1use crate::error::QuantRS2Error;
8use crate::gate_translation::GateType;
9use crate::resource_estimator::{
10 ErrorCorrectionCode, EstimationMode, HardwarePlatform, QuantumGate, ResourceEstimationConfig,
11};
12use scirs2_core::Complex64;
13use std::fmt::Write;
14use crate::parallel_ops_stubs::*;
16use crate::buffer_pool::BufferPool;
18use crate::platform::PlatformCapabilities;
19use scirs2_core::ndarray::{Array1, Array2};
20use serde::{Deserialize, Serialize};
21use std::collections::{BTreeMap, HashMap, HashSet, VecDeque};
22use std::fmt;
23use std::sync::{Arc, Mutex};
24
25#[derive(Debug, Clone, Serialize, Deserialize)]
27pub struct EnhancedResourceConfig {
28 pub base_config: ResourceEstimationConfig,
30
31 pub enable_ml_prediction: bool,
33
34 pub enable_cost_analysis: bool,
36
37 pub enable_optimization_strategies: bool,
39
40 pub enable_comparative_analysis: bool,
42
43 pub enable_realtime_tracking: bool,
45
46 pub enable_visual_representation: bool,
48
49 pub enable_hardware_recommendations: bool,
51
52 pub enable_scaling_predictions: bool,
54
55 pub cloud_platforms: Vec<CloudPlatform>,
57
58 pub optimization_objectives: Vec<OptimizationObjective>,
60
61 pub analysis_depth: AnalysisDepth,
63
64 pub custom_constraints: Vec<ResourceConstraint>,
66
67 pub export_formats: Vec<ReportFormat>,
69}
70
71impl Default for EnhancedResourceConfig {
72 fn default() -> Self {
73 Self {
74 base_config: ResourceEstimationConfig::default(),
75 enable_ml_prediction: true,
76 enable_cost_analysis: true,
77 enable_optimization_strategies: true,
78 enable_comparative_analysis: true,
79 enable_realtime_tracking: true,
80 enable_visual_representation: true,
81 enable_hardware_recommendations: true,
82 enable_scaling_predictions: true,
83 cloud_platforms: vec![
84 CloudPlatform::IBMQ,
85 CloudPlatform::AzureQuantum,
86 CloudPlatform::AmazonBraket,
87 ],
88 optimization_objectives: vec![
89 OptimizationObjective::MinimizeTime,
90 OptimizationObjective::MinimizeQubits,
91 OptimizationObjective::MinimizeCost,
92 ],
93 analysis_depth: AnalysisDepth::Comprehensive,
94 custom_constraints: Vec::new(),
95 export_formats: vec![ReportFormat::JSON, ReportFormat::HTML, ReportFormat::PDF],
96 }
97 }
98}
99
100#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
102pub enum CloudPlatform {
103 IBMQ,
104 AzureQuantum,
105 AmazonBraket,
106 GoogleQuantumAI,
107 IonQ,
108 Rigetti,
109}
110
111#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
113pub enum OptimizationObjective {
114 MinimizeTime,
115 MinimizeQubits,
116 MinimizeCost,
117 MaximizeFidelity,
118 MinimizeDepth,
119 BalancedOptimization,
120}
121
122#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
124pub enum AnalysisDepth {
125 Basic,
126 Standard,
127 Detailed,
128 Comprehensive,
129}
130
131#[derive(Debug, Clone, Serialize, Deserialize)]
133pub struct ResourceConstraint {
134 pub constraint_type: ConstraintType,
135 pub value: f64,
136 pub priority: ConstraintPriority,
137}
138
139#[derive(Debug, Clone, Serialize, Deserialize)]
141pub enum ConstraintType {
142 MaxQubits(usize),
143 MaxTime(f64),
144 MaxCost(f64),
145 MinFidelity(f64),
146 MaxDepth(usize),
147}
148
149#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
151pub enum ConstraintPriority {
152 Hard,
153 Soft,
154 Preference,
155}
156
157#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
159pub enum ReportFormat {
160 JSON,
161 YAML,
162 HTML,
163 PDF,
164 Markdown,
165 LaTeX,
166}
167
168pub struct EnhancedResourceEstimator {
170 config: EnhancedResourceConfig,
171 ml_predictor: MLResourcePredictor,
172 cost_analyzer: CostAnalyzer,
173 optimization_engine: OptimizationEngine,
174 comparative_analyzer: ComparativeAnalyzer,
175 realtime_tracker: RealtimeResourceTracker,
176 visual_generator: VisualResourceGenerator,
177 hardware_recommender: HardwareRecommender,
178 scaling_predictor: ScalingPredictor,
179 platform_capabilities: PlatformCapabilities,
180}
181
182impl EnhancedResourceEstimator {
183 pub fn new() -> Self {
185 let config = EnhancedResourceConfig::default();
186 Self::with_config(config)
187 }
188
189 pub fn with_config(config: EnhancedResourceConfig) -> Self {
191 let platform_capabilities = PlatformCapabilities::detect();
192
193 Self {
194 config,
195 ml_predictor: MLResourcePredictor::new(),
196 cost_analyzer: CostAnalyzer::new(),
197 optimization_engine: OptimizationEngine::new(),
198 comparative_analyzer: ComparativeAnalyzer::new(),
199 realtime_tracker: RealtimeResourceTracker::new(),
200 visual_generator: VisualResourceGenerator::new(),
201 hardware_recommender: HardwareRecommender::new(),
202 scaling_predictor: ScalingPredictor::new(),
203 platform_capabilities,
204 }
205 }
206
207 pub fn estimate_resources_enhanced(
209 &self,
210 circuit: &[QuantumGate],
211 num_qubits: usize,
212 options: EstimationOptions,
213 ) -> Result<EnhancedResourceEstimate, QuantRS2Error> {
214 let start_time = std::time::Instant::now();
215
216 let basic_analysis = self.perform_basic_analysis(circuit, num_qubits)?;
218
219 let ml_predictions = if self.config.enable_ml_prediction {
221 Some(
222 self.ml_predictor
223 .predict_resources(circuit, &basic_analysis)?,
224 )
225 } else {
226 None
227 };
228
229 let cost_analysis = if self.config.enable_cost_analysis {
231 Some(
232 self.cost_analyzer
233 .analyze_costs(circuit, &basic_analysis, &options)?,
234 )
235 } else {
236 None
237 };
238
239 let optimization_strategies = if self.config.enable_optimization_strategies {
241 Some(self.optimization_engine.generate_strategies(
242 circuit,
243 &basic_analysis,
244 &self.config.optimization_objectives,
245 )?)
246 } else {
247 None
248 };
249
250 let comparative_results = if self.config.enable_comparative_analysis {
252 Some(
253 self.comparative_analyzer
254 .compare_approaches(circuit, &basic_analysis)?,
255 )
256 } else {
257 None
258 };
259
260 let hardware_recommendations = if self.config.enable_hardware_recommendations {
262 Some(self.hardware_recommender.recommend_hardware(
263 circuit,
264 &basic_analysis,
265 &options,
266 )?)
267 } else {
268 None
269 };
270
271 let scaling_predictions = if self.config.enable_scaling_predictions {
273 Some(
274 self.scaling_predictor
275 .predict_scaling(circuit, &basic_analysis)?,
276 )
277 } else {
278 None
279 };
280
281 let visual_representations = if self.config.enable_visual_representation {
283 self.visual_generator
284 .generate_visuals(&basic_analysis, &ml_predictions)?
285 } else {
286 HashMap::new()
287 };
