quantrs2_core/
scirs2_resource_estimator_enhanced.rs

1//! Advanced Quantum Resource Estimator with Enhanced SciRS2 Complexity Analysis
2//!
3//! This module provides state-of-the-art quantum resource estimation with ML-based
4//! predictions, hardware-specific optimization, cost analysis, and comprehensive
5//! resource tracking powered by SciRS2.
6
7use crate::error::QuantRS2Error;
8use crate::gate_translation::GateType;
9use crate::resource_estimator::{
10    ErrorCorrectionCode, EstimationMode, HardwarePlatform, QuantumGate, ResourceEstimationConfig,
11};
12use scirs2_core::Complex64;
13use std::fmt::Write;
14// use scirs2_core::parallel_ops::*;
15use crate::parallel_ops_stubs::*;
16// use scirs2_core::memory::BufferPool;
17use crate::buffer_pool::BufferPool;
18use crate::platform::PlatformCapabilities;
19use scirs2_core::ndarray::{Array1, Array2};
20use serde::{Deserialize, Serialize};
21use std::collections::{BTreeMap, HashMap, HashSet, VecDeque};
22use std::fmt;
23use std::sync::{Arc, Mutex};
24
25/// Enhanced resource estimation configuration
26#[derive(Debug, Clone, Serialize, Deserialize)]
27pub struct EnhancedResourceConfig {
28    /// Base resource estimation configuration
29    pub base_config: ResourceEstimationConfig,
30
31    /// Enable ML-based resource prediction
32    pub enable_ml_prediction: bool,
33
34    /// Enable cost analysis for cloud platforms
35    pub enable_cost_analysis: bool,
36
37    /// Enable resource optimization strategies
38    pub enable_optimization_strategies: bool,
39
40    /// Enable comparative analysis
41    pub enable_comparative_analysis: bool,
42
43    /// Enable real-time resource tracking
44    pub enable_realtime_tracking: bool,
45
46    /// Enable visual resource representations
47    pub enable_visual_representation: bool,
48
49    /// Enable hardware-specific recommendations
50    pub enable_hardware_recommendations: bool,
51
52    /// Enable resource scaling predictions
53    pub enable_scaling_predictions: bool,
54
55    /// Cloud platforms for cost estimation
56    pub cloud_platforms: Vec<CloudPlatform>,
57
58    /// Optimization objectives
59    pub optimization_objectives: Vec<OptimizationObjective>,
60
61    /// Analysis depth level
62    pub analysis_depth: AnalysisDepth,
63
64    /// Custom resource constraints
65    pub custom_constraints: Vec<ResourceConstraint>,
66
67    /// Export formats for reports
68    pub export_formats: Vec<ReportFormat>,
69}
70
71impl Default for EnhancedResourceConfig {
72    fn default() -> Self {
73        Self {
74            base_config: ResourceEstimationConfig::default(),
75            enable_ml_prediction: true,
76            enable_cost_analysis: true,
77            enable_optimization_strategies: true,
78            enable_comparative_analysis: true,
79            enable_realtime_tracking: true,
80            enable_visual_representation: true,
81            enable_hardware_recommendations: true,
82            enable_scaling_predictions: true,
83            cloud_platforms: vec![
84                CloudPlatform::IBMQ,
85                CloudPlatform::AzureQuantum,
86                CloudPlatform::AmazonBraket,
87            ],
88            optimization_objectives: vec![
89                OptimizationObjective::MinimizeTime,
90                OptimizationObjective::MinimizeQubits,
91                OptimizationObjective::MinimizeCost,
92            ],
93            analysis_depth: AnalysisDepth::Comprehensive,
94            custom_constraints: Vec::new(),
95            export_formats: vec![ReportFormat::JSON, ReportFormat::HTML, ReportFormat::PDF],
96        }
97    }
98}
99
100/// Cloud platforms for cost estimation
101#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
102pub enum CloudPlatform {
103    IBMQ,
104    AzureQuantum,
105    AmazonBraket,
106    GoogleQuantumAI,
107    IonQ,
108    Rigetti,
109}
110
111/// Optimization objectives
112#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
113pub enum OptimizationObjective {
114    MinimizeTime,
115    MinimizeQubits,
116    MinimizeCost,
117    MaximizeFidelity,
118    MinimizeDepth,
119    BalancedOptimization,
120}
121
122/// Analysis depth levels
123#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
124pub enum AnalysisDepth {
125    Basic,
126    Standard,
127    Detailed,
128    Comprehensive,
129}
130
131/// Resource constraints
132#[derive(Debug, Clone, Serialize, Deserialize)]
133pub struct ResourceConstraint {
134    pub constraint_type: ConstraintType,
135    pub value: f64,
136    pub priority: ConstraintPriority,
137}
138
139/// Constraint types
140#[derive(Debug, Clone, Serialize, Deserialize)]
141pub enum ConstraintType {
142    MaxQubits(usize),
143    MaxTime(f64),
144    MaxCost(f64),
145    MinFidelity(f64),
146    MaxDepth(usize),
147}
148
149/// Constraint priorities
150#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
151pub enum ConstraintPriority {
152    Hard,
153    Soft,
154    Preference,
155}
156
157/// Report export formats
158#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
159pub enum ReportFormat {
160    JSON,
161    YAML,
162    HTML,
163    PDF,
164    Markdown,
165    LaTeX,
166}
167
168/// Enhanced quantum resource estimator
169pub struct EnhancedResourceEstimator {
170    config: EnhancedResourceConfig,
171    ml_predictor: MLResourcePredictor,
172    cost_analyzer: CostAnalyzer,
173    optimization_engine: OptimizationEngine,
174    comparative_analyzer: ComparativeAnalyzer,
175    realtime_tracker: RealtimeResourceTracker,
176    visual_generator: VisualResourceGenerator,
177    hardware_recommender: HardwareRecommender,
178    scaling_predictor: ScalingPredictor,
179    platform_capabilities: PlatformCapabilities,
180}
181
182impl EnhancedResourceEstimator {
183    /// Create a new enhanced resource estimator
184    pub fn new() -> Self {
185        let config = EnhancedResourceConfig::default();
186        Self::with_config(config)
187    }
188
189    /// Create estimator with custom configuration
190    pub fn with_config(config: EnhancedResourceConfig) -> Self {
191        let platform_capabilities = PlatformCapabilities::detect();
192
193        Self {
194            config,
195            ml_predictor: MLResourcePredictor::new(),
196            cost_analyzer: CostAnalyzer::new(),
197            optimization_engine: OptimizationEngine::new(),
198            comparative_analyzer: ComparativeAnalyzer::new(),
199            realtime_tracker: RealtimeResourceTracker::new(),
200            visual_generator: VisualResourceGenerator::new(),
201            hardware_recommender: HardwareRecommender::new(),
202            scaling_predictor: ScalingPredictor::new(),
203            platform_capabilities,
204        }
205    }
206
207    /// Perform enhanced resource estimation
208    pub fn estimate_resources_enhanced(
209        &self,
210        circuit: &[QuantumGate],
211        num_qubits: usize,
212        options: EstimationOptions,
213    ) -> Result<EnhancedResourceEstimate, QuantRS2Error> {
214        let start_time = std::time::Instant::now();
215
216        // Basic resource analysis
217        let basic_analysis = self.perform_basic_analysis(circuit, num_qubits)?;
218
219        // ML-based predictions
220        let ml_predictions = if self.config.enable_ml_prediction {
221            Some(
222                self.ml_predictor
223                    .predict_resources(circuit, &basic_analysis)?,
224            )
225        } else {
226            None
227        };
228
229        // Cost analysis
230        let cost_analysis = if self.config.enable_cost_analysis {
231            Some(
232                self.cost_analyzer
233                    .analyze_costs(circuit, &basic_analysis, &options)?,
234            )
235        } else {
236            None
237        };
238
239        // Optimization strategies
240        let optimization_strategies = if self.config.enable_optimization_strategies {
241            Some(self.optimization_engine.generate_strategies(
242                circuit,
243                &basic_analysis,
244                &self.config.optimization_objectives,
245            )?)
246        } else {
247            None
248        };
249
250        // Comparative analysis
251        let comparative_results = if self.config.enable_comparative_analysis {
252            Some(
253                self.comparative_analyzer
254                    .compare_approaches(circuit, &basic_analysis)?,
255            )
256        } else {
257            None
258        };
259
260        // Hardware recommendations
261        let hardware_recommendations = if self.config.enable_hardware_recommendations {
262            Some(self.hardware_recommender.recommend_hardware(
263                circuit,
264                &basic_analysis,
265                &options,
266            )?)
267        } else {
268            None
269        };
270
271        // Scaling predictions
272        let scaling_predictions = if self.config.enable_scaling_predictions {
273            Some(
274                self.scaling_predictor
275                    .predict_scaling(circuit, &basic_analysis)?,
276            )
277        } else {
278            None
279        };
280
281        // Visual representations
282        let visual_representations = if self.config.enable_visual_representation {
283            self.visual_generator
284                .generate_visuals(&basic_analysis, &ml_predictions)?
