161pub trait GpuKernel: Send + Sync {
163 fn apply_single_qubit_gate(
165 &self,
166 state: &mut dyn GpuBuffer,
167 gate_matrix: &[Complex64; 4],
168 qubit: QubitId,
169 n_qubits: usize,
170 ) -> QuantRS2Result<()>;
171
172 fn apply_two_qubit_gate(
174 &self,
175 state: &mut dyn GpuBuffer,
176 gate_matrix: &[Complex64; 16],
177 control: QubitId,
178 target: QubitId,
179 n_qubits: usize,
180 ) -> QuantRS2Result<()>;
181
182 fn apply_multi_qubit_gate(
184 &self,
185 state: &mut dyn GpuBuffer,
186 gate_matrix: &Array2<Complex64>,
187 qubits: &[QubitId],
188 n_qubits: usize,
189 ) -> QuantRS2Result<()>;
190
191 fn measure_qubit(
193 &self,
194 state: &dyn GpuBuffer,
195 qubit: QubitId,
196 n_qubits: usize,
197 ) -> QuantRS2Result<(bool, f64)>;
198
199 fn expectation_value(
201 &self,
202 state: &dyn GpuBuffer,
203 observable: &Array2<Complex64>,
204 qubits: &[QubitId],
205 n_qubits: usize,
206 ) -> QuantRS2Result<f64>;
207}
208
209pub trait EnhancedGpuBackend: GpuBackend {
211 fn specialized_kernel(&self) -> Option<&dyn SpecializedGpuKernel>;
213
214 fn apply_holonomic_gate(
216 &self,
217 state: &mut dyn GpuBuffer,
218 holonomy_matrix: &[Complex64],
219 target_qubits: &[QubitId],
220 ) -> QuantRS2Result<()> {
221 self.specialized_kernel().map_or_else(
222 || {
223 Err(QuantRS2Error::UnsupportedOperation(
224 "Holonomic gates not supported by this backend".to_string(),
225 ))
226 },
227 |kernel| kernel.apply_holonomic_gate(state, holonomy_matrix, target_qubits),
228 )
229 }
230
231 fn apply_post_quantum_crypto(
233 &self,
234 state: &mut dyn GpuBuffer,
235 hash_circuit: &[Complex64],
236 compression_type: PostQuantumCompressionType,
237 ) -> QuantRS2Result<()> {
238 self.specialized_kernel().map_or_else(
239 || {
240 Err(QuantRS2Error::UnsupportedOperation(
241 "Post-quantum crypto gates not supported by this backend".to_string(),
242 ))
243 },
244 |kernel| kernel.apply_post_quantum_hash_gate(state, hash_circuit, compression_type),
245 )
246 }
247
248 fn apply_quantum_ml_attention(
250 &self,
251 state: &mut dyn GpuBuffer,
252 query_params: &[Complex64],
253 key_params: &[Complex64],
254 value_params: &[Complex64],
255 num_heads: usize,
256 ) -> QuantRS2Result<()> {
257 self.specialized_kernel().map_or_else(
258 || {
259 Err(QuantRS2Error::UnsupportedOperation(
260 "Quantum ML attention not supported by this backend".to_string(),
261 ))
262 },
263 |kernel| {
264 kernel.apply_quantum_ml_attention(
265 state,
266 query_params,
267 key_params,
268 value_params,
269 num_heads,
270 )
271 },
272 )
273 }
274
275 fn apply_fused_gates(
277 &self,
278 state: &mut dyn GpuBuffer,
279 gates: &[Box<dyn GateOp>],
280 ) -> QuantRS2Result<()> {
281 if let Some(kernel) = self.specialized_kernel() {
282 kernel.apply_fused_gate_sequence(state, gates)
283 } else {
284 for gate in gates {
286 let qubits = gate.qubits();
287 self.apply_gate(state, gate.as_ref(), &qubits, qubits.len())?;
288 }
289 Ok(())
290 }
291 }
292
293 fn optimization_config(&self) -> OptimizationConfig {
295 OptimizationConfig::default()
296 }
297
298 fn performance_stats(&self) -> PerformanceReport {
300 PerformanceReport {
301 average_kernel_times: std::collections::HashMap::new(),
302 cache_hit_rate: 0.0,
303 tensor_core_utilization: 0.0,
304 memory_bandwidth_utilization: 0.0,
305 }
306 }