288
289 let tracking_data = if self.config.enable_realtime_tracking {
291 Some(self.realtime_tracker.get_tracking_data()?)
292 } else {
293 None
294 };
295
296 let resource_scores = self.calculate_resource_scores(&basic_analysis, &ml_predictions);
298
299 let recommendations = self.generate_recommendations(
301 &basic_analysis,
302 &ml_predictions,
303 &cost_analysis,
304 &optimization_strategies,
305 )?;
306
307 Ok(EnhancedResourceEstimate {
308 basic_resources: basic_analysis,
309 ml_predictions,
310 cost_analysis,
311 optimization_strategies,
312 comparative_results,
313 hardware_recommendations,
314 scaling_predictions,
315 visual_representations,
316 tracking_data,
317 resource_scores,
318 recommendations,
319 estimation_time: start_time.elapsed(),
320 platform_optimizations: self.identify_platform_optimizations(),
321 })
322 }
323
324 fn perform_basic_analysis(
326 &self,
327 circuit: &[QuantumGate],
328 num_qubits: usize,
329 ) -> Result<BasicResourceAnalysis, QuantRS2Error> {
330 let gate_stats = self.analyze_gate_statistics(circuit)?;
332
333 let topology = self.analyze_circuit_topology(circuit, num_qubits)?;
335
336 let requirements = self.calculate_resource_requirements(&gate_stats, &topology)?;
338
339 let complexity = self.calculate_complexity_metrics(circuit, &topology)?;
341
342 Ok(BasicResourceAnalysis {
343 gate_statistics: gate_stats,
344 circuit_topology: topology,
345 resource_requirements: requirements,
346 complexity_metrics: complexity,
347 num_qubits,
348 circuit_size: circuit.len(),
349 })
350 }
351
352 fn analyze_gate_statistics(
354 &self,
355 circuit: &[QuantumGate],
356 ) -> Result<GateStatistics, QuantRS2Error> {
357 let mut gate_counts = HashMap::new();
358 let mut gate_depths = HashMap::new();
359 let mut gate_patterns = Vec::new();
360
361 let cpu_count = PlatformCapabilities::detect().cpu.logical_cores;
363 if circuit.len() > 1000 && cpu_count > 1 {
364 let chunk_size = circuit.len() / cpu_count;
365 let counts: Vec<HashMap<String, usize>> = circuit
366 .par_chunks(chunk_size)
367 .map(|chunk| {
368 let mut local_counts = HashMap::new();
369 for gate in chunk {
370 let gate_type = format!("{:?}", gate.gate_type());
371 *local_counts.entry(gate_type).or_insert(0) += 1;
372 }
373 local_counts
374 })
375 .collect();
376
377 for local_count in counts {
379 for (gate_type, count) in local_count {
380 *gate_counts.entry(gate_type).or_insert(0) += count;
381 }
382 }
383 } else {
384 for gate in circuit {
386 let gate_type = format!("{:?}", gate.gate_type());
387 *gate_counts.entry(gate_type).or_insert(0) += 1;
388 }
389 }
390
391 gate_patterns = self.detect_gate_patterns(circuit)?;
393
394 gate_depths = Self::calculate_gate_depths(circuit)?;
396
397 Ok(GateStatistics {
398 total_gates: circuit.len(),
399 gate_counts,
400 gate_depths,
401 gate_patterns,
402 clifford_count: Self::count_clifford_gates(circuit),
403 non_clifford_count: Self::count_non_clifford_gates(circuit),
404 two_qubit_count: Self::count_two_qubit_gates(circuit),
405 multi_qubit_count: Self::count_multi_qubit_gates(circuit),
406 })
407 }
408
409 fn detect_gate_patterns(
411 &self,
412 circuit: &[QuantumGate],
413 ) -> Result<Vec<GatePattern>, QuantRS2Error> {
414 let mut patterns = Vec::new();
415
416 let pattern_checks = vec![
418 ("QFT", Self::detect_qft_pattern(circuit)?),
419 ("Grover", Self::detect_grover_pattern(circuit)?),
420 ("QAOA", Self::detect_qaoa_pattern(circuit)?),
421 ("VQE", Self::detect_vqe_pattern(circuit)?),
422 ("Entanglement", Self::detect_entanglement_pattern(circuit)?),
423 ];
424
425 for (name, instances_opt) in pattern_checks {
426 if let Some(instances) = instances_opt {
427 patterns.push(GatePattern {
428 pattern_type: name.to_string(),
429 instances,
430 resource_impact: Self::estimate_pattern_impact(name),
431 });
432 }
433 }
434
435 Ok(patterns)
436 }
437
438 fn detect_qft_pattern(
440 circuit: &[QuantumGate],
441 ) -> Result<Option<Vec<PatternInstance>>, QuantRS2Error> {
442 let mut instances = Vec::new();
444
445 for i in 0..circuit.len() {
447 if matches!(circuit[i].gate_type(), GateType::H) {
448 let mut has_rotations = false;
450 for j in i + 1..circuit.len().min(i + 10) {
451 if matches!(circuit[j].gate_type(), GateType::Phase(_) | GateType::Rz(_)) {
452 has_rotations = true;
453 break;
454 }
455 }
456
457 if has_rotations {
458 instances.push(PatternInstance {
459 start_index: i,
460 end_index: i + 10,
461 confidence: 0.7,
462 });
463 }
464 }
465 }
466
467 if instances.is_empty() {
468 Ok(None)
469 } else {
470 Ok(Some(instances))
471 }
472 }
473
474 const fn detect_grover_pattern(
476 _circuit: &[QuantumGate],
477 ) -> Result<Option<Vec<PatternInstance>>, QuantRS2Error> {
478 Ok(None)
480 }
481
482 const fn detect_qaoa_pattern(
484 _circuit: &[QuantumGate],
485 ) -> Result<Option<Vec<PatternInstance>>, QuantRS2Error> {
486 Ok(None)
488 }
489
490 const fn detect_vqe_pattern(
492 _circuit: &[QuantumGate],
493 ) -> Result<Option<Vec<PatternInstance>>, QuantRS2Error> {
494 Ok(None)
496 }
497
498 fn detect_entanglement_pattern(
500 circuit: &[QuantumGate],
501 ) -> Result<Option<Vec<PatternInstance>>, QuantRS2Error> {
502 let mut instances = Vec::new();
503
504 for i in 0..circuit.len() {
506 if matches!(circuit[i].gate_type(), GateType::CNOT | GateType::CZ) {
507 let mut j = i + 1;
508 while j < circuit.len()
509 && matches!(circuit[j].gate_type(), GateType::CNOT | GateType::CZ)
510 {
511 j += 1;
512 }
513
514 if j - i >= 3 {
515 instances.push(PatternInstance {
516 start_index: i,
517 end_index: j,
518 confidence: 0.9,
519 });
520 }
521 }
522 }
523
524 if instances.is_empty() {
525 Ok(None)
526 } else {
527 Ok(Some(instances))
528 }
529 }
530
531 fn estimate_pattern_impact(pattern_name: &str) -> f64 {
533 match pattern_name {
534 "QFT" => 2.5, "Grover" => 1.8,
536 "QAOA" => 2.0,
537 "VQE" => 2.2,
538 "Entanglement" => 1.5,
539 _ => 1.0,
540 }
541 }
542
543 fn calculate_gate_depths(
545 circuit: &[QuantumGate],
546 ) -> Result<HashMap<String, usize>, QuantRS2Error> {
547 let mut depths = HashMap::new();
548 let mut qubit_depths = HashMap::new();
549
550 for gate in circuit {
551 let max_depth = gate
552 .target_qubits()
553 .iter()
554 .chain(gate.control_qubits().unwrap_or(&[]).iter())
555 .map(|&q| qubit_depths.get(&q).copied().unwrap_or(0))
556 .max()
557 .unwrap_or(0);
558
559 let new_depth = max_depth + 1;
560
561 for &qubit in gate.target_qubits() {
562 qubit_depths.insert(qubit, new_depth);
563 }
564 for &qubit in gate.control_qubits().unwrap_or(&[]) {
565 qubit_depths.insert(qubit, new_depth);
566 }
567
568 let gate_type = format!("{:?}", gate.gate_type());
569 depths.insert(gate_type, new_depth);
570 }
571
572 Ok(depths)
573 }
574
575 fn count_clifford_gates(circuit: &[QuantumGate]) -> usize {
577 circuit
578 .iter()
579 .filter(|gate| {
580 matches!(
581 gate.gate_type(),
582 GateType::X
583 | GateType::Y
584 | GateType::Z
585 | GateType::H
586 | GateType::S
587 | GateType::CNOT
588 | GateType::CZ
589 )
590 })
591 .count()
592 }
593
594 fn count_non_clifford_gates(circuit: &[QuantumGate]) -> usize {
596 circuit
597 .iter()
598 .filter(|gate| {
599 matches!(
600 gate.gate_type(),
601 GateType::T
602 | GateType::Phase(_)
603 | GateType::Rx(_)
604 | GateType::Ry(_)
605 | GateType::Rz(_)
606 )
607 })
608 .count()
609 }
610
611 fn count_two_qubit_gates(circuit: &[QuantumGate]) -> usize {
613 circuit
614 .iter()
615 .filter(|gate| gate.target_qubits().len() == 2)
616 .count()
617 }
618
619 fn count_multi_qubit_gates(circuit: &[QuantumGate]) -> usize {
621 circuit
622 .iter()
623 .filter(|gate| gate.target_qubits().len() > 2)
624 .count()
625 }
626
627 fn analyze_circuit_topology(
629 &self,
630 circuit: &[QuantumGate],
631 num_qubits: usize,
632 ) -> Result<CircuitTopology, QuantRS2Error> {