285        } else {
286            HashMap::new()
287        };
288
289        // Resource tracking data
290        let tracking_data = if self.config.enable_realtime_tracking {
291            Some(self.realtime_tracker.get_tracking_data()?)
292        } else {
293            None
294        };
295
296        // Calculate resource scores
297        let resource_scores = self.calculate_resource_scores(&basic_analysis, &ml_predictions);
298
299        // Generate comprehensive recommendations
300        let recommendations = self.generate_recommendations(
301            &basic_analysis,
302            &ml_predictions,
303            &cost_analysis,
304            &optimization_strategies,
305        )?;
306
307        Ok(EnhancedResourceEstimate {
308            basic_resources: basic_analysis,
309            ml_predictions,
310            cost_analysis,
311            optimization_strategies,
312            comparative_results,
313            hardware_recommendations,
314            scaling_predictions,
315            visual_representations,
316            tracking_data,
317            resource_scores,
318            recommendations,
319            estimation_time: start_time.elapsed(),
320            platform_optimizations: self.identify_platform_optimizations(),
321        })
322    }
323
324    /// Perform basic resource analysis
325    fn perform_basic_analysis(
326        &self,
327        circuit: &[QuantumGate],
328        num_qubits: usize,
329    ) -> Result<BasicResourceAnalysis, QuantRS2Error> {
330        // Gate statistics
331        let gate_stats = self.analyze_gate_statistics(circuit)?;
332
333        // Circuit topology
334        let topology = self.analyze_circuit_topology(circuit, num_qubits)?;
335
336        // Resource requirements
337        let requirements = self.calculate_resource_requirements(&gate_stats, &topology)?;
338
339        // Complexity metrics
340        let complexity = self.calculate_complexity_metrics(circuit, &topology)?;
341
342        Ok(BasicResourceAnalysis {
343            gate_statistics: gate_stats,
344            circuit_topology: topology,
345            resource_requirements: requirements,
346            complexity_metrics: complexity,
347            num_qubits,
348            circuit_size: circuit.len(),
349        })
350    }
351
352    /// Analyze gate statistics
353    fn analyze_gate_statistics(
354        &self,
355        circuit: &[QuantumGate],
356    ) -> Result<GateStatistics, QuantRS2Error> {
357        let mut gate_counts = HashMap::new();
358        let mut gate_depths = HashMap::new();
359        let mut gate_patterns = Vec::new();
360
361        // Parallel gate counting for large circuits
362        let cpu_count = PlatformCapabilities::detect().cpu.logical_cores;
363        if circuit.len() > 1000 && cpu_count > 1 {
364            let chunk_size = circuit.len() / cpu_count;
365            let counts: Vec<HashMap<String, usize>> = circuit
366                .par_chunks(chunk_size)
367                .map(|chunk| {
368                    let mut local_counts = HashMap::new();
369                    for gate in chunk {
370                        let gate_type = format!("{:?}", gate.gate_type());
371                        *local_counts.entry(gate_type).or_insert(0) += 1;
372                    }
373                    local_counts
374                })
375                .collect();
376
377            // Merge results
378            for local_count in counts {
379                for (gate_type, count) in local_count {
380                    *gate_counts.entry(gate_type).or_insert(0) += count;
381                }
382            }
383        } else {
384            // Sequential processing
385            for gate in circuit {
386                let gate_type = format!("{:?}", gate.gate_type());
387                *gate_counts.entry(gate_type).or_insert(0) += 1;
388            }
389        }
390
391        // Analyze gate patterns
392        gate_patterns = self.detect_gate_patterns(circuit)?;
393
394        // Calculate gate depths
395        gate_depths = Self::calculate_gate_depths(circuit)?;
396
397        Ok(GateStatistics {
398            total_gates: circuit.len(),
399            gate_counts,
400            gate_depths,
401            gate_patterns,
402            clifford_count: Self::count_clifford_gates(circuit),
403            non_clifford_count: Self::count_non_clifford_gates(circuit),
404            two_qubit_count: Self::count_two_qubit_gates(circuit),
405            multi_qubit_count: Self::count_multi_qubit_gates(circuit),
406        })
407    }
408
409    /// Detect common gate patterns
410    fn detect_gate_patterns(
411        &self,
412        circuit: &[QuantumGate],
413    ) -> Result<Vec<GatePattern>, QuantRS2Error> {
414        let mut patterns = Vec::new();
415
416        // Common patterns to detect
417        let pattern_checks = vec![
418            ("QFT", Self::detect_qft_pattern(circuit)?),
419            ("Grover", Self::detect_grover_pattern(circuit)?),
420            ("QAOA", Self::detect_qaoa_pattern(circuit)?),
421            ("VQE", Self::detect_vqe_pattern(circuit)?),
422            ("Entanglement", Self::detect_entanglement_pattern(circuit)?),
423        ];
424
425        for (name, instances_opt) in pattern_checks {
426            if let Some(instances) = instances_opt {
427                patterns.push(GatePattern {
428                    pattern_type: name.to_string(),
429                    instances,
430                    resource_impact: Self::estimate_pattern_impact(name),
431                });
432            }
433        }
434
435        Ok(patterns)
436    }
437
438    /// Detect QFT pattern
439    fn detect_qft_pattern(
440        circuit: &[QuantumGate],
441    ) -> Result<Option<Vec<PatternInstance>>, QuantRS2Error> {
442        // Simplified QFT detection
443        let mut instances = Vec::new();
444
445        // Look for Hadamard followed by controlled phase rotations
446        for i in 0..circuit.len() {
447            if matches!(circuit[i].gate_type(), GateType::H) {
448                // Check for subsequent controlled rotations
449                let mut has_rotations = false;
450                for j in i + 1..circuit.len().min(i + 10) {
451                    if matches!(circuit[j].gate_type(), GateType::Phase(_) | GateType::Rz(_)) {
452                        has_rotations = true;
453                        break;
454                    }
455                }
456
457                if has_rotations {
458                    instances.push(PatternInstance {
459                        start_index: i,
460                        end_index: i + 10,
461                        confidence: 0.7,
462                    });
463                }
464            }
465        }
466
467        if instances.is_empty() {
468            Ok(None)
469        } else {
470            Ok(Some(instances))
471        }
472    }
473
474    /// Detect Grover pattern
475    const fn detect_grover_pattern(
476        _circuit: &[QuantumGate],
477    ) -> Result<Option<Vec<PatternInstance>>, QuantRS2Error> {
478        // Placeholder for Grover detection
479        Ok(None)
480    }
481
482    /// Detect QAOA pattern
483    const fn detect_qaoa_pattern(
484        _circuit: &[QuantumGate],
485    ) -> Result<Option<Vec<PatternInstance>>, QuantRS2Error> {
486        // Placeholder for QAOA detection
487        Ok(None)
488    }
489
490    /// Detect VQE pattern
491    const fn detect_vqe_pattern(
492        _circuit: &[QuantumGate],
493    ) -> Result<Option<Vec<PatternInstance>>, QuantRS2Error> {
494        // Placeholder for VQE detection
495        Ok(None)
496    }
497
498    /// Detect entanglement pattern
499    fn detect_entanglement_pattern(
500        circuit: &[QuantumGate],
501    ) -> Result<Option<Vec<PatternInstance>>, QuantRS2Error> {
502        let mut instances = Vec::new();
503
504        // Look for sequences of CNOT gates
505        for i in 0..circuit.len() {
506            if matches!(circuit[i].gate_type(), GateType::CNOT | GateType::CZ) {
507                let mut j = i + 1;
508                while j < circuit.len()
509                    && matches!(circuit[j].gate_type(), GateType::CNOT | GateType::CZ)
510                {
511                    j += 1;
512                }
513
514                if j - i >= 3 {
515                    instances.push(PatternInstance {
516                        start_index: i,
517                        end_index: j,
518                        confidence: 0.9,
519                    });
520                }
521            }
522        }
523
524        if instances.is_empty() {
525            Ok(None)
526        } else {
527            Ok(Some(instances))
528        }
529    }
530
531    /// Estimate pattern resource impact
532    fn estimate_pattern_impact(pattern_name: &str) -> f64 {
533        match pattern_name {
534            "QFT" => 2.5, // QFT has significant resource requirements
535            "Grover" => 1.8,
536            "QAOA" => 2.0,
537            "VQE" => 2.2,
538            "Entanglement" => 1.5,
539            _ => 1.0,
540        }
541    }
542
543    /// Calculate gate depths
544    fn calculate_gate_depths(
545        circuit: &[QuantumGate],
546    ) -> Result<HashMap<String, usize>, QuantRS2Error> {
547        let mut depths = HashMap::new();
548        let mut qubit_depths = HashMap::new();
549
550        for gate in circuit {
551            let max_depth = gate
552                .target_qubits()
553                .iter()
554                .chain(gate.control_qubits().unwrap_or(&[]).iter())
555                .map(|&q| qubit_depths.get(&q).copied().unwrap_or(0))
556                .max()
557                .unwrap_or(0);
558
559            let new_depth = max_depth + 1;
560
561            for &qubit in gate.target_qubits() {
562                qubit_depths.insert(qubit, new_depth);
563            }
564            for &qubit in gate.control_qubits().unwrap_or(&[]) {
565                qubit_depths.insert(qubit, new_depth);
566            }
567
568            let gate_type = format!("{:?}", gate.gate_type());
569            depths.insert(gate_type, new_depth);
570        }
571
572        Ok(depths)
573    }
574
575    /// Count Clifford gates
576    fn count_clifford_gates(circuit: &[QuantumGate]) -> usize {
577        circuit
578            .iter()
579            .filter(|gate| {
580                matches!(
581                    gate.gate_type(),
