quantrs2_core/
symbolic_optimization.rs

1//! Symbolic optimization module for quantum circuits and algorithms
2//!
3//! This module provides symbolic optimization capabilities for quantum circuits,
4//! including automatic differentiation for variational algorithms, circuit
5//! simplification using symbolic computation, and parameter optimization.
6
7use crate::error::{QuantRS2Error, QuantRS2Result};
8use crate::symbolic_hamiltonian::SymbolicHamiltonian;
9use scirs2_core::Complex64;
10use std::collections::HashMap;
11
12/// Symbolic optimization configuration
13#[derive(Debug, Clone)]
14pub struct SymbolicOptimizationConfig {
15    /// Maximum number of optimization iterations
16    pub max_iterations: usize,
17    /// Convergence tolerance
18    pub tolerance: f64,
19    /// Learning rate for gradient-based optimization
20    pub learning_rate: f64,
21    /// Whether to use analytical gradients when available
22    pub use_analytical_gradients: bool,
23    /// Finite difference step size for numerical gradients
24    pub finite_difference_step: f64,
25}
26
27impl Default for SymbolicOptimizationConfig {
28    fn default() -> Self {
29        Self {
30            max_iterations: 1000,
31            tolerance: 1e-6,
32            learning_rate: 0.01,
33            use_analytical_gradients: true,
34            finite_difference_step: 1e-8,
35        }
36    }
37}
38
39/// Optimization result
40#[derive(Debug, Clone)]
41pub struct OptimizationResult {
42    /// Optimal parameter values
43    pub optimal_parameters: HashMap<String, f64>,
44    /// Final objective function value
45    pub final_value: f64,
46    /// Number of iterations performed
47    pub iterations: usize,
48    /// Whether optimization converged
49    pub converged: bool,
50    /// Optimization history
51    pub history: Vec<(HashMap<String, f64>, f64)>,
52}
53
54/// Symbolic objective function for optimization
55pub trait SymbolicObjective {
56    /// Evaluate the objective function
57    fn evaluate(&self, parameters: &HashMap<String, f64>) -> QuantRS2Result<f64>;
58
59    /// Compute gradients (analytical if available, numerical otherwise)
60    fn gradients(&self, parameters: &HashMap<String, f64>) -> QuantRS2Result<HashMap<String, f64>>;
61
62    /// Get parameter names
63    fn parameter_names(&self) -> Vec<String>;
64
65    /// Get parameter bounds (if any)
66    fn parameter_bounds(&self) -> HashMap<String, (Option<f64>, Option<f64>)> {
67        HashMap::new()
68    }
69}
70
71/// Hamiltonian expectation value objective for VQE
72pub struct HamiltonianExpectation {
73    /// The Hamiltonian
74    pub hamiltonian: SymbolicHamiltonian,
75    /// Parametric quantum circuit (simplified representation)
76    pub circuit_parameters: Vec<String>,
77    /// State preparation function (placeholder)
78    pub state_prep: Option<Box<dyn Fn(&HashMap<String, f64>) -> QuantRS2Result<Vec<Complex64>>>>,
79}
80
81impl std::fmt::Debug for HamiltonianExpectation {
82    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
83        f.debug_struct("HamiltonianExpectation")
84            .field("hamiltonian", &self.hamiltonian)
85            .field("circuit_parameters", &self.circuit_parameters)
86            .field(
87                "state_prep",
88                &self.state_prep.as_ref().map(|_| "<function>"),
89            )
90            .finish()
91    }
92}
93
94impl Clone for HamiltonianExpectation {
95    fn clone(&self) -> Self {
96        Self {
97            hamiltonian: self.hamiltonian.clone(),
98            circuit_parameters: self.circuit_parameters.clone(),
99            state_prep: None, // Cannot clone closures
100        }
101    }
102}
103
104impl HamiltonianExpectation {
105    /// Create a new Hamiltonian expectation objective
106    pub fn new(hamiltonian: SymbolicHamiltonian) -> Self {
107        Self {
108            circuit_parameters: hamiltonian.variables(),
109            hamiltonian,
110            state_prep: None,
111        }
112    }
113
114    /// Set the state preparation function
115    #[must_use]
116    pub fn with_state_prep<F>(mut self, state_prep: F) -> Self
117    where
118        F: Fn(&HashMap<String, f64>) -> QuantRS2Result<Vec<Complex64>> + 'static,
119    {
120        self.state_prep = Some(Box::new(state_prep));
121        self
122    }
123}
124
125impl SymbolicObjective for HamiltonianExpectation {
