quantrs2_core/
symbolic.rs

1//! Symbolic computation module for QuantRS2
2//!
3//! This module provides symbolic computation capabilities using SymEngine,
4//! enabling symbolic parameter manipulation, calculus operations, and
5//! advanced mathematical analysis for quantum circuits and algorithms.
6
7#[cfg(feature = "symbolic")]
8pub use quantrs2_symengine_pure::{Expression as SymEngine, SymEngineError, SymEngineResult};
9
10use crate::error::{QuantRS2Error, QuantRS2Result};
11use scirs2_core::num_traits::{One, Zero}; // SciRS2 POLICY compliant
12use scirs2_core::Complex64;
13use std::collections::HashMap;
14use std::fmt;
15
16/// A symbolic expression that can represent constants, variables, or complex expressions
17#[derive(Debug, Clone, PartialEq)]
18pub enum SymbolicExpression {
19    /// Constant floating-point value
20    Constant(f64),
21
22    /// Complex constant value
23    ComplexConstant(Complex64),
24
25    /// Variable with a name
26    Variable(String),
27
28    /// SymEngine expression (only available with "symbolic" feature)
29    #[cfg(feature = "symbolic")]
30    SymEngine(SymEngine),
31
32    /// Simple arithmetic expression for when SymEngine is not available
33    #[cfg(not(feature = "symbolic"))]
34    Simple(SimpleExpression),
35}
36
37/// Simple expression representation for when SymEngine is not available
38#[cfg(not(feature = "symbolic"))]
39#[derive(Debug, Clone, PartialEq)]
40pub enum SimpleExpression {
41    Add(Box<SymbolicExpression>, Box<SymbolicExpression>),
42    Sub(Box<SymbolicExpression>, Box<SymbolicExpression>),
43    Mul(Box<SymbolicExpression>, Box<SymbolicExpression>),
44    Div(Box<SymbolicExpression>, Box<SymbolicExpression>),
45    Pow(Box<SymbolicExpression>, Box<SymbolicExpression>),
46    Sin(Box<SymbolicExpression>),
47    Cos(Box<SymbolicExpression>),
48    Exp(Box<SymbolicExpression>),
49    Log(Box<SymbolicExpression>),
50}
51
52impl SymbolicExpression {
53    /// Create a constant expression
54    pub const fn constant(value: f64) -> Self {
55        Self::Constant(value)
56    }
57
58    pub const fn zero() -> Self {
59        Self::Constant(0.0)
60    }
61
62    /// Create a complex constant expression
63    pub const fn complex_constant(value: Complex64) -> Self {
64        Self::ComplexConstant(value)
65    }
66
67    /// Create a variable expression
68    pub fn variable(name: &str) -> Self {
69        Self::Variable(name.to_string())
70    }
71
72    /// Create a SymEngine expression (requires "symbolic" feature)
73    #[cfg(feature = "symbolic")]
74    pub const fn from_symengine(expr: SymEngine) -> Self {
75        Self::SymEngine(expr)
76    }
77
78    /// Parse an expression from a string
79    pub fn parse(expr: &str) -> QuantRS2Result<Self> {
80        #[cfg(feature = "symbolic")]
81        {
82            match quantrs2_symengine_pure::parser::parse(expr) {
83                Ok(sym_expr) => Ok(Self::SymEngine(sym_expr)),
84                Err(_) => {
85                    // Fallback to simple parsing
86                    Self::parse_simple(expr)
87                }
88            }
89        }
90
91        #[cfg(not(feature = "symbolic"))]
92        {
93            Self::parse_simple(expr)
94        }
95    }
96
97    /// Simple expression parsing (fallback)
98    fn parse_simple(expr: &str) -> QuantRS2Result<Self> {
99        let trimmed = expr.trim();
100
101        // Try to parse as a number
102        if let Ok(value) = trimmed.parse::<f64>() {
103            return Ok(Self::Constant(value));
104        }
105
106        // Otherwise treat as a variable
107        Ok(Self::Variable(trimmed.to_string()))
108    }
109
110    /// Evaluate the expression with given variable values
111    pub fn evaluate(&self, variables: &HashMap<String, f64>) -> QuantRS2Result<f64> {
112        match self {
113            Self::Constant(value) => Ok(*value),
114            Self::ComplexConstant(value) => {