582                    GateType::X
583                        | GateType::Y
584                        | GateType::Z
585                        | GateType::H
586                        | GateType::S
587                        | GateType::CNOT
588                        | GateType::CZ
589                )
590            })
591            .count()
592    }
593
594    /// Count non-Clifford gates
595    fn count_non_clifford_gates(circuit: &[QuantumGate]) -> usize {
596        circuit
597            .iter()
598            .filter(|gate| {
599                matches!(
600                    gate.gate_type(),
601                    GateType::T
602                        | GateType::Phase(_)
603                        | GateType::Rx(_)
604                        | GateType::Ry(_)
605                        | GateType::Rz(_)
606                )
607            })
608            .count()
609    }
610
611    /// Count two-qubit gates
612    fn count_two_qubit_gates(circuit: &[QuantumGate]) -> usize {
613        circuit
614            .iter()
615            .filter(|gate| gate.target_qubits().len() == 2)
616            .count()
617    }
618
619    /// Count multi-qubit gates (3+ qubits)
620    fn count_multi_qubit_gates(circuit: &[QuantumGate]) -> usize {
621        circuit
622            .iter()
623            .filter(|gate| gate.target_qubits().len() > 2)
624            .count()
625    }
626
627    /// Analyze circuit topology
628    fn analyze_circuit_topology(
629        &self,
630        circuit: &[QuantumGate],
631        num_qubits: usize,
632    ) -> Result<CircuitTopology, QuantRS2Error> {
633        // Build connectivity graph
634        let mut connectivity = vec![vec![0; num_qubits]; num_qubits];
635        let mut interaction_count = 0;
636
637        for gate in circuit {
638            if gate.target_qubits().len() >= 2 {
639                let q1 = gate.target_qubits()[0];
640                let q2 = gate.target_qubits()[1];
641                connectivity[q1][q2] += 1;
642                connectivity[q2][q1] += 1;
643                interaction_count += 1;
644            }
645        }
646
647        // Calculate topology metrics
648        let connectivity_density = if num_qubits > 1 {
649            interaction_count as f64 / ((num_qubits * (num_qubits - 1)) / 2) as f64
650        } else {
651            0.0
652        };
653
654        let max_connections = connectivity
655            .iter()
656            .map(|row| row.iter().filter(|&&x| x > 0).count())
657            .max()
658            .unwrap_or(0);
659
660        let critical_qubits = Self::identify_critical_qubits(&connectivity)?;
661
662        Ok(CircuitTopology {
663            num_qubits,
664            connectivity_matrix: connectivity.clone(),
665            connectivity_density,
666            max_connections,
667            critical_qubits,
668            topology_type: Self::classify_topology(&connectivity, connectivity_density),
669        })
670    }
671
672    /// Identify critical qubits with high connectivity
673    fn identify_critical_qubits(connectivity: &[Vec<usize>]) -> Result<Vec<usize>, QuantRS2Error> {
674        let mut critical = Vec::new();
675        let avg_connections: f64 = connectivity
676            .iter()
677            .map(|row| row.iter().filter(|&&x| x > 0).count() as f64)
678            .sum::<f64>()
679            / connectivity.len() as f64;
680
681        for (i, row) in connectivity.iter().enumerate() {
682            let connections = row.iter().filter(|&&x| x > 0).count() as f64;
683            if connections > avg_connections * 1.5 {
684                critical.push(i);
685            }
686        }
687
688        Ok(critical)
689    }
690
691    /// Classify topology type
692    fn classify_topology(_connectivity: &[Vec<usize>], density: f64) -> TopologyType {
693        if density < 0.1 {
694            TopologyType::Sparse
695        } else if density < 0.3 {
696            TopologyType::Regular
697        } else if density < 0.6 {
698            TopologyType::Dense
699        } else {
700            TopologyType::AllToAll
701        }
702    }
703
704    /// Calculate resource requirements
705    fn calculate_resource_requirements(
706        &self,
707        gate_stats: &GateStatistics,
708        topology: &CircuitTopology,
709    ) -> Result<ResourceRequirements, QuantRS2Error> {
710        // Physical qubits estimation
711        let code_distance = self.estimate_code_distance()?;
712        let physical_qubits = self.estimate_physical_qubits(topology.num_qubits, code_distance)?;
713
714        // Time estimation
715        let execution_time = self.estimate_execution_time(gate_stats)?;
716
717        // Memory estimation
718        let memory_requirements =
719            self.estimate_memory_requirements(topology.num_qubits, gate_stats)?;
720
721        // Magic states
722        let magic_states = self.estimate_magic_states(gate_stats)?;
723
724        Ok(ResourceRequirements {
725            logical_qubits: topology.num_qubits,
726            physical_qubits,
727            code_distance,
728            execution_time,
729            memory_requirements,
730            magic_states,
731            error_budget: self.calculate_error_budget()?,
732        })
733    }
734
735    /// Estimate code distance
736    fn estimate_code_distance(&self) -> Result<usize, QuantRS2Error> {
737        let p = self.config.base_config.physical_error_rate;
738        let p_target = self.config.base_config.target_logical_error_rate;
739
740        let threshold = 0.01; // Simplified threshold
741        if p > threshold {
742            return Err(QuantRS2Error::InvalidInput(
743                "Physical error rate too high".into(),
744            ));
745        }
746
747        let distance = ((-p_target.log10()) / (-p.log10())).ceil() as usize;
748        Ok(distance.max(3))
749    }
750
751    /// Estimate physical qubits
752    const fn estimate_physical_qubits(
753        &self,
754        logical_qubits: usize,
755        code_distance: usize,
756    ) -> Result<usize, QuantRS2Error> {
757        let qubits_per_logical = match self.config.base_config.error_correction_code {
758            ErrorCorrectionCode::SurfaceCode => 2 * code_distance * code_distance,
759            ErrorCorrectionCode::ColorCode => 3 * code_distance * code_distance,
760            _ => code_distance * code_distance,
761        };
762
763        Ok(logical_qubits * qubits_per_logical)
764    }
765
766    /// Estimate execution time
767    fn estimate_execution_time(&self, gate_stats: &GateStatistics) -> Result<f64, QuantRS2Error> {
768        let mut total_time = 0.0;
769
770        // Gate execution times (hardware-dependent)
771        let gate_times = self.get_gate_times()?;
772
773        for (gate_type, count) in &gate_stats.gate_counts {
774            let time = gate_times.get(gate_type).copied().unwrap_or(1e-6);
775            total_time += time * (*count as f64);
776        }
777
778        // Add error correction overhead
779        total_time *= 1.5;
780
781        Ok(total_time)
782    }
783
784    /// Get gate execution times
785    fn get_gate_times(&self) -> Result<HashMap<String, f64>, QuantRS2Error> {
786        let mut times = HashMap::new();
787
788        match self.config.base_config.hardware_platform {
789            HardwarePlatform::Superconducting => {
790                times.insert("X".to_string(), 20e-9);
791                times.insert("Y".to_string(), 20e-9);
792                times.insert("Z".to_string(), 1e-9);
793                times.insert("H".to_string(), 20e-9);
794                times.insert("CNOT".to_string(), 40e-9);
795                times.insert("T".to_string(), 20e-9);
796            }
797            HardwarePlatform::TrappedIon => {
798                times.insert("X".to_string(), 10e-6);
799                times.insert("Y".to_string(), 10e-6);
800                times.insert("Z".to_string(), 1e-6);
801                times.insert("H".to_string(), 10e-6);
802                times.insert("CNOT".to_string(), 100e-6);
803                times.insert("T".to_string(), 10e-6);
804            }
805            _ => {
806                // Default times
807                times.insert("X".to_string(), 1e-6);
808                times.insert("Y".to_string(), 1e-6);
809                times.insert("Z".to_string(), 1e-6);
810                times.insert("H".to_string(), 1e-6);
811                times.insert("CNOT".to_string(), 2e-6);
812                times.insert("T".to_string(), 1e-6);
813            }
814        }
815
816        Ok(times)
817    }
818
819    /// Estimate memory requirements
820    fn estimate_memory_requirements(
821        &self,
822        num_qubits: usize,
823        gate_stats: &GateStatistics,
824    ) -> Result<MemoryRequirements, QuantRS2Error> {
825        let state_vector_size = (1 << num_qubits) * 16; // Complex64 = 16 bytes
826        let gate_memory = gate_stats.total_gates * 64; // Estimated gate storage
827        let workspace = state_vector_size / 2; // Working memory
828
829        Ok(MemoryRequirements {
830            state_vector_memory: state_vector_size,
831            gate_storage_memory: gate_memory,
832            workspace_memory: workspace,
833            total_memory: state_vector_size + gate_memory + workspace,
834            memory_bandwidth: self.estimate_memory_bandwidth(gate_stats)?,
835        })
836    }
837
838    /// Estimate memory bandwidth requirements
839    fn estimate_memory_bandwidth(&self, gate_stats: &GateStatistics) -> Result<f64, QuantRS2Error> {
840        // Simplified bandwidth estimation (GB/s)
841        let ops_per_second = 1e9; // 1 GHz operation rate
842        let bytes_per_op = 32.0; // Average bytes moved per operation
843
844        Ok(ops_per_second * bytes_per_op / 1e9)
845    }
846
847    /// Estimate magic states
848    const fn estimate_magic_states(
849        &self,
850        gate_stats: &GateStatistics,
851    ) -> Result<usize, QuantRS2Error> {
852        let t_gates = gate_stats.non_clifford_count;
853
854        // Conservative estimate including distillation overhead
855        let overhead = match self.config.base_config.estimation_mode {
856            EstimationMode::Conservative => 15,
857            EstimationMode::Optimistic => 10,
858            EstimationMode::Realistic => 12,
859        };
860
861        Ok(t_gates * overhead)
862    }
863
864    /// Calculate error budget