633 let mut connectivity = vec![vec![0; num_qubits]; num_qubits];
635 let mut interaction_count = 0;
636
637 for gate in circuit {
638 if gate.target_qubits().len() >= 2 {
639 let q1 = gate.target_qubits()[0];
640 let q2 = gate.target_qubits()[1];
641 connectivity[q1][q2] += 1;
642 connectivity[q2][q1] += 1;
643 interaction_count += 1;
644 }
645 }
646
647 let connectivity_density = if num_qubits > 1 {
649 interaction_count as f64 / ((num_qubits * (num_qubits - 1)) / 2) as f64
650 } else {
651 0.0
652 };
653
654 let max_connections = connectivity
655 .iter()
656 .map(|row| row.iter().filter(|&&x| x > 0).count())
657 .max()
658 .unwrap_or(0);
659
660 let critical_qubits = Self::identify_critical_qubits(&connectivity)?;
661
662 Ok(CircuitTopology {
663 num_qubits,
664 connectivity_matrix: connectivity.clone(),
665 connectivity_density,
666 max_connections,
667 critical_qubits,
668 topology_type: Self::classify_topology(&connectivity, connectivity_density),
669 })
670 }
671
672 fn identify_critical_qubits(connectivity: &[Vec<usize>]) -> Result<Vec<usize>, QuantRS2Error> {
674 let mut critical = Vec::new();
675 let avg_connections: f64 = connectivity
676 .iter()
677 .map(|row| row.iter().filter(|&&x| x > 0).count() as f64)
678 .sum::<f64>()
679 / connectivity.len() as f64;
680
681 for (i, row) in connectivity.iter().enumerate() {
682 let connections = row.iter().filter(|&&x| x > 0).count() as f64;
683 if connections > avg_connections * 1.5 {
684 critical.push(i);
685 }
686 }
687
688 Ok(critical)
689 }
690
691 fn classify_topology(_connectivity: &[Vec<usize>], density: f64) -> TopologyType {
693 if density < 0.1 {
694 TopologyType::Sparse
695 } else if density < 0.3 {
696 TopologyType::Regular
697 } else if density < 0.6 {
698 TopologyType::Dense
699 } else {
700 TopologyType::AllToAll
701 }
702 }
703
704 fn calculate_resource_requirements(
706 &self,
707 gate_stats: &GateStatistics,
708 topology: &CircuitTopology,
709 ) -> Result<ResourceRequirements, QuantRS2Error> {
710 let code_distance = self.estimate_code_distance()?;
712 let physical_qubits = self.estimate_physical_qubits(topology.num_qubits, code_distance)?;
713
714 let execution_time = self.estimate_execution_time(gate_stats)?;
716
717 let memory_requirements =
719 self.estimate_memory_requirements(topology.num_qubits, gate_stats)?;
720
721 let magic_states = self.estimate_magic_states(gate_stats)?;
723
724 Ok(ResourceRequirements {
725 logical_qubits: topology.num_qubits,
726 physical_qubits,
727 code_distance,
728 execution_time,
729 memory_requirements,
730 magic_states,
731 error_budget: self.calculate_error_budget()?,
732 })
733 }
734
735 fn estimate_code_distance(&self) -> Result<usize, QuantRS2Error> {
737 let p = self.config.base_config.physical_error_rate;
738 let p_target = self.config.base_config.target_logical_error_rate;
739
740 let threshold = 0.01; if p > threshold {
742 return Err(QuantRS2Error::InvalidInput(
743 "Physical error rate too high".into(),
744 ));
745 }
746
747 let distance = ((-p_target.log10()) / (-p.log10())).ceil() as usize;
748 Ok(distance.max(3))
749 }
750
751 const fn estimate_physical_qubits(
753 &self,
754 logical_qubits: usize,
755 code_distance: usize,
756 ) -> Result<usize, QuantRS2Error> {
757 let qubits_per_logical = match self.config.base_config.error_correction_code {
758 ErrorCorrectionCode::SurfaceCode => 2 * code_distance * code_distance,
759 ErrorCorrectionCode::ColorCode => 3 * code_distance * code_distance,
760 _ => code_distance * code_distance,
761 };
762
763 Ok(logical_qubits * qubits_per_logical)
764 }
765
766 fn estimate_execution_time(&self, gate_stats: &GateStatistics) -> Result<f64, QuantRS2Error> {
768 let mut total_time = 0.0;
769
770 let gate_times = self.get_gate_times()?;
772
773 for (gate_type, count) in &gate_stats.gate_counts {
774 let time = gate_times.get(gate_type).copied().unwrap_or(1e-6);
775 total_time += time * (*count as f64);
776 }
777
778 total_time *= 1.5;
780
781 Ok(total_time)
782 }
783
784 fn get_gate_times(&self) -> Result<HashMap<String, f64>, QuantRS2Error> {
786 let mut times = HashMap::new();
787
788 match self.config.base_config.hardware_platform {
789 HardwarePlatform::Superconducting => {
790 times.insert("X".to_string(), 20e-9);
791 times.insert("Y".to_string(), 20e-9);
792 times.insert("Z".to_string(), 1e-9);
793 times.insert("H".to_string(), 20e-9);
794 times.insert("CNOT".to_string(), 40e-9);
795 times.insert("T".to_string(), 20e-9);
796 }
797 HardwarePlatform::TrappedIon => {
798 times.insert("X".to_string(), 10e-6);
799 times.insert("Y".to_string(), 10e-6);
800 times.insert("Z".to_string(), 1e-6);
801 times.insert("H".to_string(), 10e-6);
802 times.insert("CNOT".to_string(), 100e-6);
803 times.insert("T".to_string(), 10e-6);
804 }
805 _ => {
806 times.insert("X".to_string(), 1e-6);
808 times.insert("Y".to_string(), 1e-6);
809 times.insert("Z".to_string(), 1e-6);
810 times.insert("H".to_string(), 1e-6);
811 times.insert("CNOT".to_string(), 2e-6);
812 times.insert("T".to_string(), 1e-6);
813 }
814 }
815
816 Ok(times)
817 }
818
819 fn estimate_memory_requirements(
821 &self,
822 num_qubits: usize,
823 gate_stats: &GateStatistics,
824 ) -> Result<MemoryRequirements, QuantRS2Error> {
825 let state_vector_size = (1 << num_qubits) * 16; let gate_memory = gate_stats.total_gates * 64; let workspace = state_vector_size / 2; Ok(MemoryRequirements {
830 state_vector_memory: state_vector_size,
831 gate_storage_memory: gate_memory,
832 workspace_memory: workspace,
833 total_memory: state_vector_size + gate_memory + workspace,
834 memory_bandwidth: self.estimate_memory_bandwidth(gate_stats)?,
835 })
836 }
837
838 fn estimate_memory_bandwidth(&self, gate_stats: &GateStatistics) -> Result<f64, QuantRS2Error> {
840 let ops_per_second = 1e9; let bytes_per_op = 32.0; Ok(ops_per_second * bytes_per_op / 1e9)
845 }
846
847 const fn estimate_magic_states(
849 &self,
850 gate_stats: &GateStatistics,
851 ) -> Result<usize, QuantRS2Error> {
852 let t_gates = gate_stats.non_clifford_count;
853
854 let overhead = match self.config.base_config.estimation_mode {
856 EstimationMode::Conservative => 15,
857 EstimationMode::Optimistic => 10,
858 EstimationMode::Realistic => 12,
859 };
860
861 Ok(t_gates * overhead)
862 }
863
864 fn calculate_error_budget(&self) -> Result<ErrorBudget, QuantRS2Error> {
866 let total = self.config.base_config.target_logical_error_rate;
867
868 Ok(ErrorBudget {
869 total_budget: total,
870 gate_errors: total * 0.4,
871 measurement_errors: total * 0.2,
872 idle_errors: total * 0.2,
873 crosstalk_errors: total * 0.1,
874 readout_errors: total * 0.1,
875 })
876 }
877
878 fn calculate_complexity_metrics(
880 &self,
881 circuit: &[QuantumGate],
882 topology: &CircuitTopology,
883 ) -> Result<ComplexityMetrics, QuantRS2Error> {
884 let t_complexity = circuit
886 .iter()
887 .filter(|g| matches!(g.gate_type(), GateType::T))
888 .count();
889
890 let t_depth = self.calculate_t_depth(circuit)?;
892
893 let circuit_volume = topology.num_qubits * circuit.len();
895
896 let communication_complexity = topology.connectivity_density * topology.num_qubits as f64;
898
899 let entanglement_complexity = self.estimate_entanglement_complexity(circuit)?;
901
902 Ok(ComplexityMetrics {
903 t_complexity,
904 t_depth,
905 circuit_volume,
906 communication_complexity,
907 entanglement_complexity,
908 algorithmic_complexity: self.classify_algorithmic_complexity(circuit)?,
909 })
910 }
911
912 fn calculate_t_depth(&self, circuit: &[QuantumGate]) -> Result<usize, QuantRS2Error> {
914 let mut qubit_t_depths = HashMap::new();
915 let mut max_t_depth = 0;
916
917 for gate in circuit {
918 if matches!(gate.gate_type(), GateType::T) {
919 let current_depth = gate
920 .target_qubits()
921 .iter()