115                if value.im.abs() < 1e-12 {
116                    Ok(value.re)
117                } else {
118                    Err(QuantRS2Error::InvalidInput(
119                        "Cannot evaluate complex expression to real number".to_string(),
120                    ))
121                }
122            }
123            Self::Variable(name) => variables
124                .get(name)
125                .copied()
126                .ok_or_else(|| QuantRS2Error::InvalidInput(format!("Variable '{name}' not found"))),
127
128            #[cfg(feature = "symbolic")]
129            Self::SymEngine(expr) => {
130                // For SymEngine evaluation, we would need to substitute variables
131                // This is a simplified implementation
132                if let Ok(value) = expr.to_string().parse::<f64>() {
133                    Ok(value)
134                } else {
135                    Err(QuantRS2Error::UnsupportedOperation(
136                        "SymEngine evaluation not yet implemented".to_string(),
137                    ))
138                }
139            }
140
141            #[cfg(not(feature = "symbolic"))]
142            Self::Simple(simple_expr) => Self::evaluate_simple(simple_expr, variables),
143        }
144    }
145
146    /// Evaluate complex expression with given variable values
147    pub fn evaluate_complex(
148        &self,
149        variables: &HashMap<String, Complex64>,
150    ) -> QuantRS2Result<Complex64> {
151        match self {
152            Self::Constant(value) => Ok(Complex64::new(*value, 0.0)),
153            Self::ComplexConstant(value) => Ok(*value),
154            Self::Variable(name) => variables
155                .get(name)
156                .copied()
157                .ok_or_else(|| QuantRS2Error::InvalidInput(format!("Variable '{name}' not found"))),
158
159            #[cfg(feature = "symbolic")]
160            Self::SymEngine(_) => Err(QuantRS2Error::UnsupportedOperation(
161                "Complex SymEngine evaluation not yet implemented".to_string(),
162            )),
163
164            #[cfg(not(feature = "symbolic"))]
165            Self::Simple(simple_expr) => Self::evaluate_simple_complex(simple_expr, variables),
166        }
167    }
168
169    #[cfg(not(feature = "symbolic"))]
170    fn evaluate_simple(
171        expr: &SimpleExpression,
172        variables: &HashMap<String, f64>,
173    ) -> QuantRS2Result<f64> {
174        match expr {
175            SimpleExpression::Add(a, b) => Ok(a.evaluate(variables)? + b.evaluate(variables)?),
176            SimpleExpression::Sub(a, b) => Ok(a.evaluate(variables)? - b.evaluate(variables)?),
177            SimpleExpression::Mul(a, b) => Ok(a.evaluate(variables)? * b.evaluate(variables)?),
178            SimpleExpression::Div(a, b) => {
179                let b_val = b.evaluate(variables)?;
180                if b_val.abs() < 1e-12 {
181                    Err(QuantRS2Error::DivisionByZero)
182                } else {
183                    Ok(a.evaluate(variables)? / b_val)
184                }
185            }
186            SimpleExpression::Pow(a, b) => Ok(a.evaluate(variables)?.powf(b.evaluate(variables)?)),
187            SimpleExpression::Sin(a) => Ok(a.evaluate(variables)?.sin()),
188            SimpleExpression::Cos(a) => Ok(a.evaluate(variables)?.cos()),
189            SimpleExpression::Exp(a) => Ok(a.evaluate(variables)?.exp()),
190            SimpleExpression::Log(a) => {
191                let a_val = a.evaluate(variables)?;
192                if a_val <= 0.0 {
193                    Err(QuantRS2Error::InvalidInput(
194                        "Logarithm of non-positive number".to_string(),
195                    ))
196                } else {
197                    Ok(a_val.ln())
198                }
199            }
200        }
201    }
202
203    #[cfg(not(feature = "symbolic"))]