865    fn calculate_error_budget(&self) -> Result<ErrorBudget, QuantRS2Error> {
866        let total = self.config.base_config.target_logical_error_rate;
867
868        Ok(ErrorBudget {
869            total_budget: total,
870            gate_errors: total * 0.4,
871            measurement_errors: total * 0.2,
872            idle_errors: total * 0.2,
873            crosstalk_errors: total * 0.1,
874            readout_errors: total * 0.1,
875        })
876    }
877
878    /// Calculate complexity metrics
879    fn calculate_complexity_metrics(
880        &self,
881        circuit: &[QuantumGate],
882        topology: &CircuitTopology,
883    ) -> Result<ComplexityMetrics, QuantRS2Error> {
884        // T-complexity (number of T gates)
885        let t_complexity = circuit
886            .iter()
887            .filter(|g| matches!(g.gate_type(), GateType::T))
888            .count();
889
890        // T-depth (critical path of T gates)
891        let t_depth = self.calculate_t_depth(circuit)?;
892
893        // Circuit volume (qubits × depth)
894        let circuit_volume = topology.num_qubits * circuit.len();
895
896        // Communication complexity
897        let communication_complexity = topology.connectivity_density * topology.num_qubits as f64;
898
899        // Entanglement complexity
900        let entanglement_complexity = self.estimate_entanglement_complexity(circuit)?;
901
902        Ok(ComplexityMetrics {
903            t_complexity,
904            t_depth,
905            circuit_volume,
906            communication_complexity,
907            entanglement_complexity,
908            algorithmic_complexity: self.classify_algorithmic_complexity(circuit)?,
909        })
910    }
911
912    /// Calculate T-depth
913    fn calculate_t_depth(&self, circuit: &[QuantumGate]) -> Result<usize, QuantRS2Error> {
914        let mut qubit_t_depths = HashMap::new();
915        let mut max_t_depth = 0;
916
917        for gate in circuit {
918            if matches!(gate.gate_type(), GateType::T) {
919                let current_depth = gate
920                    .target_qubits()
921                    .iter()
922                    .map(|&q| qubit_t_depths.get(&q).copied().unwrap_or(0))
923                    .max()
924                    .unwrap_or(0);
925
926                let new_depth = current_depth + 1;
927                for &qubit in gate.target_qubits() {
928                    qubit_t_depths.insert(qubit, new_depth);
929                    max_t_depth = max_t_depth.max(new_depth);
930                }
931            }
932        }
933
934        Ok(max_t_depth)
935    }
936
937    /// Estimate entanglement complexity
938    fn estimate_entanglement_complexity(
939        &self,
940        circuit: &[QuantumGate],
941    ) -> Result<f64, QuantRS2Error> {
942        let entangling_gates = circuit
943            .iter()
944            .filter(|g| g.target_qubits().len() >= 2)
945            .count();
946
947        let total_gates = circuit.len().max(1);
948        Ok(entangling_gates as f64 / total_gates as f64)
949    }
950
951    /// Classify algorithmic complexity
952    fn classify_algorithmic_complexity(
953        &self,
954        circuit: &[QuantumGate],
955    ) -> Result<String, QuantRS2Error> {
956        let depth = circuit.len();
957        let two_qubit_ratio =
958            Self::count_two_qubit_gates(circuit) as f64 / circuit.len().max(1) as f64;
959
960        if depth < 100 && two_qubit_ratio < 0.2 {
961            Ok("Low (BQP-easy)".to_string())
962        } else if depth < 1000 && two_qubit_ratio < 0.5 {
963            Ok("Medium (BQP-intermediate)".to_string())
964        } else {
965            Ok("High (BQP-hard)".to_string())
966        }
967    }
968
969    /// Calculate resource scores
970    fn calculate_resource_scores(
971        &self,
972        basic: &BasicResourceAnalysis,
973        ml_predictions: &Option<MLPredictions>,
974    ) -> ResourceScores {
975        let efficiency_score = self.calculate_efficiency_score(basic);
976        let scalability_score = self.calculate_scalability_score(basic);
977        let feasibility_score = self.calculate_feasibility_score(basic, ml_predictions);
978        let optimization_potential = self.calculate_optimization_potential(basic);
979
980        ResourceScores {
981            overall_score: (efficiency_score + scalability_score + feasibility_score) / 3.0,
982            efficiency_score,
983            scalability_score,
984            feasibility_score,
985            optimization_potential,
986            readiness_level: self.determine_readiness_level(feasibility_score),
987        }
988    }
989
990    /// Calculate efficiency score
991    fn calculate_efficiency_score(&self, basic: &BasicResourceAnalysis) -> f64 {
992        let gate_efficiency = 1.0 / (1.0 + basic.gate_statistics.total_gates as f64 / 1000.0);
993        let depth_efficiency = 1.0 / (1.0 + basic.complexity_metrics.t_depth as f64 / 100.0);
994        let qubit_efficiency = 1.0 / (1.0 + basic.num_qubits as f64 / 50.0);
995
996        (gate_efficiency + depth_efficiency + qubit_efficiency) / 3.0
997    }
998
999    /// Calculate scalability score
1000    fn calculate_scalability_score(&self, basic: &BasicResourceAnalysis) -> f64 {
1001        let connectivity_score = 1.0 - basic.circuit_topology.connectivity_density.min(1.0);
1002        let volume_score = 1.0 / (1.0 + (basic.complexity_metrics.circuit_volume as f64).log10());
1003
1004        f64::midpoint(connectivity_score, volume_score)
1005    }
1006
1007    /// Calculate feasibility score
1008    const fn calculate_feasibility_score(
1009        &self,
1010        basic: &BasicResourceAnalysis,
1011        ml_predictions: &Option<MLPredictions>,
1012    ) -> f64 {
1013        let base_score = if basic.resource_requirements.physical_qubits < 1000 {
1014            0.9
1015        } else if basic.resource_requirements.physical_qubits < 10000 {
1016            0.6
1017        } else {
1018            0.3
1019        };
1020
1021        if let Some(predictions) = ml_predictions {
1022            f64::midpoint(base_score, predictions.feasibility_confidence)
1023        } else {
1024            base_score
1025        }
1026    }
1027
1028    /// Calculate optimization potential
1029    fn calculate_optimization_potential(&self, basic: &BasicResourceAnalysis) -> f64 {
1030        let pattern_potential = basic.gate_statistics.gate_patterns.len() as f64 * 0.1;
1031        let redundancy_potential = 0.2; // Placeholder
1032
1033        (pattern_potential + redundancy_potential).min(1.0)
1034    }
1035
1036    /// Determine readiness level
1037    fn determine_readiness_level(&self, feasibility_score: f64) -> ReadinessLevel {
1038        if feasibility_score > 0.8 {
1039            ReadinessLevel::ProductionReady
1040        } else if feasibility_score > 0.6 {
1041            ReadinessLevel::Experimental
1042        } else if feasibility_score > 0.4 {
1043            ReadinessLevel::Research
1044        } else {
1045            ReadinessLevel::Theoretical
1046        }
1047    }
1048
1049    /// Generate comprehensive recommendations
1050    fn generate_recommendations(
1051        &self,
1052        basic: &BasicResourceAnalysis,
1053        ml_predictions: &Option<MLPredictions>,
1054        cost_analysis: &Option<CostAnalysisResult>,
1055        optimization_strategies: &Option<Vec<OptimizationStrategy>>,
1056    ) -> Result<Vec<Recommendation>, QuantRS2Error> {
1057        let mut recommendations = Vec::new();
1058
1059        // Basic recommendations
1060        if basic.gate_statistics.non_clifford_count > 100 {
1061            recommendations.push(Recommendation {
1062                category: RecommendationCategory::Optimization,
1063                priority: Priority::High,
1064                title: "Reduce T-gate count".to_string(),
1065                description:
1066                    "High number of non-Clifford gates detected. Consider T-gate optimization."
1067                        .to_string(),
1068                expected_impact: Impact::Significant,
1069                implementation_effort: Effort::Medium,
1070            });
1071        }
1072
1073        // ML-based recommendations
1074        if let Some(predictions) = ml_predictions {
1075            for suggestion in &predictions.optimization_suggestions {
1076                recommendations.push(Recommendation {
1077                    category: RecommendationCategory::MLSuggestion,
1078                    priority: Priority::Medium,
1079                    title: suggestion.clone(),
1080                    description: "ML-based optimization suggestion".to_string(),
1081                    expected_impact: Impact::Moderate,
1082                    implementation_effort: Effort::Low,
1083                });
1084            }
1085        }
1086
1087        // Cost-based recommendations
1088        if let Some(costs) = cost_analysis {
1089            if costs.total_estimated_cost > 1000.0 {
1090                recommendations.push(Recommendation {
1091                    category: RecommendationCategory::Cost,
1092                    priority: Priority::High,
1093                    title: "Consider cost optimization".to_string(),
1094                    description: format!(
1095                        "Estimated cost ${:.2} is high. Consider circuit optimization.",
1096                        costs.total_estimated_cost
1097                    ),
1098                    expected_impact: Impact::Significant,
1099                    implementation_effort: Effort::High,
1100                });
1101            }
1102        }
1103
1104        // Strategy-based recommendations
1105        if let Some(strategies) = optimization_strategies {
1106            for strategy in strategies.iter().take(3) {
1107                recommendations.push(Recommendation {
1108                    category: RecommendationCategory::Strategy,
1109                    priority: Priority::Medium,
1110                    title: strategy.name.clone(),
1111                    description: strategy.description.clone(),
1112                    expected_impact: Impact::Moderate,
1113                    implementation_effort: Effort::Medium,
1114                });
1115            }
1116        }
1117
1118        Ok(recommendations)
1119    }
1120
1121    /// Identify platform-specific optimizations
1122    fn identify_platform_optimizations(&self) -> Vec<PlatformOptimization> {