126    fn evaluate(&self, parameters: &HashMap<String, f64>) -> QuantRS2Result<f64> {
127        // Get the evaluated Hamiltonian terms
128        let terms = self.hamiltonian.evaluate(parameters)?;
129
130        // For this example, we'll use a simple computational basis state
131        // In practice, you'd use the actual quantum circuit state
132        let n_qubits = self.hamiltonian.n_qubits;
133        let mut state_vector = vec![Complex64::new(0.0, 0.0); 1 << n_qubits];
134
135        if let Some(ref state_prep) = self.state_prep {
136            state_vector = state_prep(parameters)?;
137        } else {
138            // Default to |0...0⟩ state
139            state_vector[0] = Complex64::new(1.0, 0.0);
140        }
141
142        // Compute expectation value
143        let mut expectation = 0.0;
144        for (coeff, pauli_string) in terms {
145            let pauli_expectation = compute_pauli_expectation_real(&pauli_string, &state_vector)?;
146            expectation += coeff * pauli_expectation;
147        }
148
149        Ok(expectation)
150    }
151
152    fn gradients(&self, parameters: &HashMap<String, f64>) -> QuantRS2Result<HashMap<String, f64>> {
153        let mut gradients = HashMap::new();
154
155        #[cfg(feature = "symbolic")]
156        {
157            // Use analytical gradients if available
158            if self
159                .hamiltonian
160                .variables()
161                .iter()
162                .all(|v| parameters.contains_key(v))
163            {
164                let grad_hamiltonians = self.hamiltonian.gradients(&self.parameter_names())?;
165
166                for (param_name, grad_hamiltonian) in grad_hamiltonians {
167                    let grad_obj = Self {
168                        hamiltonian: grad_hamiltonian,
169                        circuit_parameters: self.circuit_parameters.clone(),
170                        state_prep: None, // Cannot clone function
171                    };
172
173                    let grad_value = grad_obj.evaluate(parameters)?;
174                    gradients.insert(param_name, grad_value);
175                }
176
177                return Ok(gradients);
178            }
179        }
180
181        // Fallback to numerical gradients
182        let step = 1e-8;
183        let _base_value = self.evaluate(parameters)?;
184
185        for param_name in self.parameter_names() {
186            let mut params_plus = parameters.clone();
187            let mut params_minus = parameters.clone();
188
189            let current_value = parameters.get(&param_name).unwrap_or(&0.0);
190            params_plus.insert(param_name.clone(), current_value + step);
191            params_minus.insert(param_name.clone(), current_value - step);
192
193            let value_plus = self.evaluate(&params_plus)?;
194            let value_minus = self.evaluate(&params_minus)?;
195
196            let gradient = (value_plus - value_minus) / (2.0 * step);
197            gradients.insert(param_name, gradient);
198        }
199
200        Ok(gradients)
201    }
202
203    fn parameter_names(&self) -> Vec<String> {
204        let mut names = self.hamiltonian.variables();
205        names.extend(self.circuit_parameters.iter().cloned());
206        names.sort();
207        names.dedup();
208        names
209    }
210}
211
212/// Quantum circuit cost function for QAOA
213#[derive(Debug, Clone)]
214pub struct QAOACostFunction {
215    /// Cost Hamiltonian
216    pub cost_hamiltonian: SymbolicHamiltonian,
217    /// Mixer Hamiltonian
218    pub mixer_hamiltonian: SymbolicHamiltonian,
219    /// Number of QAOA layers
220    pub p_layers: usize,
221}
222
223impl QAOACostFunction {
224    /// Create a new QAOA cost function
225    pub const fn new(
226        cost_hamiltonian: SymbolicHamiltonian,
227        mixer_hamiltonian: SymbolicHamiltonian,
228        p_layers: usize,
229    ) -> Self {
230        Self {
231            cost_hamiltonian,
232            mixer_hamiltonian,
233            p_layers,
234        }
235    }
236}
237
238impl SymbolicObjective for QAOACostFunction {
239    fn evaluate(&self, parameters: &HashMap<String, f64>) -> QuantRS2Result<f64> {
240        // Simplified QAOA evaluation
241        // In practice, you'd simulate the full QAOA circuit
242
243        // Extract beta and gamma parameters