307}
308
309pub trait GpuBackend: Send + Sync {
311 fn is_available() -> bool
313 where
314 Self: Sized;
315
316 fn name(&self) -> &str;
318
319 fn device_info(&self) -> String;
321
322 fn allocate_state_vector(&self, n_qubits: usize) -> QuantRS2Result<Box<dyn GpuBuffer>>;
324
325 fn allocate_density_matrix(&self, n_qubits: usize) -> QuantRS2Result<Box<dyn GpuBuffer>>;
327
328 fn kernel(&self) -> &dyn GpuKernel;
330
331 fn apply_gate(
333 &self,
334 state: &mut dyn GpuBuffer,
335 gate: &dyn GateOp,
336 qubits: &[QubitId],
337 n_qubits: usize,
338 ) -> QuantRS2Result<()> {
339 match qubits.len() {
340 1 => {
341 let matrix = gate.matrix()?;
342 let gate_array: [Complex64; 4] = [matrix[0], matrix[1], matrix[2], matrix[3]];
343 self.kernel()
344 .apply_single_qubit_gate(state, &gate_array, qubits[0], n_qubits)
345 }
346 2 => {
347 let matrix = gate.matrix()?;
348 let mut gate_array = [Complex64::new(0.0, 0.0); 16];
349 for (i, &val) in matrix.iter().enumerate() {
350 gate_array[i] = val;
351 }
352 self.kernel().apply_two_qubit_gate(
353 state,
354 &gate_array,
355 qubits[0],
356 qubits[1],
357 n_qubits,
358 )
359 }
360 _ => {
361 let matrix_vec = gate.matrix()?;
362 let size = (1 << qubits.len(), 1 << qubits.len());
363 let matrix = Array2::from_shape_vec(size, matrix_vec)?;
364 self.kernel()
365 .apply_multi_qubit_gate(state, &matrix, qubits, n_qubits)
366 }
367 }
368 }
369
370 fn measure(
372 &self,
373 state: &mut dyn GpuBuffer,
374 qubit: QubitId,
375 n_qubits: usize,
376 ) -> QuantRS2Result<bool> {
377 let (outcome, _prob) = self.kernel().measure_qubit(state, qubit, n_qubits)?;
378 Ok(outcome)
379 }
380
381 fn get_probability(
383 &self,
384 state: &dyn GpuBuffer,
385 qubit: QubitId,
386 n_qubits: usize,
387 ) -> QuantRS2Result<f64> {
388 let (_outcome, prob) = self.kernel().measure_qubit(state, qubit, n_qubits)?;
389 Ok(prob)
390 }
391}
392
393pub struct GpuStateVector {
395 backend: Arc<dyn GpuBackend>,
397 buffer: Box<dyn GpuBuffer>,
399 n_qubits: usize,
401}
402
403impl GpuStateVector {
404 pub fn new(backend: Arc<dyn GpuBackend>, n_qubits: usize) -> QuantRS2Result<Self> {
406 let buffer = backend.allocate_state_vector(n_qubits)?;
407 Ok(Self {
408 backend,
409 buffer,
410 n_qubits,
411 })
412 }
413
414 pub fn initialize_zero_state(&mut self) -> QuantRS2Result<()> {
416 let size = 1 << self.n_qubits;
417 let mut data = vec![Complex64::new(0.0, 0.0); size];
418 data[0] = Complex64::new(1.0, 0.0);
419 self.buffer.upload(&data)
420 }
421
422 pub fn apply_gate(&mut self, gate: &dyn GateOp, qubits: &[QubitId]) -> QuantRS2Result<()> {
424 self.backend
425 .apply_gate(self.buffer.as_mut(), gate, qubits, self.n_qubits)
426 }
427
428 pub fn measure(&mut self, qubit: QubitId) -> QuantRS2Result<bool> {
430 self.backend
431 .measure(self.buffer.as_mut(), qubit, self.n_qubits)
432 }
433
434 pub fn to_array(&self) -> QuantRS2Result<Array1<Complex64>> {
436 let size = 1 << self.n_qubits;
437 let mut data = vec![Complex64::new(0.0, 0.0); size];
438 self.buffer.download(&mut data)?;
439 Ok(Array1::from_vec(data))
440 }
441
442 pub fn get_probabilities(&self) -> QuantRS2Result<Vec<f64>> {
444 let state = self.to_array()?;
445 Ok(state.iter().map(|c| c.norm_sqr()).collect())
446 }
447}
448
449pub struct GpuBackendFactory;
451
452impl GpuBackendFactory {