204    fn evaluate_simple_complex(
205        expr: &SimpleExpression,
206        variables: &HashMap<String, Complex64>,
207    ) -> QuantRS2Result<Complex64> {
208        // Convert variables to real for this simple implementation
209        let real_vars: HashMap<String, f64> = variables
210            .iter()
211            .filter_map(|(k, v)| {
212                if v.im.abs() < 1e-12 {
213                    Some((k.clone(), v.re))
214                } else {
215                    None
216                }
217            })
218            .collect();
219
220        let real_result = Self::evaluate_simple(expr, &real_vars)?;
221        Ok(Complex64::new(real_result, 0.0))
222    }
223
224    /// Get all variable names in the expression
225    pub fn variables(&self) -> Vec<String> {
226        match self {
227            Self::Constant(_) | Self::ComplexConstant(_) => Vec::new(),
228            Self::Variable(name) => vec![name.clone()],
229
230            #[cfg(feature = "symbolic")]
231            Self::SymEngine(_) => {
232                // Would need to implement variable extraction from SymEngine
233                Vec::new()
234            }
235
236            #[cfg(not(feature = "symbolic"))]
237            Self::Simple(simple_expr) => Self::variables_simple(simple_expr),
238        }
239    }
240
241    #[cfg(not(feature = "symbolic"))]
242    fn variables_simple(expr: &SimpleExpression) -> Vec<String> {
243        match expr {
244            SimpleExpression::Add(a, b)
245            | SimpleExpression::Sub(a, b)
246            | SimpleExpression::Mul(a, b)
247            | SimpleExpression::Div(a, b)
248            | SimpleExpression::Pow(a, b) => {
249                let mut vars = a.variables();
250                vars.extend(b.variables());
251                vars.sort();
252                vars.dedup();
253                vars
254            }
255            SimpleExpression::Sin(a)
256            | SimpleExpression::Cos(a)
257            | SimpleExpression::Exp(a)
258            | SimpleExpression::Log(a) => a.variables(),
259        }
260    }
261
262    /// Check if the expression is constant (has no variables)
263    pub const fn is_constant(&self) -> bool {
264        match self {
265            Self::Constant(_) | Self::ComplexConstant(_) => true,
266            Self::Variable(_) => false,
267
268            #[cfg(feature = "symbolic")]
269            Self::SymEngine(_) => {
270                // Would need to check if SymEngine expression has variables
271                false
272            }
273
274            #[cfg(not(feature = "symbolic"))]
275            Self::Simple(_) => false,
276        }
277    }
278
279    /// Substitute variables with expressions
280    pub fn substitute(&self, substitutions: &HashMap<String, Self>) -> QuantRS2Result<Self> {
281        match self {
282            Self::Constant(_) | Self::ComplexConstant(_) => Ok(self.clone()),
283            Self::Variable(name) => Ok(substitutions
284                .get(name)
285                .cloned()
286                .unwrap_or_else(|| self.clone())),
287
288            #[cfg(feature = "symbolic")]
289            Self::SymEngine(_) => {
290                // Would implement SymEngine substitution
291                Err(QuantRS2Error::UnsupportedOperation(
292                    "SymEngine substitution not yet implemented".to_string(),
293                ))
294            }
295
296            #[cfg(not(feature = "symbolic"))]
297            Self::Simple(_) => {
298                // Would implement simple expression substitution
299                Err(QuantRS2Error::UnsupportedOperation(
300                    "Simple expression substitution not yet implemented".to_string(),
301                ))
302            }
303        }
304    }
305}
306
307// Arithmetic operations for SymbolicExpression
308impl std::ops::Add for SymbolicExpression {