244        let mut total_cost = 0.0;
245
246        for layer in 0..self.p_layers {
247            let gamma_key = format!("gamma_{layer}");
248            let beta_key = format!("beta_{layer}");
249
250            let gamma = parameters.get(&gamma_key).unwrap_or(&0.0);
251            let beta = parameters.get(&beta_key).unwrap_or(&0.0);
252
253            // Simplified cost calculation
254            total_cost += gamma * gamma + beta * beta;
255        }
256
257        Ok(total_cost)
258    }
259
260    fn gradients(&self, parameters: &HashMap<String, f64>) -> QuantRS2Result<HashMap<String, f64>> {
261        let mut gradients = HashMap::new();
262
263        // Simplified gradients for the example
264        for layer in 0..self.p_layers {
265            let gamma_key = format!("gamma_{layer}");
266            let beta_key = format!("beta_{layer}");
267
268            let gamma = parameters.get(&gamma_key).unwrap_or(&0.0);
269            let beta = parameters.get(&beta_key).unwrap_or(&0.0);
270
271            gradients.insert(gamma_key, 2.0 * gamma);
272            gradients.insert(beta_key, 2.0 * beta);
273        }
274
275        Ok(gradients)
276    }
277
278    fn parameter_names(&self) -> Vec<String> {
279        let mut names = Vec::new();
280        for layer in 0..self.p_layers {
281            names.push(format!("gamma_{layer}"));
282            names.push(format!("beta_{layer}"));
283        }
284        names
285    }
286
287    fn parameter_bounds(&self) -> HashMap<String, (Option<f64>, Option<f64>)> {
288        let mut bounds = HashMap::new();
289        for layer in 0..self.p_layers {
290            // QAOA parameters typically bounded by [0, 2π]
291            bounds.insert(
292                format!("gamma_{layer}"),
293                (Some(0.0), Some(2.0 * std::f64::consts::PI)),
294            );
295            bounds.insert(
296                format!("beta_{layer}"),
297                (Some(0.0), Some(std::f64::consts::PI)),
298            );
299        }
300        bounds
301    }
302}
303
304/// Symbolic optimizer
305pub struct SymbolicOptimizer {
306    config: SymbolicOptimizationConfig,
307}
308
309impl SymbolicOptimizer {
310    /// Create a new symbolic optimizer
311    pub const fn new(config: SymbolicOptimizationConfig) -> Self {
312        Self { config }
313    }
314
315    /// Create with default configuration
316    pub fn default() -> Self {
317        Self::new(SymbolicOptimizationConfig::default())
318    }
319
320    /// Optimize using gradient descent
321    pub fn optimize<O: SymbolicObjective>(
322        &self,
323        objective: &O,
324        initial_parameters: HashMap<String, f64>,
325    ) -> QuantRS2Result<OptimizationResult> {
326        let mut parameters = initial_parameters;
327        let mut history = Vec::new();
328        let mut converged = false;
329
330        let mut prev_value = objective.evaluate(&parameters)?;
331        history.push((parameters.clone(), prev_value));
332
333        for iteration in 0..self.config.max_iterations {
334            // Compute gradients
335            let gradients = objective.gradients(&parameters)?;
336
337            // Gradient descent update
338            let mut max_gradient: f64 = 0.0;
339            for param_name in objective.parameter_names() {
340                if let Some(gradient) = gradients.get(&param_name) {
341                    let current_value = parameters.get(&param_name).unwrap_or(&0.0);
342                    let new_value = current_value - self.config.learning_rate * gradient;
343
344                    // Apply bounds if they exist
345                    let bounded_value = if let Some((lower, upper)) =
346                        objective.parameter_bounds().get(&param_name)
347                    {
348                        let mut val = new_value;
349                        if let Some(lower_bound) = lower {
350                            val = val.max(*lower_bound);
351                        }
352                        if let Some(upper_bound) = upper {
353                            val = val.min(*upper_bound);
354                        }
355                        val
356                    } else {
357                        new_value
358                    };
359
360                    parameters.insert(param_name.clone(), bounded_value);