453 pub fn create_best_available() -> QuantRS2Result<Arc<dyn GpuBackend>> {
455 #[cfg(feature = "cuda")]
457 if cuda_backend::CudaBackend::is_available() {
458 return Ok(Arc::new(cuda_backend::CudaBackend::new()?));
459 }
460
461 #[cfg(feature = "metal")]
462 if metal_backend::MetalBackend::is_available() {
463 return Ok(Arc::new(metal_backend::MetalBackend::new()?));
464 }
465
466 #[cfg(feature = "vulkan")]
467 if vulkan_backend::VulkanBackend::is_available() {
468 return Ok(Arc::new(vulkan_backend::VulkanBackend::new()?));
469 }
470
471 Ok(Arc::new(cpu_backend::CpuBackend::new()))
473 }
474
475 pub fn create_backend(backend_type: &str) -> QuantRS2Result<Arc<dyn GpuBackend>> {
477 match backend_type.to_lowercase().as_str() {
478 #[cfg(feature = "cuda")]
479 "cuda" => Ok(Arc::new(cuda_backend::CudaBackend::new()?)),
480
481 #[cfg(feature = "metal")]
482 "metal" => Ok(Arc::new(metal_backend::MetalBackend::new()?)),
483
484 #[cfg(feature = "vulkan")]
485 "vulkan" => Ok(Arc::new(vulkan_backend::VulkanBackend::new()?)),
486
487 "cpu" => Ok(Arc::new(cpu_backend::CpuBackend::new())),
488
489 _ => Err(QuantRS2Error::InvalidInput(format!(
490 "Unknown backend type: {backend_type}"
491 ))),
492 }
493 }
494
495 pub fn available_backends() -> Vec<&'static str> {
497 #[allow(unused_mut)]
498 let mut backends = vec!["cpu"];
499
500 #[cfg(feature = "cuda")]
501 if cuda_backend::CudaBackend::is_available() {
502 backends.push("cuda");
503 }
504
505 #[cfg(feature = "metal")]
506 if metal_backend::MetalBackend::is_available() {
507 backends.push("metal");
508 }
509
510 #[cfg(feature = "vulkan")]
511 if vulkan_backend::VulkanBackend::is_available() {
512 backends.push("vulkan");
513 }
514
515 backends
516 }
517}
518
519#[derive(Debug, Clone)]
521pub struct GpuConfig {
522 pub backend: Option<String>,
524 pub max_memory: Option<usize>,
526 pub num_threads: Option<usize>,
528 pub enable_profiling: bool,
530}
531
532impl Default for GpuConfig {
533 fn default() -> Self {
534 Self {
535 backend: None,
536 max_memory: None,
537 num_threads: None,
538 enable_profiling: false,
539 }
540 }
541}
542
543#[cfg(test)]
544mod tests {
545 use super::*;
546 use crate::gate::single::Hadamard;
547
548 #[test]
549 fn test_gpu_backend_factory() {
550 let backends = GpuBackendFactory::available_backends();
551 assert!(backends.contains(&"cpu"));
552
553 let backend =
555 GpuBackendFactory::create_backend("cpu").expect("Failed to create CPU backend");
556 assert_eq!(backend.name(), "CPU");
557 }
558
559 #[test]
560 fn test_gpu_state_vector() {
561 let backend =
562 GpuBackendFactory::create_best_available().expect("Failed to create GPU backend");
563 let mut state = GpuStateVector::new(backend, 2).expect("Failed to create GPU state vector");
564
565 state
567 .initialize_zero_state()
568 .expect("Failed to initialize zero state");
569
570 let h_gate = Hadamard { target: QubitId(0) };
572 state
573 .apply_gate(&h_gate, &[QubitId(0)])
574 .expect("Failed to apply Hadamard gate");
575
576 let probs = state
578 .get_probabilities()
579 .expect("Failed to get probabilities");
580 assert_eq!(probs.len(), 4);
581
582 assert!((probs[0] - 0.5).abs() < 1e-10); assert!((probs[1] - 0.5).abs() < 1e-10); assert!((probs[2] - 0.0).abs() < 1e-10); assert!((probs[3] - 0.0).abs() < 1e-10); }
589}