922 .map(|&q| qubit_t_depths.get(&q).copied().unwrap_or(0))
923 .max()
924 .unwrap_or(0);
925
926 let new_depth = current_depth + 1;
927 for &qubit in gate.target_qubits() {
928 qubit_t_depths.insert(qubit, new_depth);
929 max_t_depth = max_t_depth.max(new_depth);
930 }
931 }
932 }
933
934 Ok(max_t_depth)
935 }
936
937 fn estimate_entanglement_complexity(
939 &self,
940 circuit: &[QuantumGate],
941 ) -> Result<f64, QuantRS2Error> {
942 let entangling_gates = circuit
943 .iter()
944 .filter(|g| g.target_qubits().len() >= 2)
945 .count();
946
947 let total_gates = circuit.len().max(1);
948 Ok(entangling_gates as f64 / total_gates as f64)
949 }
950
951 fn classify_algorithmic_complexity(
953 &self,
954 circuit: &[QuantumGate],
955 ) -> Result<String, QuantRS2Error> {
956 let depth = circuit.len();
957 let two_qubit_ratio =
958 Self::count_two_qubit_gates(circuit) as f64 / circuit.len().max(1) as f64;
959
960 if depth < 100 && two_qubit_ratio < 0.2 {
961 Ok("Low (BQP-easy)".to_string())
962 } else if depth < 1000 && two_qubit_ratio < 0.5 {
963 Ok("Medium (BQP-intermediate)".to_string())
964 } else {
965 Ok("High (BQP-hard)".to_string())
966 }
967 }
968
969 fn calculate_resource_scores(
971 &self,
972 basic: &BasicResourceAnalysis,
973 ml_predictions: &Option<MLPredictions>,
974 ) -> ResourceScores {
975 let efficiency_score = self.calculate_efficiency_score(basic);
976 let scalability_score = self.calculate_scalability_score(basic);
977 let feasibility_score = self.calculate_feasibility_score(basic, ml_predictions);
978 let optimization_potential = self.calculate_optimization_potential(basic);
979
980 ResourceScores {
981 overall_score: (efficiency_score + scalability_score + feasibility_score) / 3.0,
982 efficiency_score,
983 scalability_score,
984 feasibility_score,
985 optimization_potential,
986 readiness_level: self.determine_readiness_level(feasibility_score),
987 }
988 }
989
990 fn calculate_efficiency_score(&self, basic: &BasicResourceAnalysis) -> f64 {
992 let gate_efficiency = 1.0 / (1.0 + basic.gate_statistics.total_gates as f64 / 1000.0);
993 let depth_efficiency = 1.0 / (1.0 + basic.complexity_metrics.t_depth as f64 / 100.0);
994 let qubit_efficiency = 1.0 / (1.0 + basic.num_qubits as f64 / 50.0);
995
996 (gate_efficiency + depth_efficiency + qubit_efficiency) / 3.0
997 }
998
999 fn calculate_scalability_score(&self, basic: &BasicResourceAnalysis) -> f64 {
1001 let connectivity_score = 1.0 - basic.circuit_topology.connectivity_density.min(1.0);
1002 let volume_score = 1.0 / (1.0 + (basic.complexity_metrics.circuit_volume as f64).log10());
1003
1004 f64::midpoint(connectivity_score, volume_score)
1005 }
1006
1007 const fn calculate_feasibility_score(
1009 &self,
1010 basic: &BasicResourceAnalysis,
1011 ml_predictions: &Option<MLPredictions>,
1012 ) -> f64 {
1013 let base_score = if basic.resource_requirements.physical_qubits < 1000 {
1014 0.9
1015 } else if basic.resource_requirements.physical_qubits < 10000 {
1016 0.6
1017 } else {
1018 0.3
1019 };
1020
1021 if let Some(predictions) = ml_predictions {
1022 f64::midpoint(base_score, predictions.feasibility_confidence)
1023 } else {
1024 base_score
1025 }
1026 }
1027
1028 fn calculate_optimization_potential(&self, basic: &BasicResourceAnalysis) -> f64 {
1030 let pattern_potential = basic.gate_statistics.gate_patterns.len() as f64 * 0.1;
1031 let redundancy_potential = 0.2; (pattern_potential + redundancy_potential).min(1.0)
1034 }
1035
1036 fn determine_readiness_level(&self, feasibility_score: f64) -> ReadinessLevel {
1038 if feasibility_score > 0.8 {
1039 ReadinessLevel::ProductionReady
1040 } else if feasibility_score > 0.6 {
1041 ReadinessLevel::Experimental
1042 } else if feasibility_score > 0.4 {
1043 ReadinessLevel::Research
1044 } else {
1045 ReadinessLevel::Theoretical
1046 }
1047 }
1048
1049 fn generate_recommendations(
1051 &self,
1052 basic: &BasicResourceAnalysis,
1053 ml_predictions: &Option<MLPredictions>,
1054 cost_analysis: &Option<CostAnalysisResult>,
1055 optimization_strategies: &Option<Vec<OptimizationStrategy>>,
1056 ) -> Result<Vec<Recommendation>, QuantRS2Error> {
1057 let mut recommendations = Vec::new();
1058
1059 if basic.gate_statistics.non_clifford_count > 100 {
1061 recommendations.push(Recommendation {
1062 category: RecommendationCategory::Optimization,
1063 priority: Priority::High,
1064 title: "Reduce T-gate count".to_string(),
1065 description:
1066 "High number of non-Clifford gates detected. Consider T-gate optimization."
1067 .to_string(),
1068 expected_impact: Impact::Significant,
1069 implementation_effort: Effort::Medium,
1070 });
1071 }
1072
1073 if let Some(predictions) = ml_predictions {
1075 for suggestion in &predictions.optimization_suggestions {
1076 recommendations.push(Recommendation {
1077 category: RecommendationCategory::MLSuggestion,
1078 priority: Priority::Medium,
1079 title: suggestion.clone(),
1080 description: "ML-based optimization suggestion".to_string(),
1081 expected_impact: Impact::Moderate,
1082 implementation_effort: Effort::Low,
1083 });
1084 }
1085 }
1086
1087 if let Some(costs) = cost_analysis {
1089 if costs.total_estimated_cost > 1000.0 {
1090 recommendations.push(Recommendation {
1091 category: RecommendationCategory::Cost,
1092 priority: Priority::High,
1093 title: "Consider cost optimization".to_string(),
1094 description: format!(
1095 "Estimated cost ${:.2} is high. Consider circuit optimization.",
1096 costs.total_estimated_cost
1097 ),
1098 expected_impact: Impact::Significant,
1099 implementation_effort: Effort::High,
1100 });
1101 }
1102 }
1103
1104 if let Some(strategies) = optimization_strategies {
1106 for strategy in strategies.iter().take(3) {
1107 recommendations.push(Recommendation {
1108 category: RecommendationCategory::Strategy,
1109 priority: Priority::Medium,
1110 title: strategy.name.clone(),
1111 description: strategy.description.clone(),
1112 expected_impact: Impact::Moderate,
1113 implementation_effort: Effort::Medium,
1114 });
1115 }
1116 }
1117
1118 Ok(recommendations)
1119 }
1120
1121 fn identify_platform_optimizations(&self) -> Vec<PlatformOptimization> {
1123 let mut optimizations = Vec::new();
1124
1125 if self.platform_capabilities.simd_available() {
1126 optimizations.push(PlatformOptimization {
1127 platform_feature: "SIMD".to_string(),
1128 optimization_type: "Vectorized state operations".to_string(),
1129 expected_speedup: 2.5,
1130 applicable: true,
1131 });
1132 }
1133
1134 let cpu_count = PlatformCapabilities::detect().cpu.logical_cores;
1135 if cpu_count > 4 {
1136 optimizations.push(PlatformOptimization {
1137 platform_feature: "Multi-core".to_string(),
1138 optimization_type: "Parallel gate execution".to_string(),
1139 expected_speedup: cpu_count as f64 * 0.7,
1140 applicable: true,
1141 });
1142 }
1143
1144 optimizations
1145 }
1146
1147 pub const fn start_monitoring(&mut self) -> Result<(), QuantRS2Error> {
1149 self.realtime_tracker.start_monitoring()
1150 }
1151
1152 pub const fn stop_monitoring(&mut self) -> Result<MonitoringReport, QuantRS2Error> {
1154 self.realtime_tracker.stop_monitoring()
1155 }
1156
1157 pub fn export_report(
1159 &self,
1160 estimate: &EnhancedResourceEstimate,
1161 format: ReportFormat,
1162 ) -> Result<String, QuantRS2Error> {
1163 match format {
1164 ReportFormat::JSON => self.export_json_report(estimate),
1165 ReportFormat::HTML => self.export_html_report(estimate),
1166 ReportFormat::PDF => self.export_pdf_report(estimate),
1167 ReportFormat::Markdown => self.export_markdown_report(estimate),
1168 ReportFormat::LaTeX => self.export_latex_report(estimate),
1169 ReportFormat::YAML => Err(QuantRS2Error::UnsupportedOperation(
1170 "Format not supported".into(),
1171 )),
1172 }
1173 }
1174
1175 fn export_json_report(