361                    max_gradient = max_gradient.max(gradient.abs());
362                }
363            }
364
365            // Evaluate new objective value
366            let current_value = objective.evaluate(&parameters)?;
367            history.push((parameters.clone(), current_value));
368
369            // Check convergence
370            let value_change = (current_value - prev_value).abs();
371            if value_change < self.config.tolerance && max_gradient < self.config.tolerance {
372                converged = true;
373                break;
374            }
375
376            prev_value = current_value;
377
378            // Optional: Print progress
379            if iteration % 100 == 0 {
380                println!(
381                    "Iteration {iteration}: objective = {current_value:.6e}, max_grad = {max_gradient:.6e}"
382                );
383            }
384        }
385
386        Ok(OptimizationResult {
387            optimal_parameters: parameters,
388            final_value: prev_value,
389            iterations: history.len() - 1,
390            converged,
391            history,
392        })
393    }
394
395    /// Optimize using BFGS (simplified implementation)
396    pub fn optimize_bfgs<O: SymbolicObjective>(
397        &self,
398        objective: &O,
399        initial_parameters: HashMap<String, f64>,
400    ) -> QuantRS2Result<OptimizationResult> {
401        // For now, fall back to gradient descent
402        // A full BFGS implementation would maintain an approximation to the inverse Hessian
403        self.optimize(objective, initial_parameters)
404    }
405}
406
407/// Circuit parameter optimization utilities
408pub mod circuit_optimization {
409    use super::*;
410    use crate::parametric::ParametricGate;
411
412    /// Optimize a parametric quantum circuit
413    pub fn optimize_parametric_circuit<O: SymbolicObjective>(
414        _gates: &[Box<dyn ParametricGate>],
415        objective: &O,
416        initial_parameters: HashMap<String, f64>,
417    ) -> QuantRS2Result<OptimizationResult> {
418        let optimizer = SymbolicOptimizer::default();
419        optimizer.optimize(objective, initial_parameters)
420    }
421
422    /// Extract parameters from a list of parametric gates
423    pub fn extract_circuit_parameters(gates: &[Box<dyn ParametricGate>]) -> Vec<String> {
424        let mut parameters = Vec::new();
425        for gate in gates {
426            parameters.extend(gate.parameter_names());
427        }
428        parameters.sort();
429        parameters.dedup();
430        parameters
431    }
432
433    /// Apply optimized parameters to a circuit
434    pub fn apply_optimized_parameters(
435        gates: &[Box<dyn ParametricGate>],
436        parameters: &HashMap<String, f64>,
437    ) -> QuantRS2Result<Vec<Box<dyn ParametricGate>>> {
438        let mut optimized_gates = Vec::new();
439
440        for gate in gates {
441            let param_assignments: Vec<(String, f64)> = gate
442                .parameter_names()
443                .into_iter()
444                .filter_map(|name| parameters.get(&name).map(|&value| (name, value)))
445                .collect();
446
447            let optimized_gate = gate.assign(&param_assignments)?;
448            optimized_gates.push(optimized_gate);
449        }
450
451        Ok(optimized_gates)
452    }
453}
454
455// Helper functions
456
457fn compute_pauli_expectation_real(
458    pauli_string: &crate::symbolic_hamiltonian::PauliString,
459    state_vector: &[Complex64],
460) -> QuantRS2Result<f64> {
461    // Simplified implementation - in practice you'd use more efficient algorithms
462    use crate::symbolic_hamiltonian::PauliOperator;
463
464    let n_qubits = pauli_string.n_qubits;
465    let n_states = 1 << n_qubits;
466
467    if state_vector.len() != n_states {
468        return Err(QuantRS2Error::InvalidInput(
469            "State vector size mismatch".to_string(),
470        ));
471    }
472
473    let mut expectation = 0.0;
474
475    for i in 0..n_states {
476        for j in 0..n_states {
477            let mut matrix_element = Complex64::new(1.0, 0.0);
478
479            for qubit in 0..n_qubits {
480                let op = pauli_string.get_operator(qubit.into());
481                let bit_i = (i >> qubit) & 1;
482                let bit_j = (j >> qubit) & 1;
483