1123        let mut optimizations = Vec::new();
1124
1125        if self.platform_capabilities.simd_available() {
1126            optimizations.push(PlatformOptimization {
1127                platform_feature: "SIMD".to_string(),
1128                optimization_type: "Vectorized state operations".to_string(),
1129                expected_speedup: 2.5,
1130                applicable: true,
1131            });
1132        }
1133
1134        let cpu_count = PlatformCapabilities::detect().cpu.logical_cores;
1135        if cpu_count > 4 {
1136            optimizations.push(PlatformOptimization {
1137                platform_feature: "Multi-core".to_string(),
1138                optimization_type: "Parallel gate execution".to_string(),
1139                expected_speedup: cpu_count as f64 * 0.7,
1140                applicable: true,
1141            });
1142        }
1143
1144        optimizations
1145    }
1146
1147    /// Monitor resources in real-time
1148    pub const fn start_monitoring(&mut self) -> Result<(), QuantRS2Error> {
1149        self.realtime_tracker.start_monitoring()
1150    }
1151
1152    /// Stop resource monitoring
1153    pub const fn stop_monitoring(&mut self) -> Result<MonitoringReport, QuantRS2Error> {
1154        self.realtime_tracker.stop_monitoring()
1155    }
1156
1157    /// Export estimation report
1158    pub fn export_report(
1159        &self,
1160        estimate: &EnhancedResourceEstimate,
1161        format: ReportFormat,
1162    ) -> Result<String, QuantRS2Error> {
1163        match format {
1164            ReportFormat::JSON => self.export_json_report(estimate),
1165            ReportFormat::HTML => self.export_html_report(estimate),
1166            ReportFormat::PDF => self.export_pdf_report(estimate),
1167            ReportFormat::Markdown => self.export_markdown_report(estimate),
1168            ReportFormat::LaTeX => self.export_latex_report(estimate),
1169            ReportFormat::YAML => Err(QuantRS2Error::UnsupportedOperation(
1170                "Format not supported".into(),
1171            )),
1172        }
1173    }
1174
1175    /// Export JSON report
1176    fn export_json_report(
1177        &self,
1178        estimate: &EnhancedResourceEstimate,
1179    ) -> Result<String, QuantRS2Error> {
1180        serde_json::to_string_pretty(estimate)
1181            .map_err(|e| QuantRS2Error::ComputationError(format!("JSON serialization failed: {e}")))
1182    }
1183
1184    /// Export HTML report
1185    fn export_html_report(
1186        &self,
1187        estimate: &EnhancedResourceEstimate,
1188    ) -> Result<String, QuantRS2Error> {
1189        let mut html = String::new();
1190        html.push_str(
1191            "<!DOCTYPE html><html><head><title>Resource Estimation Report</title></head><body>",
1192        );
1193        html.push_str("<h1>Enhanced Resource Estimation Report</h1>");
1194        write!(
1195            html,
1196            "<p>Estimation Time: {:?}</p>",
1197            estimate.estimation_time
1198        )
1199        .expect("Failed to write estimation time to HTML report");
1200        write!(
1201            html,
1202            "<p>Overall Score: {:.2}</p>",
1203            estimate.resource_scores.overall_score
1204        )
1205        .expect("Failed to write overall score to HTML report");
1206        html.push_str("</body></html>");
1207        Ok(html)
1208    }
1209
1210    /// Export PDF report
1211    fn export_pdf_report(
1212        &self,
1213        _estimate: &EnhancedResourceEstimate,
1214    ) -> Result<String, QuantRS2Error> {
1215        // Placeholder - would use a PDF library in production
1216        Ok("PDF export not implemented".to_string())
1217    }
1218
1219    /// Export Markdown report
1220    fn export_markdown_report(
1221        &self,
1222        estimate: &EnhancedResourceEstimate,
1223    ) -> Result<String, QuantRS2Error> {
1224        let mut md = String::new();
1225        md.push_str("# Enhanced Resource Estimation Report\n\n");
1226        write!(
1227            md,
1228            "**Estimation Time**: {:?}\n\n",
1229            estimate.estimation_time
1230        )
1231        .expect("Failed to write estimation time to Markdown report");
1232        md.push_str("## Resource Scores\n\n");
1233        writeln!(
1234            md,
1235            "- Overall Score: {:.2}",
1236            estimate.resource_scores.overall_score
1237        )
1238        .expect("Failed to write overall score to Markdown report");
1239        writeln!(
1240            md,
1241            "- Efficiency: {:.2}",
1242            estimate.resource_scores.efficiency_score
1243        )
1244        .expect("Failed to write efficiency score to Markdown report");
1245        writeln!(
1246            md,
1247            "- Scalability: {:.2}",
1248            estimate.resource_scores.scalability_score
1249        )
1250        .expect("Failed to write scalability score to Markdown report");
1251        writeln!(
1252            md,
1253            "- Feasibility: {:.2}",
1254            estimate.resource_scores.feasibility_score
1255        )
1256        .expect("Failed to write feasibility score to Markdown report");
1257        Ok(md)
1258    }
1259
1260    /// Export LaTeX report
1261    fn export_latex_report(
1262        &self,
1263        _estimate: &EnhancedResourceEstimate,
1264    ) -> Result<String, QuantRS2Error> {
1265        Ok("\\documentclass{article}\n\\begin{document}\nResource Estimation Report\n\\end{document}".to_string())
1266    }
1267}
1268
1269/// Enhanced resource estimate result
1270#[derive(Debug, Clone, Serialize, Deserialize)]
1271pub struct EnhancedResourceEstimate {
1272    pub basic_resources: BasicResourceAnalysis,
1273    pub ml_predictions: Option<MLPredictions>,
1274    pub cost_analysis: Option<CostAnalysisResult>,
1275    pub optimization_strategies: Option<Vec<OptimizationStrategy>>,
1276    pub comparative_results: Option<ComparativeAnalysis>,
1277    pub hardware_recommendations: Option<Vec<HardwareRecommendation>>,
1278    pub scaling_predictions: Option<ScalingPredictions>,
1279    pub visual_representations: HashMap<String, VisualRepresentation>,
1280    pub tracking_data: Option<TrackingData>,
1281    pub resource_scores: ResourceScores,
1282    pub recommendations: Vec<Recommendation>,
1283    pub estimation_time: std::time::Duration,
1284    pub platform_optimizations: Vec<PlatformOptimization>,
1285}
1286
1287/// Estimation options
1288#[derive(Debug, Clone)]
1289pub struct EstimationOptions {
1290    pub target_platforms: Vec<CloudPlatform>,
1291    pub optimization_level: OptimizationLevel,
1292    pub include_alternatives: bool,
1293    pub max_alternatives: usize,
1294}
1295
1296/// Optimization levels
1297#[derive(Debug, Clone, Copy)]
1298pub enum OptimizationLevel {
1299    None,
1300    Basic,
1301    Aggressive,
1302    Maximum,
1303}
1304
1305/// Basic resource analysis
1306#[derive(Debug, Clone, Serialize, Deserialize)]
1307pub struct BasicResourceAnalysis {
1308    pub gate_statistics: GateStatistics,
1309    pub circuit_topology: CircuitTopology,
1310    pub resource_requirements: ResourceRequirements,
1311    pub complexity_metrics: ComplexityMetrics,
1312    pub num_qubits: usize,
1313    pub circuit_size: usize,
1314}
1315
1316/// Gate statistics
1317#[derive(Debug, Clone, Serialize, Deserialize)]
1318pub struct GateStatistics {
1319    pub total_gates: usize,
1320    pub gate_counts: HashMap<String, usize>,
1321    pub gate_depths: HashMap<String, usize>,
1322    pub gate_patterns: Vec<GatePattern>,
1323    pub clifford_count: usize,
1324    pub non_clifford_count: usize,
1325    pub two_qubit_count: usize,
1326    pub multi_qubit_count: usize,
1327}
1328
1329/// Gate pattern
1330#[derive(Debug, Clone, Serialize, Deserialize)]
1331pub struct GatePattern {
1332    pub pattern_type: String,
1333    pub instances: Vec<PatternInstance>,
1334    pub resource_impact: f64,
1335}
1336
1337/// Pattern instance
1338#[derive(Debug, Clone, Serialize, Deserialize)]
1339pub struct PatternInstance {
1340    pub start_index: usize,
1341    pub end_index: usize,
1342    pub confidence: f64,
1343}
1344
1345/// Circuit topology
1346#[derive(Debug, Clone, Serialize, Deserialize)]
1347pub struct CircuitTopology {
1348    pub num_qubits: usize,
1349    pub connectivity_matrix: Vec<Vec<usize>>,
1350    pub connectivity_density: f64,
1351    pub max_connections: usize,
1352    pub critical_qubits: Vec<usize>,
1353    pub topology_type: TopologyType,
1354}
1355
1356/// Topology types
1357#[derive(Debug, Clone, Serialize, Deserialize)]
1358pub enum TopologyType {
1359    Sparse,
1360    Regular,
1361    Dense,
1362    AllToAll,
1363}
1364
1365/// Resource requirements
1366#[derive(Debug, Clone, Serialize, Deserialize)]
1367pub struct ResourceRequirements {
1368    pub logical_qubits: usize,
1369    pub physical_qubits: usize,
1370    pub code_distance: usize,
1371    pub execution_time: f64,
1372    pub memory_requirements: MemoryRequirements,
1373    pub magic_states: usize,
1374    pub error_budget: ErrorBudget,
1375}
1376
1377/// Memory requirements
1378#[derive(Debug, Clone, Serialize, Deserialize)]
1379pub struct MemoryRequirements {
1380    pub state_vector_memory: usize,
1381    pub gate_storage_memory: usize,
1382    pub workspace_memory: usize,
1383    pub total_memory: usize,
1384    pub memory_bandwidth: f64,
1385}
1386
1387/// Error budget
1388#[derive(Debug, Clone, Serialize, Deserialize)]
1389pub struct ErrorBudget {
1390    pub total_budget: f64,
1391    pub gate_errors: f64,
1392    pub measurement_errors: f64,
1393    pub idle_errors: f64,
1394    pub crosstalk_errors: f64,
1395    pub readout_errors: f64,
1396}
1397
1398/// Complexity metrics
1399#[derive(Debug, Clone, Serialize, Deserialize)]
1400pub struct ComplexityMetrics {
1401    pub t_complexity: usize,
1402    pub t_depth: usize,
1403    pub circuit_volume: usize,
1404    pub communication_complexity: f64,
1405    pub entanglement_complexity: f64,
1406    pub algorithmic_complexity: String,
1407}
1408
1409/// ML predictions
1410#[derive(Debug, Clone, Serialize, Deserialize)]
1411pub struct MLPredictions {
1412    pub predicted_runtime: f64,
1413    pub predicted_success_rate: f64,
1414    pub resource_scaling: HashMap<String, f64>,
1415    pub optimization_suggestions: Vec<String>,
1416    pub anomaly_detection: Vec<ResourceAnomaly>,
1417    pub confidence_intervals: ConfidenceIntervals,
1418    pub feasibility_confidence: f64,
1419}
1420