1177 &self,
1178 estimate: &EnhancedResourceEstimate,
1179 ) -> Result<String, QuantRS2Error> {
1180 serde_json::to_string_pretty(estimate)
1181 .map_err(|e| QuantRS2Error::ComputationError(format!("JSON serialization failed: {e}")))
1182 }
1183
1184 fn export_html_report(
1186 &self,
1187 estimate: &EnhancedResourceEstimate,
1188 ) -> Result<String, QuantRS2Error> {
1189 let mut html = String::new();
1190 html.push_str(
1191 "<!DOCTYPE html><html><head><title>Resource Estimation Report</title></head><body>",
1192 );
1193 html.push_str("<h1>Enhanced Resource Estimation Report</h1>");
1194 write!(
1195 html,
1196 "<p>Estimation Time: {:?}</p>",
1197 estimate.estimation_time
1198 )
1199 .expect("Failed to write estimation time to HTML report");
1200 write!(
1201 html,
1202 "<p>Overall Score: {:.2}</p>",
1203 estimate.resource_scores.overall_score
1204 )
1205 .expect("Failed to write overall score to HTML report");
1206 html.push_str("</body></html>");
1207 Ok(html)
1208 }
1209
1210 fn export_pdf_report(
1212 &self,
1213 _estimate: &EnhancedResourceEstimate,
1214 ) -> Result<String, QuantRS2Error> {
1215 Ok("PDF export not implemented".to_string())
1217 }
1218
1219 fn export_markdown_report(
1221 &self,
1222 estimate: &EnhancedResourceEstimate,
1223 ) -> Result<String, QuantRS2Error> {
1224 let mut md = String::new();
1225 md.push_str("# Enhanced Resource Estimation Report\n\n");
1226 write!(
1227 md,
1228 "**Estimation Time**: {:?}\n\n",
1229 estimate.estimation_time
1230 )
1231 .expect("Failed to write estimation time to Markdown report");
1232 md.push_str("## Resource Scores\n\n");
1233 writeln!(
1234 md,
1235 "- Overall Score: {:.2}",
1236 estimate.resource_scores.overall_score
1237 )
1238 .expect("Failed to write overall score to Markdown report");
1239 writeln!(
1240 md,
1241 "- Efficiency: {:.2}",
1242 estimate.resource_scores.efficiency_score
1243 )
1244 .expect("Failed to write efficiency score to Markdown report");
1245 writeln!(
1246 md,
1247 "- Scalability: {:.2}",
1248 estimate.resource_scores.scalability_score
1249 )
1250 .expect("Failed to write scalability score to Markdown report");
1251 writeln!(
1252 md,
1253 "- Feasibility: {:.2}",
1254 estimate.resource_scores.feasibility_score
1255 )
1256 .expect("Failed to write feasibility score to Markdown report");
1257 Ok(md)
1258 }
1259
1260 fn export_latex_report(
1262 &self,
1263 _estimate: &EnhancedResourceEstimate,
1264 ) -> Result<String, QuantRS2Error> {
1265 Ok("\\documentclass{article}\n\\begin{document}\nResource Estimation Report\n\\end{document}".to_string())
1266 }
1267}
1268
1269#[derive(Debug, Clone, Serialize, Deserialize)]
1271pub struct EnhancedResourceEstimate {
1272 pub basic_resources: BasicResourceAnalysis,
1273 pub ml_predictions: Option<MLPredictions>,
1274 pub cost_analysis: Option<CostAnalysisResult>,
1275 pub optimization_strategies: Option<Vec<OptimizationStrategy>>,
1276 pub comparative_results: Option<ComparativeAnalysis>,
1277 pub hardware_recommendations: Option<Vec<HardwareRecommendation>>,
1278 pub scaling_predictions: Option<ScalingPredictions>,
1279 pub visual_representations: HashMap<String, VisualRepresentation>,
1280 pub tracking_data: Option<TrackingData>,
1281 pub resource_scores: ResourceScores,
1282 pub recommendations: Vec<Recommendation>,
1283 pub estimation_time: std::time::Duration,
1284 pub platform_optimizations: Vec<PlatformOptimization>,
1285}
1286
1287#[derive(Debug, Clone)]
1289pub struct EstimationOptions {
1290 pub target_platforms: Vec<CloudPlatform>,
1291 pub optimization_level: OptimizationLevel,
1292 pub include_alternatives: bool,
1293 pub max_alternatives: usize,
1294}
1295
1296#[derive(Debug, Clone, Copy)]
1298pub enum OptimizationLevel {
1299 None,
1300 Basic,
1301 Aggressive,
1302 Maximum,
1303}
1304
1305#[derive(Debug, Clone, Serialize, Deserialize)]
1307pub struct BasicResourceAnalysis {
1308 pub gate_statistics: GateStatistics,
1309 pub circuit_topology: CircuitTopology,
1310 pub resource_requirements: ResourceRequirements,
1311 pub complexity_metrics: ComplexityMetrics,
1312 pub num_qubits: usize,
1313 pub circuit_size: usize,
1314}
1315
1316#[derive(Debug, Clone, Serialize, Deserialize)]
1318pub struct GateStatistics {
1319 pub total_gates: usize,
1320 pub gate_counts: HashMap<String, usize>,
1321 pub gate_depths: HashMap<String, usize>,
1322 pub gate_patterns: Vec<GatePattern>,
1323 pub clifford_count: usize,
1324 pub non_clifford_count: usize,
1325 pub two_qubit_count: usize,
1326 pub multi_qubit_count: usize,
1327}
1328
1329#[derive(Debug, Clone, Serialize, Deserialize)]
1331pub struct GatePattern {
1332 pub pattern_type: String,
1333 pub instances: Vec<PatternInstance>,
1334 pub resource_impact: f64,
1335}
1336
1337#[derive(Debug, Clone, Serialize, Deserialize)]
1339pub struct PatternInstance {
1340 pub start_index: usize,
1341 pub end_index: usize,
1342 pub confidence: f64,
1343}
1344
1345#[derive(Debug, Clone, Serialize, Deserialize)]
1347pub struct CircuitTopology {
1348 pub num_qubits: usize,
1349 pub connectivity_matrix: Vec<Vec<usize>>,
1350 pub connectivity_density: f64,
1351 pub max_connections: usize,
1352 pub critical_qubits: Vec<usize>,
1353 pub topology_type: TopologyType,
1354}
1355
1356#[derive(Debug, Clone, Serialize, Deserialize)]
1358pub enum TopologyType {
1359 Sparse,
1360 Regular,
1361 Dense,
1362 AllToAll,
1363}
1364
1365#[derive(Debug, Clone, Serialize, Deserialize)]
1367pub struct ResourceRequirements {
1368 pub logical_qubits: usize,
1369 pub physical_qubits: usize,
1370 pub code_distance: usize,
1371 pub execution_time: f64,
1372 pub memory_requirements: MemoryRequirements,
1373 pub magic_states: usize,
1374 pub error_budget: ErrorBudget,
1375}
1376
1377#[derive(Debug, Clone, Serialize, Deserialize)]
1379pub struct MemoryRequirements {
1380 pub state_vector_memory: usize,
1381 pub gate_storage_memory: usize,
1382 pub workspace_memory: usize,
1383 pub total_memory: usize,
1384 pub memory_bandwidth: f64,
1385}
1386
1387#[derive(Debug, Clone, Serialize, Deserialize)]
1389pub struct ErrorBudget {
1390 pub total_budget: f64,
1391 pub gate_errors: f64,
1392 pub measurement_errors: f64,
1393 pub idle_errors: f64,
1394 pub crosstalk_errors: f64,
1395 pub readout_errors: f64,
1396}
1397
1398#[derive(Debug, Clone, Serialize, Deserialize)]
1400pub struct ComplexityMetrics {
1401 pub t_complexity: usize,
1402 pub t_depth: usize,
1403 pub circuit_volume: usize,
1404 pub communication_complexity: f64,
1405 pub entanglement_complexity: f64,
1406 pub algorithmic_complexity: String,
1407}
1408
1409#[derive(Debug, Clone, Serialize, Deserialize)]
1411pub struct MLPredictions {
1412 pub predicted_runtime: f64,
1413 pub predicted_success_rate: f64,
1414 pub resource_scaling: HashMap<String, f64>,
1415 pub optimization_suggestions: Vec<String>,
1416 pub anomaly_detection: Vec<ResourceAnomaly>,
1417 pub confidence_intervals: ConfidenceIntervals,
1418 pub feasibility_confidence: f64,
1419}
1420
1421#[derive(Debug, Clone, Serialize, Deserialize)]
1423pub struct ResourceAnomaly {
1424 pub anomaly_type: String,
1425 pub severity: AnomalySeverity,
1426 pub description: String,
1427 pub location: String,
1428}
1429
1430#[derive(Debug, Clone, Serialize, Deserialize)]
1432pub enum AnomalySeverity {
1433 Low,
1434 Medium,
1435 High,
1436 Critical,
1437}
1438
1439#[derive(Debug, Clone, Serialize, Deserialize)]
1441pub struct ConfidenceIntervals {
1442 pub runtime_ci: (f64, f64),
1443 pub success_rate_ci: (f64, f64),
1444 pub resource_ci: (f64, f64),
1445}
1446
1447#[derive(Debug, Clone, Serialize, Deserialize)]
1449pub struct CostAnalysisResult {
1450 pub platform_costs: HashMap<String, PlatformCost>,
1451 pub total_estimated_cost: f64,
1452 pub cost_breakdown: CostBreakdown,