484                let local_element = match op {
485                    PauliOperator::I => {
486                        if bit_i == bit_j {
487                            Complex64::new(1.0, 0.0)
488                        } else {
489                            Complex64::new(0.0, 0.0)
490                        }
491                    }
492                    PauliOperator::X => {
493                        if bit_i == bit_j {
494                            Complex64::new(0.0, 0.0)
495                        } else {
496                            Complex64::new(1.0, 0.0)
497                        }
498                    }
499                    PauliOperator::Y => {
500                        if bit_i == bit_j {
501                            Complex64::new(0.0, 0.0)
502                        } else if bit_j == 1 {
503                            Complex64::new(0.0, 1.0)
504                        } else {
505                            Complex64::new(0.0, -1.0)
506                        }
507                    }
508                    PauliOperator::Z => {
509                        if bit_i == bit_j {
510                            if bit_i == 0 {
511                                Complex64::new(1.0, 0.0)
512                            } else {
513                                Complex64::new(-1.0, 0.0)
514                            }
515                        } else {
516                            Complex64::new(0.0, 0.0)
517                        }
518                    }
519                };
520
521                matrix_element *= local_element;
522                if matrix_element.norm() < 1e-12 {
523                    break;
524                }
525            }
526
527            let contribution = state_vector[i].conj() * matrix_element * state_vector[j];
528            expectation += contribution.re;
529        }
530    }
531
532    Ok(expectation)
533}
534
535#[cfg(test)]
536mod tests {
537    use super::*;
538    use crate::parametric::Parameter;
539    use crate::qubit::QubitId;
540    use crate::symbolic_hamiltonian::hamiltonians;
541
542    #[test]
543    fn test_hamiltonian_expectation() {
544        let hamiltonian = hamiltonians::transverse_field_ising(
545            2,
546            Parameter::constant(1.0),
547            Parameter::constant(0.5),
548        );
549
550        let objective = HamiltonianExpectation::new(hamiltonian);
551        let parameters = HashMap::new();
552
553        let result = objective.evaluate(&parameters);
554        assert!(result.is_ok());
555    }
556
557    #[test]
558    fn test_qaoa_cost_function() {
559        let cost_h = hamiltonians::maxcut(&[(QubitId::from(0), QubitId::from(1), 1.0)], 2);
560        let mixer_h = hamiltonians::transverse_field_ising(
561            2,
562            Parameter::constant(0.0),
563            Parameter::constant(1.0),
564        );
565
566        let objective = QAOACostFunction::new(cost_h, mixer_h, 1);
567
568        let mut parameters = HashMap::new();
569        parameters.insert("gamma_0".to_string(), 0.5);
570        parameters.insert("beta_0".to_string(), 0.3);
571
572        let result = objective.evaluate(&parameters);
573        assert!(result.is_ok());
574
575        let gradients = objective.gradients(&parameters);
576        assert!(gradients.is_ok());
577    }
578
579    #[test]
580    fn test_symbolic_optimizer() {
581        let cost_h = hamiltonians::maxcut(&[(QubitId::from(0), QubitId::from(1), 1.0)], 2);
582        let mixer_h = hamiltonians::transverse_field_ising(
583            2,
584            Parameter::constant(0.0),
585            Parameter::constant(1.0),
586        );
587
588        let objective = QAOACostFunction::new(cost_h, mixer_h, 1);
589
590        let mut initial_params = HashMap::new();
591        initial_params.insert("gamma_0".to_string(), 1.0);
592        initial_params.insert("beta_0".to_string(), 1.0);
593
594        let mut config = SymbolicOptimizationConfig::default();
595        config.max_iterations = 10; // Limit for test
596
597        let optimizer = SymbolicOptimizer::new(config);
598        let result = optimizer.optimize(&objective, initial_params);
599
600        assert!(result.is_ok());
601        let opt_result = result.expect("Optimization should succeed");
602        assert_eq!(opt_result.iterations, 10);
603    }
604}