1421/// Resource anomaly
1422#[derive(Debug, Clone, Serialize, Deserialize)]
1423pub struct ResourceAnomaly {
1424    pub anomaly_type: String,
1425    pub severity: AnomalySeverity,
1426    pub description: String,
1427    pub location: String,
1428}
1429
1430/// Anomaly severity
1431#[derive(Debug, Clone, Serialize, Deserialize)]
1432pub enum AnomalySeverity {
1433    Low,
1434    Medium,
1435    High,
1436    Critical,
1437}
1438
1439/// Confidence intervals
1440#[derive(Debug, Clone, Serialize, Deserialize)]
1441pub struct ConfidenceIntervals {
1442    pub runtime_ci: (f64, f64),
1443    pub success_rate_ci: (f64, f64),
1444    pub resource_ci: (f64, f64),
1445}
1446
1447/// Cost analysis result
1448#[derive(Debug, Clone, Serialize, Deserialize)]
1449pub struct CostAnalysisResult {
1450    pub platform_costs: HashMap<String, PlatformCost>,
1451    pub total_estimated_cost: f64,
1452    pub cost_breakdown: CostBreakdown,
1453    pub cost_optimization_opportunities: Vec<CostOptimization>,
1454}
1455
1456/// Platform cost
1457#[derive(Debug, Clone, Serialize, Deserialize)]
1458pub struct PlatformCost {
1459    pub platform: CloudPlatform,
1460    pub estimated_cost: f64,
1461    pub cost_per_shot: f64,
1462    pub setup_cost: f64,
1463    pub runtime_cost: f64,
1464}
1465
1466/// Cost breakdown
1467#[derive(Debug, Clone, Serialize, Deserialize)]
1468pub struct CostBreakdown {
1469    pub compute_cost: f64,
1470    pub storage_cost: f64,
1471    pub network_cost: f64,
1472    pub overhead_cost: f64,
1473}
1474
1475/// Cost optimization
1476#[derive(Debug, Clone, Serialize, Deserialize)]
1477pub struct CostOptimization {
1478    pub optimization_type: String,
1479    pub potential_savings: f64,
1480    pub implementation_effort: Effort,
1481}
1482
1483/// Optimization strategy
1484#[derive(Debug, Clone, Serialize, Deserialize)]
1485pub struct OptimizationStrategy {
1486    pub name: String,
1487    pub description: String,
1488    pub expected_improvement: ResourceImprovement,
1489    pub implementation_steps: Vec<String>,
1490    pub risk_assessment: RiskAssessment,
1491}
1492
1493/// Resource improvement
1494#[derive(Debug, Clone, Serialize, Deserialize)]
1495pub struct ResourceImprovement {
1496    pub qubit_reduction: f64,
1497    pub depth_reduction: f64,
1498    pub gate_reduction: f64,
1499    pub time_reduction: f64,
1500}
1501
1502/// Risk assessment
1503#[derive(Debug, Clone, Serialize, Deserialize)]
1504pub struct RiskAssessment {
1505    pub risk_level: RiskLevel,
1506    pub potential_issues: Vec<String>,
1507    pub mitigation_strategies: Vec<String>,
1508}
1509
1510/// Risk levels
1511#[derive(Debug, Clone, Serialize, Deserialize)]
1512pub enum RiskLevel {
1513    Low,
1514    Medium,
1515    High,
1516}
1517
1518/// Comparative analysis
1519#[derive(Debug, Clone, Serialize, Deserialize)]
1520pub struct ComparativeAnalysis {
1521    pub approach_comparisons: Vec<ApproachComparison>,
1522    pub best_approach: String,
1523    pub tradeoff_analysis: TradeoffAnalysis,
1524}
1525
1526/// Approach comparison
1527#[derive(Debug, Clone, Serialize, Deserialize)]
1528pub struct ApproachComparison {
1529    pub approach_name: String,
1530    pub resources: ResourceRequirements,
1531    pub advantages: Vec<String>,
1532    pub disadvantages: Vec<String>,
1533    pub suitability_score: f64,
1534}
1535
1536/// Tradeoff analysis
1537#[derive(Debug, Clone, Serialize, Deserialize)]
1538pub struct TradeoffAnalysis {
1539    pub pareto_optimal: Vec<String>,
1540    pub dominated_approaches: Vec<String>,
1541    pub tradeoff_recommendations: Vec<String>,
1542}
1543
1544/// Hardware recommendation
1545#[derive(Debug, Clone, Serialize, Deserialize)]
1546pub struct HardwareRecommendation {
1547    pub hardware_platform: HardwarePlatform,
1548    pub suitability_score: f64,
1549    pub pros: Vec<String>,
1550    pub cons: Vec<String>,
1551    pub specific_optimizations: Vec<String>,
1552}
1553
1554/// Scaling predictions
1555#[derive(Debug, Clone, Serialize, Deserialize)]
1556pub struct ScalingPredictions {
1557    pub qubit_scaling: Vec<ScalingPoint>,
1558    pub depth_scaling: Vec<ScalingPoint>,
1559    pub resource_scaling: Vec<ScalingPoint>,
1560    pub feasibility_threshold: FeasibilityThreshold,
1561}
1562
1563/// Scaling point
1564#[derive(Debug, Clone, Serialize, Deserialize)]
1565pub struct ScalingPoint {
1566    pub problem_size: usize,
1567    pub resource_value: f64,
1568    pub confidence: f64,
1569}
1570
1571/// Feasibility threshold
1572#[derive(Debug, Clone, Serialize, Deserialize)]
1573pub struct FeasibilityThreshold {
1574    pub current_tech_limit: usize,
1575    pub near_term_limit: usize,
1576    pub fault_tolerant_limit: usize,
1577}
1578
1579/// Visual representation
1580#[derive(Debug, Clone, Serialize, Deserialize)]
1581pub struct VisualRepresentation {
1582    pub format: String,
1583    pub content: String,
1584}
1585
1586/// Tracking data
1587#[derive(Debug, Clone, Serialize, Deserialize)]
1588pub struct TrackingData {
1589    pub resource_timeline: Vec<ResourceSnapshot>,
1590    pub peak_usage: PeakUsage,
1591    pub usage_patterns: Vec<UsagePattern>,
1592}
1593
1594/// Resource snapshot
1595#[derive(Debug, Clone, Serialize, Deserialize)]
1596pub struct ResourceSnapshot {
1597    pub timestamp: u64,
1598    pub memory_usage: usize,
1599    pub cpu_usage: f64,
1600    pub active_gates: usize,
1601}
1602
1603/// Peak usage
1604#[derive(Debug, Clone, Serialize, Deserialize)]
1605pub struct PeakUsage {
1606    pub peak_memory: usize,
1607    pub peak_cpu: f64,
1608    pub peak_timestamp: u64,
1609}
1610
1611/// Usage pattern
1612#[derive(Debug, Clone, Serialize, Deserialize)]
1613pub struct UsagePattern {
1614    pub pattern_type: String,
1615    pub frequency: usize,
1616    pub impact: String,
1617}
1618
1619/// Resource scores
1620#[derive(Debug, Clone, Serialize, Deserialize)]
1621pub struct ResourceScores {
1622    pub overall_score: f64,
1623    pub efficiency_score: f64,
1624    pub scalability_score: f64,
1625    pub feasibility_score: f64,
1626    pub optimization_potential: f64,
1627    pub readiness_level: ReadinessLevel,
1628}
1629
1630/// Readiness levels
1631#[derive(Debug, Clone, Serialize, Deserialize)]
1632pub enum ReadinessLevel {
1633    Theoretical,
1634    Research,
1635    Experimental,
1636    ProductionReady,
1637}
1638
1639/// Recommendation
1640#[derive(Debug, Clone, Serialize, Deserialize)]
1641pub struct Recommendation {
1642    pub category: RecommendationCategory,
1643    pub priority: Priority,
1644    pub title: String,
1645    pub description: String,
1646    pub expected_impact: Impact,
1647    pub implementation_effort: Effort,
1648}
1649
1650/// Recommendation categories
1651#[derive(Debug, Clone, Serialize, Deserialize)]
1652pub enum RecommendationCategory {
1653    Optimization,
1654    Cost,
1655    Hardware,
1656    Algorithm,
1657    MLSuggestion,
1658    Strategy,
1659}
1660
1661/// Priority levels
1662#[derive(Debug, Clone, Serialize, Deserialize)]
1663pub enum Priority {
1664    Low,
1665    Medium,
1666    High,
1667    Critical,
1668}
1669
1670/// Impact levels
1671#[derive(Debug, Clone, Serialize, Deserialize)]
1672pub enum Impact {
1673    Minor,
1674    Moderate,
1675    Significant,
1676    Transformative,
1677}
1678
1679/// Effort levels
1680#[derive(Debug, Clone, Serialize, Deserialize)]
1681pub enum Effort {
1682    Low,
1683    Medium,
1684    High,
1685    VeryHigh,
1686}
1687
1688/// Platform optimization
1689#[derive(Debug, Clone, Serialize, Deserialize)]
1690pub struct PlatformOptimization {
1691    pub platform_feature: String,
1692    pub optimization_type: String,
1693    pub expected_speedup: f64,
1694    pub applicable: bool,
1695}
1696
1697/// Monitoring report
1698#[derive(Debug, Clone)]
1699pub struct MonitoringReport {
1700    pub monitoring_duration: std::time::Duration,
1701    pub resource_usage: TrackingData,
1702    pub anomalies_detected: Vec<ResourceAnomaly>,
1703    pub optimization_opportunities: Vec<String>,
1704}
1705
1706// Placeholder implementations for supporting modules
1707
1708#[derive(Debug)]
1709pub struct MLResourcePredictor {}
1710
1711impl MLResourcePredictor {
1712    pub const fn new() -> Self {
1713        Self {}
1714    }
1715
1716    pub fn predict_resources(
1717        &self,
1718        _circuit: &[QuantumGate],
1719        basic: &BasicResourceAnalysis,
1720    ) -> Result<MLPredictions, QuantRS2Error> {
1721        Ok(MLPredictions {
1722            predicted_runtime: basic.resource_requirements.execution_time * 1.1,
1723            predicted_success_rate: 0.95,
1724            resource_scaling: HashMap::new(),
1725            optimization_suggestions: vec!["Consider gate fusion".to_string()],
1726            anomaly_detection: Vec::new(),
1727            confidence_intervals: ConfidenceIntervals {
1728                runtime_ci: (
1729                    basic.resource_requirements.execution_time * 0.9,
1730                    basic.resource_requirements.execution_time * 1.2,
1731                ),
1732                success_rate_ci: (0.92, 0.98),
1733                resource_ci: (0.8, 1.2),
1734            },
1735            feasibility_confidence: 0.85,
1736        })
1737    }
1738}
1739
1740#[derive(Debug)]
1741pub struct CostAnalyzer {}
1742
1743impl CostAnalyzer {
1744    pub const fn new() -> Self {
1745        Self {}
1746    }
1747
1748    pub fn analyze_costs(
1749        &self,
1750        _circuit: &[QuantumGate],
1751        basic: &BasicResourceAnalysis,
1752        options: &EstimationOptions,
1753    ) -> Result<CostAnalysisResult, QuantRS2Error> {
1754        let mut platform_costs = HashMap::new();
1755
1756        for platform in &options.target_platforms {
1757            let cost = match platform {
1758                CloudPlatform::IBMQ => basic.resource_requirements.execution_time * 0.05,
1759                CloudPlatform::AzureQuantum => basic.resource_requirements.execution_time * 0.08,
1760                CloudPlatform::AmazonBraket => basic.resource_requirements.execution_time * 0.06,
1761                _ => basic.resource_requirements.execution_time * 0.07,
1762            };
1763
1764            platform_costs.insert(
1765                format!("{platform:?}"),
1766                PlatformCost {
1767                    platform: *platform,
1768                    estimated_cost: cost * 1000.0, // Convert to reasonable dollar amount
1769                    cost_per_shot: cost,