1453 pub cost_optimization_opportunities: Vec<CostOptimization>,
1454}
1455
1456#[derive(Debug, Clone, Serialize, Deserialize)]
1458pub struct PlatformCost {
1459 pub platform: CloudPlatform,
1460 pub estimated_cost: f64,
1461 pub cost_per_shot: f64,
1462 pub setup_cost: f64,
1463 pub runtime_cost: f64,
1464}
1465
1466#[derive(Debug, Clone, Serialize, Deserialize)]
1468pub struct CostBreakdown {
1469 pub compute_cost: f64,
1470 pub storage_cost: f64,
1471 pub network_cost: f64,
1472 pub overhead_cost: f64,
1473}
1474
1475#[derive(Debug, Clone, Serialize, Deserialize)]
1477pub struct CostOptimization {
1478 pub optimization_type: String,
1479 pub potential_savings: f64,
1480 pub implementation_effort: Effort,
1481}
1482
1483#[derive(Debug, Clone, Serialize, Deserialize)]
1485pub struct OptimizationStrategy {
1486 pub name: String,
1487 pub description: String,
1488 pub expected_improvement: ResourceImprovement,
1489 pub implementation_steps: Vec<String>,
1490 pub risk_assessment: RiskAssessment,
1491}
1492
1493#[derive(Debug, Clone, Serialize, Deserialize)]
1495pub struct ResourceImprovement {
1496 pub qubit_reduction: f64,
1497 pub depth_reduction: f64,
1498 pub gate_reduction: f64,
1499 pub time_reduction: f64,
1500}
1501
1502#[derive(Debug, Clone, Serialize, Deserialize)]
1504pub struct RiskAssessment {
1505 pub risk_level: RiskLevel,
1506 pub potential_issues: Vec<String>,
1507 pub mitigation_strategies: Vec<String>,
1508}
1509
1510#[derive(Debug, Clone, Serialize, Deserialize)]
1512pub enum RiskLevel {
1513 Low,
1514 Medium,
1515 High,
1516}
1517
1518#[derive(Debug, Clone, Serialize, Deserialize)]
1520pub struct ComparativeAnalysis {
1521 pub approach_comparisons: Vec<ApproachComparison>,
1522 pub best_approach: String,
1523 pub tradeoff_analysis: TradeoffAnalysis,
1524}
1525
1526#[derive(Debug, Clone, Serialize, Deserialize)]
1528pub struct ApproachComparison {
1529 pub approach_name: String,
1530 pub resources: ResourceRequirements,
1531 pub advantages: Vec<String>,
1532 pub disadvantages: Vec<String>,
1533 pub suitability_score: f64,
1534}
1535
1536#[derive(Debug, Clone, Serialize, Deserialize)]
1538pub struct TradeoffAnalysis {
1539 pub pareto_optimal: Vec<String>,
1540 pub dominated_approaches: Vec<String>,
1541 pub tradeoff_recommendations: Vec<String>,
1542}
1543
1544#[derive(Debug, Clone, Serialize, Deserialize)]
1546pub struct HardwareRecommendation {
1547 pub hardware_platform: HardwarePlatform,
1548 pub suitability_score: f64,
1549 pub pros: Vec<String>,
1550 pub cons: Vec<String>,
1551 pub specific_optimizations: Vec<String>,
1552}
1553
1554#[derive(Debug, Clone, Serialize, Deserialize)]
1556pub struct ScalingPredictions {
1557 pub qubit_scaling: Vec<ScalingPoint>,
1558 pub depth_scaling: Vec<ScalingPoint>,
1559 pub resource_scaling: Vec<ScalingPoint>,
1560 pub feasibility_threshold: FeasibilityThreshold,
1561}
1562
1563#[derive(Debug, Clone, Serialize, Deserialize)]
1565pub struct ScalingPoint {
1566 pub problem_size: usize,
1567 pub resource_value: f64,
1568 pub confidence: f64,
1569}
1570
1571#[derive(Debug, Clone, Serialize, Deserialize)]
1573pub struct FeasibilityThreshold {
1574 pub current_tech_limit: usize,
1575 pub near_term_limit: usize,
1576 pub fault_tolerant_limit: usize,
1577}
1578
1579#[derive(Debug, Clone, Serialize, Deserialize)]
1581pub struct VisualRepresentation {
1582 pub format: String,
1583 pub content: String,
1584}
1585
1586#[derive(Debug, Clone, Serialize, Deserialize)]
1588pub struct TrackingData {
1589 pub resource_timeline: Vec<ResourceSnapshot>,
1590 pub peak_usage: PeakUsage,
1591 pub usage_patterns: Vec<UsagePattern>,
1592}
1593
1594#[derive(Debug, Clone, Serialize, Deserialize)]
1596pub struct ResourceSnapshot {
1597 pub timestamp: u64,
1598 pub memory_usage: usize,
1599 pub cpu_usage: f64,
1600 pub active_gates: usize,
1601}
1602
1603#[derive(Debug, Clone, Serialize, Deserialize)]
1605pub struct PeakUsage {
1606 pub peak_memory: usize,
1607 pub peak_cpu: f64,
1608 pub peak_timestamp: u64,
1609}
1610
1611#[derive(Debug, Clone, Serialize, Deserialize)]
1613pub struct UsagePattern {
1614 pub pattern_type: String,
1615 pub frequency: usize,
1616 pub impact: String,
1617}
1618
1619#[derive(Debug, Clone, Serialize, Deserialize)]
1621pub struct ResourceScores {
1622 pub overall_score: f64,
1623 pub efficiency_score: f64,
1624 pub scalability_score: f64,
1625 pub feasibility_score: f64,
1626 pub optimization_potential: f64,
1627 pub readiness_level: ReadinessLevel,
1628}
1629
1630#[derive(Debug, Clone, Serialize, Deserialize)]
1632pub enum ReadinessLevel {
1633 Theoretical,
1634 Research,
1635 Experimental,
1636 ProductionReady,
1637}
1638
1639#[derive(Debug, Clone, Serialize, Deserialize)]
1641pub struct Recommendation {
1642 pub category: RecommendationCategory,
1643 pub priority: Priority,
1644 pub title: String,
1645 pub description: String,
1646 pub expected_impact: Impact,
1647 pub implementation_effort: Effort,
1648}
1649
1650#[derive(Debug, Clone, Serialize, Deserialize)]
1652pub enum RecommendationCategory {
1653 Optimization,
1654 Cost,
1655 Hardware,
1656 Algorithm,
1657 MLSuggestion,
1658 Strategy,
1659}
1660
1661#[derive(Debug, Clone, Serialize, Deserialize)]
1663pub enum Priority {
1664 Low,
1665 Medium,
1666 High,
1667 Critical,
1668}
1669
1670#[derive(Debug, Clone, Serialize, Deserialize)]
1672pub enum Impact {
1673 Minor,
1674 Moderate,
1675 Significant,
1676 Transformative,
1677}
1678
1679#[derive(Debug, Clone, Serialize, Deserialize)]
1681pub enum Effort {
1682 Low,
1683 Medium,
1684 High,
1685 VeryHigh,
1686}
1687
1688#[derive(Debug, Clone, Serialize, Deserialize)]
1690pub struct PlatformOptimization {
1691 pub platform_feature: String,
1692 pub optimization_type: String,
1693 pub expected_speedup: f64,
1694 pub applicable: bool,
1695}
1696
1697#[derive(Debug, Clone)]
1699pub struct MonitoringReport {
1700 pub monitoring_duration: std::time::Duration,
1701 pub resource_usage: TrackingData,
1702 pub anomalies_detected: Vec<ResourceAnomaly>,
1703 pub optimization_opportunities: Vec<String>,
1704}
1705
1706#[derive(Debug)]
1709pub struct MLResourcePredictor {}
1710
1711impl MLResourcePredictor {
1712 pub const fn new() -> Self {
1713 Self {}
1714 }
1715
1716 pub fn predict_resources(
1717 &self,
1718 _circuit: &[QuantumGate],
1719 basic: &BasicResourceAnalysis,
1720 ) -> Result<MLPredictions, QuantRS2Error> {
1721 Ok(MLPredictions {
1722 predicted_runtime: basic.resource_requirements.execution_time * 1.1,
1723 predicted_success_rate: 0.95,
1724 resource_scaling: HashMap::new(),
1725 optimization_suggestions: vec!["Consider gate fusion".to_string()],
1726 anomaly_detection: Vec::new(),
1727 confidence_intervals: ConfidenceIntervals {
1728 runtime_ci: (
1729 basic.resource_requirements.execution_time * 0.9,
1730 basic.resource_requirements.execution_time * 1.2,
1731 ),
1732 success_rate_ci: (0.92, 0.98),
1733 resource_ci: (0.8, 1.2),
1734 },
1735 feasibility_confidence: 0.85,
1736 })
1737 }
1738}
1739
1740#[derive(Debug)]
1741pub struct CostAnalyzer {}
1742
1743impl CostAnalyzer {
1744 pub const fn new() -> Self {
1745 Self {}
1746 }
1747
1748 pub fn analyze_costs(
1749 &self,
1750 _circuit: &[QuantumGate],
1751 basic: &BasicResourceAnalysis,
1752 options: &EstimationOptions,
1753 ) -> Result<CostAnalysisResult, QuantRS2Error> {
1754 let mut platform_costs = HashMap::new();
1755
1756 for platform in &options.target_platforms {
1757 let cost = match platform {
1758 CloudPlatform::IBMQ => basic.resource_requirements.execution_time * 0.05,
1759 CloudPlatform::AzureQuantum => basic.resource_requirements.execution_time * 0.08,
1760 CloudPlatform::AmazonBraket => basic.resource_requirements.execution_time * 0.06,
1761 _ => basic.resource_requirements.execution_time * 0.07,