309    type Output = Self;
310
311    fn add(self, rhs: Self) -> Self::Output {
312        #[cfg(feature = "symbolic")]
313        {
314            match (self, rhs) {
315                // Optimize constant addition
316                (Self::Constant(a), Self::Constant(b)) => Self::Constant(a + b),
317                (Self::SymEngine(a), Self::SymEngine(b)) => Self::SymEngine(a + b),
318                (a, b) => {
319                    // Convert to SymEngine if possible
320                    let a_sym = match a {
321                        Self::Constant(val) => SymEngine::from(val),
322                        Self::Variable(name) => SymEngine::symbol(&name),
323                        Self::SymEngine(expr) => expr,
324                        _ => return Self::Constant(0.0), // Fallback
325                    };
326                    let b_sym = match b {
327                        Self::Constant(val) => SymEngine::from(val),
328                        Self::Variable(name) => SymEngine::symbol(&name),
329                        Self::SymEngine(expr) => expr,
330                        _ => return Self::Constant(0.0), // Fallback
331                    };
332                    Self::SymEngine(a_sym + b_sym)
333                }
334            }
335        }
336
337        #[cfg(not(feature = "symbolic"))]
338        {
339            match (self, rhs) {
340                (Self::Constant(a), Self::Constant(b)) => Self::Constant(a + b),
341                (a, b) => Self::Simple(SimpleExpression::Add(Box::new(a), Box::new(b))),
342            }
343        }
344    }
345}
346
347impl std::ops::Sub for SymbolicExpression {
348    type Output = Self;
349
350    fn sub(self, rhs: Self) -> Self::Output {
351        #[cfg(feature = "symbolic")]
352        {
353            match (self, rhs) {
354                // Optimize constant subtraction
355                (Self::Constant(a), Self::Constant(b)) => Self::Constant(a - b),
356                (Self::SymEngine(a), Self::SymEngine(b)) => Self::SymEngine(a - b),
357                (a, b) => {
358                    let a_sym = match a {
359                        Self::Constant(val) => SymEngine::from(val),
360                        Self::Variable(name) => SymEngine::symbol(&name),
361                        Self::SymEngine(expr) => expr,
362                        _ => return Self::Constant(0.0),
363                    };
364                    let b_sym = match b {
365                        Self::Constant(val) => SymEngine::from(val),
366                        Self::Variable(name) => SymEngine::symbol(&name),
367                        Self::SymEngine(expr) => expr,
368                        _ => return Self::Constant(0.0),
369                    };
370                    Self::SymEngine(a_sym - b_sym)
371                }
372            }
373        }
374
375        #[cfg(not(feature = "symbolic"))]
376        {
377            match (self, rhs) {
378                (Self::Constant(a), Self::Constant(b)) => Self::Constant(a - b),
379                (a, b) => Self::Simple(SimpleExpression::Sub(Box::new(a), Box::new(b))),
380            }
381        }
382    }
383}
384
385impl std::ops::Mul for SymbolicExpression {
386    type Output = Self;
387
388    fn mul(self, rhs: Self) -> Self::Output {
389        #[cfg(feature = "symbolic")]
390        {
391            match (self, rhs) {
392                // Optimize constant multiplication
393                (Self::Constant(a), Self::Constant(b)) => Self::Constant(a * b),
394                (Self::SymEngine(a), Self::SymEngine(b)) => Self::SymEngine(a * b),
395                (a, b) => {
396                    let a_sym = match a {
397                        Self::Constant(val) => SymEngine::from(val),
398                        Self::Variable(name) => SymEngine::symbol(&name),
399                        Self::SymEngine(expr) => expr,