1770                    setup_cost: 10.0,
1771                    runtime_cost: cost * 990.0,
1772                },
1773            );
1774        }
1775
1776        Ok(CostAnalysisResult {
1777            platform_costs,
1778            total_estimated_cost: 500.0,
1779            cost_breakdown: CostBreakdown {
1780                compute_cost: 400.0,
1781                storage_cost: 50.0,
1782                network_cost: 30.0,
1783                overhead_cost: 20.0,
1784            },
1785            cost_optimization_opportunities: vec![CostOptimization {
1786                optimization_type: "Reduce circuit depth".to_string(),
1787                potential_savings: 100.0,
1788                implementation_effort: Effort::Medium,
1789            }],
1790        })
1791    }
1792}
1793
1794#[derive(Debug)]
1795pub struct OptimizationEngine {}
1796
1797impl OptimizationEngine {
1798    pub const fn new() -> Self {
1799        Self {}
1800    }
1801
1802    pub fn generate_strategies(
1803        &self,
1804        _circuit: &[QuantumGate],
1805        _basic: &BasicResourceAnalysis,
1806        objectives: &[OptimizationObjective],
1807    ) -> Result<Vec<OptimizationStrategy>, QuantRS2Error> {
1808        let mut strategies = Vec::new();
1809
1810        for objective in objectives {
1811            strategies.push(OptimizationStrategy {
1812                name: format!("Strategy for {objective:?}"),
1813                description: "Optimization strategy based on objective".to_string(),
1814                expected_improvement: ResourceImprovement {
1815                    qubit_reduction: 0.1,
1816                    depth_reduction: 0.2,
1817                    gate_reduction: 0.15,
1818                    time_reduction: 0.25,
1819                },
1820                implementation_steps: vec!["Step 1".to_string(), "Step 2".to_string()],
1821                risk_assessment: RiskAssessment {
1822                    risk_level: RiskLevel::Low,
1823                    potential_issues: Vec::new(),
1824                    mitigation_strategies: Vec::new(),
1825                },
1826            });
1827        }
1828
1829        Ok(strategies)
1830    }
1831}
1832
1833#[derive(Debug)]
1834pub struct ComparativeAnalyzer {}
1835
1836impl ComparativeAnalyzer {
1837    pub const fn new() -> Self {
1838        Self {}
1839    }
1840
1841    pub fn compare_approaches(
1842        &self,
1843        _circuit: &[QuantumGate],
1844        basic: &BasicResourceAnalysis,
1845    ) -> Result<ComparativeAnalysis, QuantRS2Error> {
1846        Ok(ComparativeAnalysis {
1847            approach_comparisons: vec![ApproachComparison {
1848                approach_name: "Current approach".to_string(),
1849                resources: basic.resource_requirements.clone(),
1850                advantages: vec!["Straightforward".to_string()],
1851                disadvantages: vec!["Resource intensive".to_string()],
1852                suitability_score: 0.7,
1853            }],
1854            best_approach: "Current approach".to_string(),
1855            tradeoff_analysis: TradeoffAnalysis {
1856                pareto_optimal: vec!["Current approach".to_string()],
1857                dominated_approaches: Vec::new(),
1858                tradeoff_recommendations: vec!["Consider optimization".to_string()],
1859            },
1860        })
1861    }
1862}
1863
1864#[derive(Debug)]
1865pub struct RealtimeResourceTracker {}
1866
1867impl RealtimeResourceTracker {
1868    pub const fn new() -> Self {
1869        Self {}
1870    }
1871
1872    pub const fn start_monitoring(&mut self) -> Result<(), QuantRS2Error> {
1873        Ok(())
1874    }
1875
1876    pub const fn stop_monitoring(&mut self) -> Result<MonitoringReport, QuantRS2Error> {
1877        Ok(MonitoringReport {
1878            monitoring_duration: std::time::Duration::from_secs(60),
1879            resource_usage: TrackingData {
1880                resource_timeline: Vec::new(),
1881                peak_usage: PeakUsage {
1882                    peak_memory: 1024 * 1024,
1883                    peak_cpu: 0.8,
1884                    peak_timestamp: 0,
1885                },
1886                usage_patterns: Vec::new(),
1887            },
1888            anomalies_detected: Vec::new(),
1889            optimization_opportunities: Vec::new(),
1890        })
1891    }
1892
1893    pub const fn get_tracking_data(&self) -> Result<TrackingData, QuantRS2Error> {
1894        Ok(TrackingData {
1895            resource_timeline: Vec::new(),
1896            peak_usage: PeakUsage {
1897                peak_memory: 1024 * 1024,
1898                peak_cpu: 0.8,
1899                peak_timestamp: 0,
1900            },
1901            usage_patterns: Vec::new(),
1902        })
1903    }
1904}
1905
1906#[derive(Debug)]
1907pub struct VisualResourceGenerator {}
1908
1909impl VisualResourceGenerator {
1910    pub const fn new() -> Self {
1911        Self {}
1912    }
1913
1914    pub fn generate_visuals(
1915        &self,
1916        _basic: &BasicResourceAnalysis,
1917        _ml_predictions: &Option<MLPredictions>,
1918    ) -> Result<HashMap<String, VisualRepresentation>, QuantRS2Error> {
1919        let mut visuals = HashMap::new();
1920
1921        visuals.insert(
1922            "resource_chart".to_string(),
1923            VisualRepresentation {
1924                format: "ASCII".to_string(),
1925                content: "Resource Usage Chart\n[████████████████████]".to_string(),
1926            },
1927        );
1928
1929        Ok(visuals)
1930    }
1931}
1932
1933#[derive(Debug)]
1934pub struct HardwareRecommender {}
1935
1936impl HardwareRecommender {
1937    pub const fn new() -> Self {
1938        Self {}
1939    }
1940
1941    pub fn recommend_hardware(
1942        &self,
1943        _circuit: &[QuantumGate],
1944        basic: &BasicResourceAnalysis,
1945        _options: &EstimationOptions,
1946    ) -> Result<Vec<HardwareRecommendation>, QuantRS2Error> {
1947        Ok(vec![HardwareRecommendation {
1948            hardware_platform: HardwarePlatform::Superconducting,
1949            suitability_score: 0.85,
1950            pros: vec!["Fast gates".to_string(), "High connectivity".to_string()],
1951            cons: vec!["Short coherence".to_string()],
1952            specific_optimizations: vec!["Use native gates".to_string()],
1953        }])
1954    }
1955}
1956
1957#[derive(Debug)]
1958pub struct ScalingPredictor {}
1959
1960impl ScalingPredictor {
1961    pub const fn new() -> Self {
1962        Self {}
1963    }
1964
1965    pub fn predict_scaling(
1966        &self,
1967        _circuit: &[QuantumGate],
1968        basic: &BasicResourceAnalysis,
1969    ) -> Result<ScalingPredictions, QuantRS2Error> {
1970        let mut qubit_scaling = Vec::new();
1971
1972        for size in [10, 20, 50, 100] {
1973            qubit_scaling.push(ScalingPoint {
1974                problem_size: size,
1975                resource_value: (size as f64).powi(2),
1976                confidence: 0.8,
1977            });
1978        }
1979
1980        Ok(ScalingPredictions {
1981            qubit_scaling,
1982            depth_scaling: Vec::new(),
1983            resource_scaling: Vec::new(),
1984            feasibility_threshold: FeasibilityThreshold {
1985                current_tech_limit: 50,
1986                near_term_limit: 100,
1987                fault_tolerant_limit: 1000,
1988            },
1989        })
1990    }
1991}
1992
1993#[cfg(test)]
1994mod tests {
1995    use super::*;
1996
1997    #[test]
1998    fn test_enhanced_estimator_creation() {
1999        let estimator = EnhancedResourceEstimator::new();
2000        assert!(estimator.config.enable_ml_prediction);
2001        assert!(estimator.config.enable_cost_analysis);
2002    }
2003
2004    #[test]
2005    fn test_basic_resource_analysis() {
2006        let estimator = EnhancedResourceEstimator::new();
2007        let circuit = vec![
2008            QuantumGate::new(GateType::H, vec![0], None),
2009            QuantumGate::new(GateType::CNOT, vec![0, 1], None),
2010            QuantumGate::new(GateType::T, vec![0], None),
2011        ];
2012
2013        let analysis = estimator
2014            .perform_basic_analysis(&circuit, 2)
2015            .expect("Failed to perform basic analysis in test_basic_resource_analysis");
2016        assert_eq!(analysis.gate_statistics.total_gates, 3);
2017        assert_eq!(analysis.num_qubits, 2);
2018    }
2019
2020    #[test]
2021    fn test_gate_pattern_detection() {
2022        let estimator = EnhancedResourceEstimator::new();
2023        let circuit = vec![
2024            QuantumGate::new(GateType::H, vec![0], None),
2025            QuantumGate::new(GateType::CNOT, vec![0, 1], None),
2026            QuantumGate::new(GateType::CNOT, vec![1, 2], None),
2027            QuantumGate::new(GateType::CNOT, vec![2, 3], None),
2028        ];
2029
2030        let patterns = estimator
2031            .detect_gate_patterns(&circuit)
2032            .expect("Failed to detect gate patterns in test_gate_pattern_detection");
2033        assert!(!patterns.is_empty());
2034    }
2035
2036    #[test]
2037    fn test_ml_predictions() {
2038        let predictor = MLResourcePredictor::new();
2039        let basic = BasicResourceAnalysis {
2040            gate_statistics: GateStatistics {
2041                total_gates: 10,
2042                gate_counts: HashMap::new(),
2043                gate_depths: HashMap::new(),
2044                gate_patterns: Vec::new(),
2045                clifford_count: 8,
2046                non_clifford_count: 2,
2047                two_qubit_count: 3,
2048                multi_qubit_count: 0,
2049            },
2050            circuit_topology: CircuitTopology {
2051                num_qubits: 4,
2052                connectivity_matrix: vec![vec![0; 4]; 4],
2053                connectivity_density: 0.3,
2054                max_connections: 2,
2055                critical_qubits: vec![],
2056                topology_type: TopologyType::Regular,
2057            },
2058            resource_requirements: ResourceRequirements {
2059                logical_qubits: 4,
2060                physical_qubits: 100,
2061                code_distance: 5,
2062                execution_time: 1e-3,
2063                memory_requirements: MemoryRequirements {
2064                    state_vector_memory: 256,
2065                    gate_storage_memory: 640,
2066                    workspace_memory: 128,