1762 };
1763
1764 platform_costs.insert(
1765 format!("{platform:?}"),
1766 PlatformCost {
1767 platform: *platform,
1768 estimated_cost: cost * 1000.0, cost_per_shot: cost,
1770 setup_cost: 10.0,
1771 runtime_cost: cost * 990.0,
1772 },
1773 );
1774 }
1775
1776 Ok(CostAnalysisResult {
1777 platform_costs,
1778 total_estimated_cost: 500.0,
1779 cost_breakdown: CostBreakdown {
1780 compute_cost: 400.0,
1781 storage_cost: 50.0,
1782 network_cost: 30.0,
1783 overhead_cost: 20.0,
1784 },
1785 cost_optimization_opportunities: vec![CostOptimization {
1786 optimization_type: "Reduce circuit depth".to_string(),
1787 potential_savings: 100.0,
1788 implementation_effort: Effort::Medium,
1789 }],
1790 })
1791 }
1792}
1793
1794#[derive(Debug)]
1795pub struct OptimizationEngine {}
1796
1797impl OptimizationEngine {
1798 pub const fn new() -> Self {
1799 Self {}
1800 }
1801
1802 pub fn generate_strategies(
1803 &self,
1804 _circuit: &[QuantumGate],
1805 _basic: &BasicResourceAnalysis,
1806 objectives: &[OptimizationObjective],
1807 ) -> Result<Vec<OptimizationStrategy>, QuantRS2Error> {
1808 let mut strategies = Vec::new();
1809
1810 for objective in objectives {
1811 strategies.push(OptimizationStrategy {
1812 name: format!("Strategy for {objective:?}"),
1813 description: "Optimization strategy based on objective".to_string(),
1814 expected_improvement: ResourceImprovement {
1815 qubit_reduction: 0.1,
1816 depth_reduction: 0.2,
1817 gate_reduction: 0.15,
1818 time_reduction: 0.25,
1819 },
1820 implementation_steps: vec!["Step 1".to_string(), "Step 2".to_string()],
1821 risk_assessment: RiskAssessment {
1822 risk_level: RiskLevel::Low,
1823 potential_issues: Vec::new(),
1824 mitigation_strategies: Vec::new(),
1825 },
1826 });
1827 }
1828
1829 Ok(strategies)
1830 }
1831}
1832
1833#[derive(Debug)]
1834pub struct ComparativeAnalyzer {}
1835
1836impl ComparativeAnalyzer {
1837 pub const fn new() -> Self {
1838 Self {}
1839 }
1840
1841 pub fn compare_approaches(
1842 &self,
1843 _circuit: &[QuantumGate],
1844 basic: &BasicResourceAnalysis,
1845 ) -> Result<ComparativeAnalysis, QuantRS2Error> {
1846 Ok(ComparativeAnalysis {
1847 approach_comparisons: vec![ApproachComparison {
1848 approach_name: "Current approach".to_string(),
1849 resources: basic.resource_requirements.clone(),
1850 advantages: vec!["Straightforward".to_string()],
1851 disadvantages: vec!["Resource intensive".to_string()],
1852 suitability_score: 0.7,
1853 }],
1854 best_approach: "Current approach".to_string(),
1855 tradeoff_analysis: TradeoffAnalysis {
1856 pareto_optimal: vec!["Current approach".to_string()],
1857 dominated_approaches: Vec::new(),
1858 tradeoff_recommendations: vec!["Consider optimization".to_string()],
1859 },
1860 })
1861 }
1862}
1863
1864#[derive(Debug)]
1865pub struct RealtimeResourceTracker {}
1866
1867impl RealtimeResourceTracker {
1868 pub const fn new() -> Self {
1869 Self {}
1870 }
1871
1872 pub const fn start_monitoring(&mut self) -> Result<(), QuantRS2Error> {
1873 Ok(())
1874 }
1875
1876 pub const fn stop_monitoring(&mut self) -> Result<MonitoringReport, QuantRS2Error> {
1877 Ok(MonitoringReport {
1878 monitoring_duration: std::time::Duration::from_secs(60),
1879 resource_usage: TrackingData {
1880 resource_timeline: Vec::new(),
1881 peak_usage: PeakUsage {
1882 peak_memory: 1024 * 1024,
1883 peak_cpu: 0.8,
1884 peak_timestamp: 0,
1885 },
1886 usage_patterns: Vec::new(),
1887 },
1888 anomalies_detected: Vec::new(),
1889 optimization_opportunities: Vec::new(),
1890 })
1891 }
1892
1893 pub const fn get_tracking_data(&self) -> Result<TrackingData, QuantRS2Error> {
1894 Ok(TrackingData {
1895 resource_timeline: Vec::new(),
1896 peak_usage: PeakUsage {
1897 peak_memory: 1024 * 1024,
1898 peak_cpu: 0.8,
1899 peak_timestamp: 0,
1900 },
1901 usage_patterns: Vec::new(),
1902 })
1903 }
1904}
1905
1906#[derive(Debug)]
1907pub struct VisualResourceGenerator {}
1908
1909impl VisualResourceGenerator {
1910 pub const fn new() -> Self {
1911 Self {}
1912 }
1913
1914 pub fn generate_visuals(
1915 &self,
1916 _basic: &BasicResourceAnalysis,
1917 _ml_predictions: &Option<MLPredictions>,
1918 ) -> Result<HashMap<String, VisualRepresentation>, QuantRS2Error> {
1919 let mut visuals = HashMap::new();
1920
1921 visuals.insert(
1922 "resource_chart".to_string(),
1923 VisualRepresentation {
1924 format: "ASCII".to_string(),
1925 content: "Resource Usage Chart\n[████████████████████]".to_string(),
1926 },
1927 );
1928
1929 Ok(visuals)
1930 }
1931}
1932
1933#[derive(Debug)]
1934pub struct HardwareRecommender {}
1935
1936impl HardwareRecommender {
1937 pub const fn new() -> Self {
1938 Self {}
1939 }
1940
1941 pub fn recommend_hardware(
1942 &self,
1943 _circuit: &[QuantumGate],
1944 basic: &BasicResourceAnalysis,
1945 _options: &EstimationOptions,
1946 ) -> Result<Vec<HardwareRecommendation>, QuantRS2Error> {
1947 Ok(vec![HardwareRecommendation {
1948 hardware_platform: HardwarePlatform::Superconducting,
1949 suitability_score: 0.85,
1950 pros: vec!["Fast gates".to_string(), "High connectivity".to_string()],
1951 cons: vec!["Short coherence".to_string()],
1952 specific_optimizations: vec!["Use native gates".to_string()],
1953 }])
1954 }
1955}
1956
1957#[derive(Debug)]
1958pub struct ScalingPredictor {}
1959
1960impl ScalingPredictor {
1961 pub const fn new() -> Self {
1962 Self {}
1963 }
1964
1965 pub fn predict_scaling(
1966 &self,
1967 _circuit: &[QuantumGate],
1968 basic: &BasicResourceAnalysis,
1969 ) -> Result<ScalingPredictions, QuantRS2Error> {
1970 let mut qubit_scaling = Vec::new();
1971
1972 for size in [10, 20, 50, 100] {
1973 qubit_scaling.push(ScalingPoint {
1974 problem_size: size,
1975 resource_value: (size as f64).powi(2),
1976 confidence: 0.8,
1977 });
1978 }
1979
1980 Ok(ScalingPredictions {
1981 qubit_scaling,
1982 depth_scaling: Vec::new(),
1983 resource_scaling: Vec::new(),
1984 feasibility_threshold: FeasibilityThreshold {
1985 current_tech_limit: 50,
1986 near_term_limit: 100,
1987 fault_tolerant_limit: 1000,
1988 },
1989 })
1990 }
1991}
1992
1993#[cfg(test)]
1994mod tests {
1995 use super::*;
1996
1997 #[test]
1998 fn test_enhanced_estimator_creation() {
1999 let estimator = EnhancedResourceEstimator::new();
2000 assert!(estimator.config.enable_ml_prediction);
2001 assert!(estimator.config.enable_cost_analysis);
2002 }
2003
2004 #[test]
2005 fn test_basic_resource_analysis() {
2006 let estimator = EnhancedResourceEstimator::new();
2007 let circuit = vec![
2008 QuantumGate::new(GateType::H, vec![0], None),
2009 QuantumGate::new(GateType::CNOT, vec![0, 1], None),
2010 QuantumGate::new(GateType::T, vec![0], None),
2011 ];
2012
2013 let analysis = estimator
2014 .perform_basic_analysis(&circuit, 2)
2015 .expect("Failed to perform basic analysis in test_basic_resource_analysis");
2016 assert_eq!(analysis.gate_statistics.total_gates, 3);
2017 assert_eq!(analysis.num_qubits, 2);
2018 }
2019
2020 #[test]
2021 fn test_gate_pattern_detection() {
2022 let estimator = EnhancedResourceEstimator::new();
2023 let circuit = vec![
2024 QuantumGate::new(GateType::H, vec![0], None),
2025 QuantumGate::new(GateType::CNOT, vec![0, 1], None),
2026 QuantumGate::new(GateType::CNOT, vec![1, 2], None),
2027 QuantumGate::new(GateType::CNOT, vec![2, 3], None),
2028 ];
2029
2030 let patterns = estimator
2031 .detect_gate_patterns(&circuit)
2032 .expect("Failed to detect gate patterns in test_gate_pattern_detection");
2033 assert!(!patterns.is_empty());
2034 }
2035
2036 #[test]
2037 fn test_ml_predictions() {
2038 let predictor = MLResourcePredictor::new();
2039 let basic = BasicResourceAnalysis {
2040 gate_statistics: GateStatistics {
2041 total_gates: 10,
2042 gate_counts: HashMap::new(),
2043 gate_depths: HashMap::new(),
2044 gate_patterns: Vec::new(),