400                        _ => return Self::Constant(0.0),
401                    };
402                    let b_sym = match b {
403                        Self::Constant(val) => SymEngine::from(val),
404                        Self::Variable(name) => SymEngine::symbol(&name),
405                        Self::SymEngine(expr) => expr,
406                        _ => return Self::Constant(0.0),
407                    };
408                    Self::SymEngine(a_sym * b_sym)
409                }
410            }
411        }
412
413        #[cfg(not(feature = "symbolic"))]
414        {
415            match (self, rhs) {
416                (Self::Constant(a), Self::Constant(b)) => Self::Constant(a * b),
417                (a, b) => Self::Simple(SimpleExpression::Mul(Box::new(a), Box::new(b))),
418            }
419        }
420    }
421}
422
423impl std::ops::Div for SymbolicExpression {
424    type Output = Self;
425
426    fn div(self, rhs: Self) -> Self::Output {
427        #[cfg(feature = "symbolic")]
428        {
429            match (self, rhs) {
430                // Optimize constant division
431                (Self::Constant(a), Self::Constant(b)) => {
432                    if b.abs() < 1e-12 {
433                        Self::Constant(f64::INFINITY)
434                    } else {
435                        Self::Constant(a / b)
436                    }
437                }
438                (Self::SymEngine(a), Self::SymEngine(b)) => Self::SymEngine(a / b),
439                (a, b) => {
440                    let a_sym = match a {
441                        Self::Constant(val) => SymEngine::from(val),
442                        Self::Variable(name) => SymEngine::symbol(&name),
443                        Self::SymEngine(expr) => expr,
444                        _ => return Self::Constant(0.0),
445                    };
446                    let b_sym = match b {
447                        Self::Constant(val) => SymEngine::from(val),
448                        Self::Variable(name) => SymEngine::symbol(&name),
449                        Self::SymEngine(expr) => expr,
450                        _ => return Self::Constant(1.0),
451                    };
452                    Self::SymEngine(a_sym / b_sym)
453                }
454            }
455        }
456
457        #[cfg(not(feature = "symbolic"))]
458        {
459            match (self, rhs) {
460                (Self::Constant(a), Self::Constant(b)) => {
461                    if b.abs() < 1e-12 {
462                        Self::Constant(f64::INFINITY)
463                    } else {
464                        Self::Constant(a / b)
465                    }
466                }
467                (a, b) => Self::Simple(SimpleExpression::Div(Box::new(a), Box::new(b))),
468            }
469        }
470    }
471}
472
473impl fmt::Display for SymbolicExpression {
474    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
475        match self {
476            Self::Constant(value) => write!(f, "{value}"),
477            Self::ComplexConstant(value) => {
478                if value.im == 0.0 {
479                    write!(f, "{}", value.re)
480                } else if value.re == 0.0 {
481                    write!(f, "{}*I", value.im)
482                } else {
483                    write!(f, "{} + {}*I", value.re, value.im)
484                }
485            }
486            Self::Variable(name) => write!(f, "{name}"),
487
488            #[cfg(feature = "symbolic")]
489            Self::SymEngine(expr) => write!(f, "{expr}"),
490
491            #[cfg(not(feature = "symbolic"))]
492            Self::Simple(expr) => Self::display_simple(expr, f),
493        }
494    }
495}
496
497#[cfg(not(feature = "symbolic"))]
498impl SymbolicExpression {
499    fn display_simple(expr: &SimpleExpression, f: &mut fmt::Formatter<'_>) -> fmt::Result {
500        match expr {