2067                    total_memory: 1024,
2068                    memory_bandwidth: 10.0,
2069                },
2070                magic_states: 20,
2071                error_budget: ErrorBudget {
2072                    total_budget: 1e-6,
2073                    gate_errors: 4e-7,
2074                    measurement_errors: 2e-7,
2075                    idle_errors: 2e-7,
2076                    crosstalk_errors: 1e-7,
2077                    readout_errors: 1e-7,
2078                },
2079            },
2080            complexity_metrics: ComplexityMetrics {
2081                t_complexity: 2,
2082                t_depth: 2,
2083                circuit_volume: 40,
2084                communication_complexity: 1.2,
2085                entanglement_complexity: 0.3,
2086                algorithmic_complexity: "Low".to_string(),
2087            },
2088            num_qubits: 4,
2089            circuit_size: 10,
2090        };
2091
2092        let predictions = predictor
2093            .predict_resources(&[], &basic)
2094            .expect("Failed to predict resources in test_ml_predictions");
2095        assert!(predictions.predicted_success_rate > 0.9);
2096    }
2097
2098    #[test]
2099    fn test_cost_analysis() {
2100        let analyzer = CostAnalyzer::new();
2101        let basic = BasicResourceAnalysis {
2102            gate_statistics: GateStatistics {
2103                total_gates: 10,
2104                gate_counts: HashMap::new(),
2105                gate_depths: HashMap::new(),
2106                gate_patterns: Vec::new(),
2107                clifford_count: 8,
2108                non_clifford_count: 2,
2109                two_qubit_count: 3,
2110                multi_qubit_count: 0,
2111            },
2112            circuit_topology: CircuitTopology {
2113                num_qubits: 4,
2114                connectivity_matrix: vec![vec![0; 4]; 4],
2115                connectivity_density: 0.3,
2116                max_connections: 2,
2117                critical_qubits: vec![],
2118                topology_type: TopologyType::Regular,
2119            },
2120            resource_requirements: ResourceRequirements {
2121                logical_qubits: 4,
2122                physical_qubits: 100,
2123                code_distance: 5,
2124                execution_time: 1e-3,
2125                memory_requirements: MemoryRequirements {
2126                    state_vector_memory: 256,
2127                    gate_storage_memory: 640,
2128                    workspace_memory: 128,
2129                    total_memory: 1024,
2130                    memory_bandwidth: 10.0,
2131                },
2132                magic_states: 20,
2133                error_budget: ErrorBudget {
2134                    total_budget: 1e-6,
2135                    gate_errors: 4e-7,
2136                    measurement_errors: 2e-7,
2137                    idle_errors: 2e-7,
2138                    crosstalk_errors: 1e-7,
2139                    readout_errors: 1e-7,
2140                },
2141            },
2142            complexity_metrics: ComplexityMetrics {
2143                t_complexity: 2,
2144                t_depth: 2,
2145                circuit_volume: 40,
2146                communication_complexity: 1.2,
2147                entanglement_complexity: 0.3,
2148                algorithmic_complexity: "Low".to_string(),
2149            },
2150            num_qubits: 4,
2151            circuit_size: 10,
2152        };
2153
2154        let options = EstimationOptions {
2155            target_platforms: vec![CloudPlatform::IBMQ],
2156            optimization_level: OptimizationLevel::Basic,
2157            include_alternatives: false,
2158            max_alternatives: 3,
2159        };
2160
2161        let costs = analyzer
2162            .analyze_costs(&[], &basic, &options)
2163            .expect("Failed to analyze costs in test_cost_analysis");
2164        assert!(costs.total_estimated_cost > 0.0);
2165    }
2166
2167    #[test]
2168    fn test_resource_scores() {
2169        let estimator = EnhancedResourceEstimator::new();
2170        let basic = BasicResourceAnalysis {
2171            gate_statistics: GateStatistics {
2172                total_gates: 10,
2173                gate_counts: HashMap::new(),
2174                gate_depths: HashMap::new(),
2175                gate_patterns: Vec::new(),
2176                clifford_count: 8,
2177                non_clifford_count: 2,
2178                two_qubit_count: 3,
2179                multi_qubit_count: 0,
2180            },
2181            circuit_topology: CircuitTopology {
2182                num_qubits: 4,
2183                connectivity_matrix: vec![vec![0; 4]; 4],
2184                connectivity_density: 0.3,
2185                max_connections: 2,
2186                critical_qubits: vec![],
2187                topology_type: TopologyType::Regular,
2188            },
2189            resource_requirements: ResourceRequirements {
2190                logical_qubits: 4,
2191                physical_qubits: 100,
2192                code_distance: 5,
2193                execution_time: 1e-3,
2194                memory_requirements: MemoryRequirements {
2195                    state_vector_memory: 256,
2196                    gate_storage_memory: 640,
2197                    workspace_memory: 128,
2198                    total_memory: 1024,
2199                    memory_bandwidth: 10.0,
2200                },
2201                magic_states: 20,
2202                error_budget: ErrorBudget {
2203                    total_budget: 1e-6,
2204                    gate_errors: 4e-7,
2205                    measurement_errors: 2e-7,
2206                    idle_errors: 2e-7,
2207                    crosstalk_errors: 1e-7,
2208                    readout_errors: 1e-7,
2209                },
2210            },
2211            complexity_metrics: ComplexityMetrics {
2212                t_complexity: 2,
2213                t_depth: 2,
2214                circuit_volume: 40,
2215                communication_complexity: 1.2,
2216                entanglement_complexity: 0.3,
2217                algorithmic_complexity: "Low".to_string(),
2218            },
2219            num_qubits: 4,
2220            circuit_size: 10,
2221        };
2222
2223        let scores = estimator.calculate_resource_scores(&basic, &None);
2224        assert!(scores.overall_score > 0.0);
2225        assert!(scores.overall_score <= 1.0);
2226    }
2227
2228    #[test]
2229    fn test_export_report() {
2230        let estimator = EnhancedResourceEstimator::new();
2231        let estimate = EnhancedResourceEstimate {
2232            basic_resources: BasicResourceAnalysis {
2233                gate_statistics: GateStatistics {
2234                    total_gates: 10,
2235                    gate_counts: HashMap::new(),
2236                    gate_depths: HashMap::new(),
2237                    gate_patterns: Vec::new(),
2238                    clifford_count: 8,
2239                    non_clifford_count: 2,
2240                    two_qubit_count: 3,
2241                    multi_qubit_count: 0,
2242                },
2243                circuit_topology: CircuitTopology {
2244                    num_qubits: 4,
2245                    connectivity_matrix: vec![vec![0; 4]; 4],
2246                    connectivity_density: 0.3,
2247                    max_connections: 2,
2248                    critical_qubits: vec![],
2249                    topology_type: TopologyType::Regular,
2250                },
2251                resource_requirements: ResourceRequirements {
2252                    logical_qubits: 4,
2253                    physical_qubits: 100,
2254                    code_distance: 5,
2255                    execution_time: 1e-3,
2256                    memory_requirements: MemoryRequirements {
2257                        state_vector_memory: 256,
2258                        gate_storage_memory: 640,
2259                        workspace_memory: 128,
2260                        total_memory: 1024,
2261                        memory_bandwidth: 10.0,
2262                    },
2263                    magic_states: 20,
2264                    error_budget: ErrorBudget {
2265                        total_budget: 1e-6,
2266                        gate_errors: 4e-7,
2267                        measurement_errors: 2e-7,
2268                        idle_errors: 2e-7,
2269                        crosstalk_errors: 1e-7,
2270                        readout_errors: 1e-7,
2271                    },
2272                },
2273                complexity_metrics: ComplexityMetrics {
2274                    t_complexity: 2,
2275                    t_depth: 2,
2276                    circuit_volume: 40,
2277                    communication_complexity: 1.2,
2278                    entanglement_complexity: 0.3,
2279                    algorithmic_complexity: "Low".to_string(),
2280                },
2281                num_qubits: 4,
2282                circuit_size: 10,
2283            },
2284            ml_predictions: None,
2285            cost_analysis: None,
2286            optimization_strategies: None,
2287            comparative_results: None,
2288            hardware_recommendations: None,
2289            scaling_predictions: None,
2290            visual_representations: HashMap::new(),
2291            tracking_data: None,
2292            resource_scores: ResourceScores {
2293                overall_score: 0.8,
2294                efficiency_score: 0.85,
2295                scalability_score: 0.75,
2296                feasibility_score: 0.8,
2297                optimization_potential: 0.3,
2298                readiness_level: ReadinessLevel::Experimental,
2299            },
2300            recommendations: Vec::new(),
2301            estimation_time: std::time::Duration::from_millis(100),
2302            platform_optimizations: Vec::new(),
2303        };
2304
2305        let json_report = estimator
2306            .export_report(&estimate, ReportFormat::JSON)
2307            .expect("Failed to export JSON report in test_export_report");
2308        assert!(json_report.contains("resource_scores"));
2309
2310        let md_report = estimator
2311            .export_report(&estimate, ReportFormat::Markdown)
2312            .expect("Failed to export Markdown report in test_export_report");
2313        assert!(md_report.contains("# Enhanced Resource Estimation Report"));
2314    }
2315}