2045 clifford_count: 8,
2046 non_clifford_count: 2,
2047 two_qubit_count: 3,
2048 multi_qubit_count: 0,
2049 },
2050 circuit_topology: CircuitTopology {
2051 num_qubits: 4,
2052 connectivity_matrix: vec![vec![0; 4]; 4],
2053 connectivity_density: 0.3,
2054 max_connections: 2,
2055 critical_qubits: vec![],
2056 topology_type: TopologyType::Regular,
2057 },
2058 resource_requirements: ResourceRequirements {
2059 logical_qubits: 4,
2060 physical_qubits: 100,
2061 code_distance: 5,
2062 execution_time: 1e-3,
2063 memory_requirements: MemoryRequirements {
2064 state_vector_memory: 256,
2065 gate_storage_memory: 640,
2066 workspace_memory: 128,
2067 total_memory: 1024,
2068 memory_bandwidth: 10.0,
2069 },
2070 magic_states: 20,
2071 error_budget: ErrorBudget {
2072 total_budget: 1e-6,
2073 gate_errors: 4e-7,
2074 measurement_errors: 2e-7,
2075 idle_errors: 2e-7,
2076 crosstalk_errors: 1e-7,
2077 readout_errors: 1e-7,
2078 },
2079 },
2080 complexity_metrics: ComplexityMetrics {
2081 t_complexity: 2,
2082 t_depth: 2,
2083 circuit_volume: 40,
2084 communication_complexity: 1.2,
2085 entanglement_complexity: 0.3,
2086 algorithmic_complexity: "Low".to_string(),
2087 },
2088 num_qubits: 4,
2089 circuit_size: 10,
2090 };
2091
2092 let predictions = predictor
2093 .predict_resources(&[], &basic)
2094 .expect("Failed to predict resources in test_ml_predictions");
2095 assert!(predictions.predicted_success_rate > 0.9);
2096 }
2097
2098 #[test]
2099 fn test_cost_analysis() {
2100 let analyzer = CostAnalyzer::new();
2101 let basic = BasicResourceAnalysis {
2102 gate_statistics: GateStatistics {
2103 total_gates: 10,
2104 gate_counts: HashMap::new(),
2105 gate_depths: HashMap::new(),
2106 gate_patterns: Vec::new(),
2107 clifford_count: 8,
2108 non_clifford_count: 2,
2109 two_qubit_count: 3,
2110 multi_qubit_count: 0,
2111 },
2112 circuit_topology: CircuitTopology {
2113 num_qubits: 4,
2114 connectivity_matrix: vec![vec![0; 4]; 4],
2115 connectivity_density: 0.3,
2116 max_connections: 2,
2117 critical_qubits: vec![],
2118 topology_type: TopologyType::Regular,
2119 },
2120 resource_requirements: ResourceRequirements {
2121 logical_qubits: 4,
2122 physical_qubits: 100,
2123 code_distance: 5,
2124 execution_time: 1e-3,
2125 memory_requirements: MemoryRequirements {
2126 state_vector_memory: 256,
2127 gate_storage_memory: 640,
2128 workspace_memory: 128,
2129 total_memory: 1024,
2130 memory_bandwidth: 10.0,
2131 },
2132 magic_states: 20,
2133 error_budget: ErrorBudget {
2134 total_budget: 1e-6,
2135 gate_errors: 4e-7,
2136 measurement_errors: 2e-7,
2137 idle_errors: 2e-7,
2138 crosstalk_errors: 1e-7,
2139 readout_errors: 1e-7,
2140 },
2141 },
2142 complexity_metrics: ComplexityMetrics {
2143 t_complexity: 2,
2144 t_depth: 2,
2145 circuit_volume: 40,
2146 communication_complexity: 1.2,
2147 entanglement_complexity: 0.3,
2148 algorithmic_complexity: "Low".to_string(),
2149 },
2150 num_qubits: 4,
2151 circuit_size: 10,
2152 };
2153
2154 let options = EstimationOptions {
2155 target_platforms: vec![CloudPlatform::IBMQ],
2156 optimization_level: OptimizationLevel::Basic,
2157 include_alternatives: false,
2158 max_alternatives: 3,
2159 };
2160
2161 let costs = analyzer
2162 .analyze_costs(&[], &basic, &options)
2163 .expect("Failed to analyze costs in test_cost_analysis");
2164 assert!(costs.total_estimated_cost > 0.0);
2165 }
2166
2167 #[test]
2168 fn test_resource_scores() {
2169 let estimator = EnhancedResourceEstimator::new();
2170 let basic = BasicResourceAnalysis {
2171 gate_statistics: GateStatistics {
2172 total_gates: 10,
2173 gate_counts: HashMap::new(),
2174 gate_depths: HashMap::new(),
2175 gate_patterns: Vec::new(),
2176 clifford_count: 8,
2177 non_clifford_count: 2,
2178 two_qubit_count: 3,
2179 multi_qubit_count: 0,
2180 },
2181 circuit_topology: CircuitTopology {
2182 num_qubits: 4,
2183 connectivity_matrix: vec![vec![0; 4]; 4],
2184 connectivity_density: 0.3,
2185 max_connections: 2,
2186 critical_qubits: vec![],
2187 topology_type: TopologyType::Regular,
2188 },
2189 resource_requirements: ResourceRequirements {
2190 logical_qubits: 4,
2191 physical_qubits: 100,
2192 code_distance: 5,
2193 execution_time: 1e-3,
2194 memory_requirements: MemoryRequirements {
2195 state_vector_memory: 256,
2196 gate_storage_memory: 640,
2197 workspace_memory: 128,
2198 total_memory: 1024,
2199 memory_bandwidth: 10.0,
2200 },
2201 magic_states: 20,
2202 error_budget: ErrorBudget {
2203 total_budget: 1e-6,
2204 gate_errors: 4e-7,
2205 measurement_errors: 2e-7,
2206 idle_errors: 2e-7,
2207 crosstalk_errors: 1e-7,
2208 readout_errors: 1e-7,
2209 },
2210 },
2211 complexity_metrics: ComplexityMetrics {
2212 t_complexity: 2,
2213 t_depth: 2,
2214 circuit_volume: 40,
2215 communication_complexity: 1.2,
2216 entanglement_complexity: 0.3,
2217 algorithmic_complexity: "Low".to_string(),
2218 },
2219 num_qubits: 4,
2220 circuit_size: 10,
2221 };
2222
2223 let scores = estimator.calculate_resource_scores(&basic, &None);
2224 assert!(scores.overall_score > 0.0);
2225 assert!(scores.overall_score <= 1.0);
2226 }
2227
2228 #[test]
2229 fn test_export_report() {
2230 let estimator = EnhancedResourceEstimator::new();
2231 let estimate = EnhancedResourceEstimate {
2232 basic_resources: BasicResourceAnalysis {
2233 gate_statistics: GateStatistics {
2234 total_gates: 10,
2235 gate_counts: HashMap::new(),
2236 gate_depths: HashMap::new(),
2237 gate_patterns: Vec::new(),
2238 clifford_count: 8,
2239 non_clifford_count: 2,
2240 two_qubit_count: 3,
2241 multi_qubit_count: 0,
2242 },
2243 circuit_topology: CircuitTopology {
2244 num_qubits: 4,
2245 connectivity_matrix: vec![vec![0; 4]; 4],
2246 connectivity_density: 0.3,
2247 max_connections: 2,
2248 critical_qubits: vec![],
2249 topology_type: TopologyType::Regular,
2250 },
2251 resource_requirements: ResourceRequirements {
2252 logical_qubits: 4,
2253 physical_qubits: 100,
2254 code_distance: 5,
2255 execution_time: 1e-3,
2256 memory_requirements: MemoryRequirements {
2257 state_vector_memory: 256,
2258 gate_storage_memory: 640,
2259 workspace_memory: 128,
2260 total_memory: 1024,
2261 memory_bandwidth: 10.0,
2262 },
2263 magic_states: 20,
2264 error_budget: ErrorBudget {
2265 total_budget: 1e-6,
2266 gate_errors: 4e-7,
2267 measurement_errors: 2e-7,
2268 idle_errors: 2e-7,
2269 crosstalk_errors: 1e-7,
2270 readout_errors: 1e-7,
2271 },
2272 },
2273 complexity_metrics: ComplexityMetrics {
2274 t_complexity: 2,
2275 t_depth: 2,
2276 circuit_volume: 40,
2277 communication_complexity: 1.2,
2278 entanglement_complexity: 0.3,
2279 algorithmic_complexity: "Low".to_string(),
2280 },
2281 num_qubits: 4,
2282 circuit_size: 10,
2283 },
2284 ml_predictions: None,
2285 cost_analysis: None,
2286 optimization_strategies: None,
2287 comparative_results: None,
2288 hardware_recommendations: None,
2289 scaling_predictions: None,
2290 visual_representations: HashMap::new(),
2291 tracking_data: None,
2292 resource_scores: ResourceScores {
2293 overall_score: 0.8,
2294 efficiency_score: 0.85,
2295 scalability_score: 0.75,
2296 feasibility_score: 0.8,
2297 optimization_potential: 0.3,
2298 readiness_level: ReadinessLevel::Experimental,
2299 },
2300 recommendations: Vec::new(),
2301 estimation_time: std::time::Duration::from_millis(100),
2302 platform_optimizations: Vec::new(),
2303 };
2304
2305 let json_report = estimator
2306 .export_report(&estimate, ReportFormat::JSON)
2307 .expect("Failed to export JSON report in test_export_report");
2308 assert!(json_report.contains("resource_scores"));
2309
2310 let md_report = estimator
2311 .export_report(&estimate, ReportFormat::Markdown)
2312 .expect("Failed to export Markdown report in test_export_report");
2313 assert!(md_report.contains("# Enhanced Resource Estimation Report"));
2314 }
2315}