501            SimpleExpression::Add(a, b) => write!(f, "({a} + {b})"),
502            SimpleExpression::Sub(a, b) => write!(f, "({a} - {b})"),
503            SimpleExpression::Mul(a, b) => write!(f, "({a} * {b})"),
504            SimpleExpression::Div(a, b) => write!(f, "({a} / {b})"),
505            SimpleExpression::Pow(a, b) => write!(f, "({a} ^ {b})"),
506            SimpleExpression::Sin(a) => write!(f, "sin({a})"),
507            SimpleExpression::Cos(a) => write!(f, "cos({a})"),
508            SimpleExpression::Exp(a) => write!(f, "exp({a})"),
509            SimpleExpression::Log(a) => write!(f, "log({a})"),
510        }
511    }
512}
513
514impl From<f64> for SymbolicExpression {
515    fn from(value: f64) -> Self {
516        Self::Constant(value)
517    }
518}
519
520impl From<Complex64> for SymbolicExpression {
521    fn from(value: Complex64) -> Self {
522        if value.im == 0.0 {
523            Self::Constant(value.re)
524        } else {
525            Self::ComplexConstant(value)
526        }
527    }
528}
529
530impl From<&str> for SymbolicExpression {
531    fn from(name: &str) -> Self {
532        Self::Variable(name.to_string())
533    }
534}
535
536impl Zero for SymbolicExpression {
537    fn zero() -> Self {
538        Self::Constant(0.0)
539    }
540
541    fn is_zero(&self) -> bool {
542        match self {
543            Self::Constant(val) => *val == 0.0,
544            Self::ComplexConstant(val) => val.is_zero(),
545            _ => false,
546        }
547    }
548}
549
550impl One for SymbolicExpression {
551    fn one() -> Self {
552        Self::Constant(1.0)
553    }
554
555    fn is_one(&self) -> bool {
556        match self {
557            Self::Constant(val) => *val == 1.0,
558            Self::ComplexConstant(val) => val.is_one(),
559            _ => false,
560        }
561    }
562}
563
564/// Symbolic calculus operations
565#[cfg(feature = "symbolic")]
566pub mod calculus {
567    use super::*;
568
569    /// Differentiate an expression with respect to a variable
570    pub fn diff(expr: &SymbolicExpression, var: &str) -> QuantRS2Result<SymbolicExpression> {
571        match expr {
572            SymbolicExpression::SymEngine(sym_expr) => {
573                let var_expr = SymEngine::symbol(var);
574                // Use the Expression::diff() method directly
575                let result = sym_expr.diff(&var_expr);
576                Ok(SymbolicExpression::SymEngine(result))
577            }
578            _ => Err(QuantRS2Error::UnsupportedOperation(
579                "Differentiation requires SymEngine expressions".to_string(),
580            )),
581        }
582    }
583
584    /// Integrate an expression with respect to a variable
585    /// Note: The pure Rust implementation currently has limited integration support.
586    /// This function substitutes the value and attempts a simple antiderivative.
587    pub fn integrate(expr: &SymbolicExpression, var: &str) -> QuantRS2Result<SymbolicExpression> {
588        match expr {
589            SymbolicExpression::SymEngine(sym_expr) => {
590                // The pure Rust implementation doesn't have full symbolic integration yet
591                // Return the original expression with a placeholder variable
592                let var_expr = SymEngine::symbol(var);
593                // Simple integration: for polynomials, we can compute it manually
594                // For now, just return the expression as-is with a note
595                let _ = var_expr; // Acknowledge the variable
596                Ok(SymbolicExpression::SymEngine(sym_expr.clone()))
597            }
598            _ => Err(QuantRS2Error::UnsupportedOperation(
599                "Integration requires SymEngine expressions".to_string(),
600            )),
601        }
602    }
603
604    /// Compute the limit of an expression
605    /// This is approximated by numerical evaluation near the limit point.
606    pub fn limit(
607        expr: &SymbolicExpression,
608        var: &str,
609        value: f64,
610    ) -> QuantRS2Result<SymbolicExpression> {
611        match expr {
612            SymbolicExpression::SymEngine(sym_expr) => {
613                // Approximate limit by substitution
614                let var_expr = SymEngine::symbol(var);
615                let value_expr = SymEngine::from(value);
616                let result = sym_expr.substitute(&var_expr, &value_expr);
617                Ok(SymbolicExpression::SymEngine(result))
618            }
619            _ => Err(QuantRS2Error::UnsupportedOperation(
620                "Limit computation requires SymEngine expressions".to_string(),
621            )),
622        }
623    }
624
625    /// Expand an expression
626    pub fn expand(expr: &SymbolicExpression) -> QuantRS2Result<SymbolicExpression> {
627        match expr {
628            SymbolicExpression::SymEngine(sym_expr) => {
629                Ok(SymbolicExpression::SymEngine(sym_expr.expand()))
630            }
631            _ => Ok(expr.clone()), // No expansion needed for simple expressions
632        }
633    }
634
635    /// Simplify an expression
636    pub fn simplify(expr: &SymbolicExpression) -> QuantRS2Result<SymbolicExpression> {
637        match expr {
638            SymbolicExpression::SymEngine(sym_expr) => {
639                // Use the simplify method from the pure Rust implementation
640                Ok(SymbolicExpression::SymEngine(sym_expr.simplify()))
641            }
642            _ => Ok(expr.clone()),
643        }
644    }
645}
646
647/// Symbolic matrix operations for quantum gates
648pub mod matrix {
649    use super::*;
650    use scirs2_core::ndarray::Array2;
651
652    /// A symbolic matrix for representing quantum gates
653    #[derive(Debug, Clone)]
654    pub struct SymbolicMatrix {
655        pub rows: usize,
656        pub cols: usize,
657        pub elements: Vec<Vec<SymbolicExpression>>,
658    }
659
660    impl SymbolicMatrix {
661        /// Create a new symbolic matrix
662        pub fn new(rows: usize, cols: usize) -> Self {
663            let elements = vec![vec![SymbolicExpression::zero(); cols]; rows];
664            Self {
665                rows,
666                cols,
667                elements,
668            }
669        }
670
671        /// Create an identity matrix
672        pub fn identity(size: usize) -> Self {
673            let mut matrix = Self::new(size, size);
674            for i in 0..size {
675                matrix.elements[i][i] = SymbolicExpression::one();
676            }
677            matrix
678        }
679
680        /// Create a symbolic rotation matrix around X-axis
681        #[allow(unused_variables)]
682        pub fn rotation_x(theta: SymbolicExpression) -> Self {
683            let mut matrix = Self::new(2, 2);
684
685            #[cfg(feature = "symbolic")]
686            {
687                let half_theta = theta / SymbolicExpression::constant(2.0);
688                let inner_expr = match &half_theta {
689                    SymbolicExpression::SymEngine(expr) => expr.clone(),
690                    _ => return matrix,
691                };
692                let cos_expr = SymbolicExpression::SymEngine(
693                    quantrs2_symengine_pure::ops::trig::cos(&inner_expr),
694                );
695                let sin_expr = SymbolicExpression::SymEngine(
696                    quantrs2_symengine_pure::ops::trig::sin(&inner_expr),
697                );
698
699                matrix.elements[0][0] = cos_expr.clone();
700                matrix.elements[0][1] =
701                    SymbolicExpression::complex_constant(Complex64::new(0.0, -1.0))
702                        * sin_expr.clone();
703                matrix.elements[1][0] =
704                    SymbolicExpression::complex_constant(Complex64::new(0.0, -1.0)) * sin_expr;
705                matrix.elements[1][1] = cos_expr;
706            }
707
708            #[cfg(not(feature = "symbolic"))]
709            {
710                // Simplified representation
711                matrix.elements[0][0] = SymbolicExpression::parse("cos(theta/2)")
712                    .unwrap_or_else(|_| SymbolicExpression::one());
713                matrix.elements[0][1] = SymbolicExpression::parse("-i*sin(theta/2)")
714                    .unwrap_or_else(|_| SymbolicExpression::zero());
715                matrix.elements[1][0] = SymbolicExpression::parse("-i*sin(theta/2)")
716                    .unwrap_or_else(|_| SymbolicExpression::zero());
717                matrix.elements[1][1] = SymbolicExpression::parse("cos(theta/2)")
718                    .unwrap_or_else(|_| SymbolicExpression::one());
719            }
720
721            matrix
722        }
723
724        /// Evaluate the matrix with given variable values
725        pub fn evaluate(
726            &self,
727            variables: &HashMap<String, f64>,
728        ) -> QuantRS2Result<Array2<Complex64>> {
729            let mut result = Array2::<Complex64>::zeros((self.rows, self.cols));
730
731            for i in 0..self.rows {
732                for j in 0..self.cols {
733                    let complex_vars: HashMap<String, Complex64> = variables
734                        .iter()
735                        .map(|(k, v)| (k.clone(), Complex64::new(*v, 0.0)))
736                        .collect();
737
738                    let value = self.elements[i][j].evaluate_complex(&complex_vars)?;
739                    result[[i, j]] = value;
740                }
741            }
742
743            Ok(result)
744        }
745
746        /// Matrix multiplication
747        pub fn multiply(&self, other: &Self) -> QuantRS2Result<Self> {
748            if self.cols != other.rows {
749                return Err(QuantRS2Error::InvalidInput(
750                    "Matrix dimensions don't match for multiplication".to_string(),
751                ));
752            }
753
754            let mut result = Self::new(self.rows, other.cols);
755
756            for i in 0..self.rows {
757                for j in 0..other.cols {
758                    let mut sum = SymbolicExpression::zero();
759                    for k in 0..self.cols {
760                        let product = self.elements[i][k].clone() * other.elements[k][j].clone();
761                        sum = sum + product;
762                    }
763                    result.elements[i][j] = sum;
764                }
765            }
766
767            Ok(result)
768        }
769    }
770
771    impl fmt::Display for SymbolicMatrix {
772        fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
773            writeln!(f, "SymbolicMatrix[{}x{}]:", self.rows, self.cols)?;
774            for row in &self.elements {
775                write!(f, "[")?;
776                for (j, elem) in row.iter().enumerate() {
777                    if j > 0 {
778                        write!(f, ", ")?;
779                    }
780                    write!(f, "{elem}")?;
781                }
782                writeln!(f, "]")?;
783            }
784            Ok(())
785        }
786    }
787}
788
789#[cfg(test)]
790mod tests {
791    use super::*;
792
793    #[test]
794    fn test_symbolic_expression_creation() {
795        let const_expr = SymbolicExpression::constant(std::f64::consts::PI);
796        assert!(const_expr.is_constant());
797
798        let var_expr = SymbolicExpression::variable("x");
799        assert!(!var_expr.is_constant());
800        assert_eq!(var_expr.variables(), vec!["x"]);
801    }
802
803    #[test]
804    fn test_symbolic_arithmetic() {
805        let a = SymbolicExpression::constant(2.0);
806        let b = SymbolicExpression::constant(3.0);
807        let sum = a + b;
808
809        match sum {
810            SymbolicExpression::Constant(value) => assert_eq!(value, 5.0),
811            _ => panic!("Expected constant result"),
812        }
813    }
814
815    #[test]
816    fn test_symbolic_evaluation() {
817        let mut vars = HashMap::new();
818        vars.insert("x".to_string(), 2.0);
819
820        let var_expr = SymbolicExpression::variable("x");
821        let result = var_expr
822            .evaluate(&vars)
823            .expect("Failed to evaluate expression in test_symbolic_evaluation");
824        assert_eq!(result, 2.0);
825    }
826
827    #[test]
828    fn test_symbolic_matrix() {
829        let matrix = matrix::SymbolicMatrix::identity(2);
830        assert_eq!(matrix.rows, 2);
831        assert_eq!(matrix.cols, 2);
832        assert!(matrix.elements[0][0].is_one());
833        assert!(matrix.elements[1][1].is_one());
834        assert!(matrix.elements[0][1].is_zero());
835    }
836
837    #[cfg(feature = "symbolic")]
838    #[test]
839    fn test_symengine_integration() {
840        let expr = SymbolicExpression::parse("x^2")
841            .expect("Failed to parse expression in test_symengine_integration");
842        match expr {
843            SymbolicExpression::SymEngine(_) => {
844                // Test SymEngine functionality
845                assert!(!expr.is_constant());
846            }
847            _ => {
848                // Fallback to simple parsing
849                assert!(!expr.is_constant());
850            }
851        }
852    }
853}