quantrs2_core/
scirs2_quantum_profiler_enhanced.rs

1//! Advanced Quantum Circuit Profiler with Enhanced SciRS2 Performance Metrics
2//!
3//! This module provides state-of-the-art quantum circuit profiling capabilities
4//! with comprehensive performance analysis, resource tracking, and optimization
5//! recommendations using SciRS2's advanced performance metrics.
6
7use crate::error::QuantRS2Error;
8use crate::gate_translation::GateType;
9use crate::scirs2_quantum_profiler::{
10    CircuitProfilingResult, GateProfilingResult, MemoryAnalysis, OptimizationRecommendation,
11    ProfilingPrecision, QuantumGate, SimdAnalysis,
12};
13use scirs2_core::Complex64;
14// use scirs2_core::parallel_ops::*;
15use crate::parallel_ops_stubs::*;
16// use scirs2_core::memory::BufferPool;
17use crate::buffer_pool::BufferPool;
18use crate::platform::PlatformCapabilities;
19use scirs2_core::ndarray::{Array1, Array2, ArrayView1};
20use serde::{Deserialize, Serialize};
21use std::collections::{BTreeMap, HashMap, VecDeque};
22use std::io::Write;
23use std::sync::{
24    atomic::{AtomicU64, AtomicUsize, Ordering},
25    Arc, Mutex,
26};
27use std::time::{Duration, Instant};
28
29/// Enhanced profiling configuration with SciRS2 metrics
30#[derive(Debug, Clone, Serialize, Deserialize)]
31pub struct EnhancedProfilingConfig {
32    /// Base profiling precision
33    pub precision: ProfilingPrecision,
34
35    /// Enable deep performance analysis
36    pub enable_deep_analysis: bool,
37
38    /// Track memory allocation patterns
39    pub track_memory_patterns: bool,
40
41    /// Profile SIMD operations in detail
42    pub profile_simd_operations: bool,
43
44    /// Track parallel execution patterns
45    pub track_parallel_patterns: bool,
46
47    /// Enable cache analysis
48    pub enable_cache_analysis: bool,
49
50    /// Memory bandwidth tracking
51    pub track_memory_bandwidth: bool,
52
53    /// Instruction-level profiling
54    pub enable_instruction_profiling: bool,
55
56    /// Quantum resource estimation
57    pub enable_resource_estimation: bool,
58
59    /// Noise impact analysis
60    pub analyze_noise_impact: bool,
61
62    /// Circuit optimization suggestions
63    pub generate_optimizations: bool,
64
65    /// Bottleneck detection depth
66    pub bottleneck_detection_depth: usize,
67
68    /// Performance prediction model
69    pub enable_performance_prediction: bool,
70
71    /// Hardware-specific optimizations
72    pub hardware_aware_profiling: bool,
73
74    /// Export formats for reports
75    pub export_formats: Vec<ExportFormat>,
76}
77
78impl Default for EnhancedProfilingConfig {
79    fn default() -> Self {
80        Self {
81            precision: ProfilingPrecision::High,
82            enable_deep_analysis: true,
83            track_memory_patterns: true,
84            profile_simd_operations: true,
85            track_parallel_patterns: true,
86            enable_cache_analysis: true,
87            track_memory_bandwidth: true,
88            enable_instruction_profiling: false,
89            enable_resource_estimation: true,
90            analyze_noise_impact: true,
91            generate_optimizations: true,
92            bottleneck_detection_depth: 5,
93            enable_performance_prediction: true,
94            hardware_aware_profiling: true,
95            export_formats: vec![ExportFormat::JSON, ExportFormat::HTML, ExportFormat::CSV],
96        }
97    }
98}
99
100/// Export formats for profiling reports
101#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash, Serialize, Deserialize)]
102pub enum ExportFormat {
103    JSON,
104    HTML,
105    CSV,
106    LaTeX,
107    Markdown,
108    Binary,
109}
110
111/// Performance metric types
112#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash, Serialize, Deserialize)]
113pub enum MetricType {
114    ExecutionTime,
115    MemoryUsage,
116    CacheHitRate,
117    SimdUtilization,
118    ParallelEfficiency,
119    MemoryBandwidth,
120    InstructionCount,
121    BranchMisprediction,
122    PowerConsumption,
123    ThermalThrottle,
124}
125
126/// Advanced performance metrics
127#[derive(Debug, Clone, Serialize, Deserialize)]
128pub struct PerformanceMetrics {
129    /// Raw metric values
130    pub values: HashMap<MetricType, f64>,
131
132    /// Time-series data for metrics
133    pub time_series: HashMap<MetricType, Vec<(f64, f64)>>,
134
135    /// Statistical analysis
136    pub statistics: MetricStatistics,
137
138    /// Correlations between metrics
139    pub correlations: HashMap<(MetricType, MetricType), f64>,
140
141    /// Anomaly detection results
142    pub anomalies: Vec<AnomalyEvent>,
143}
144
145/// Statistical analysis of metrics
146#[derive(Debug, Clone, Serialize, Deserialize)]
147pub struct MetricStatistics {
148    pub mean: HashMap<MetricType, f64>,
149    pub std_dev: HashMap<MetricType, f64>,
150    pub min: HashMap<MetricType, f64>,
151    pub max: HashMap<MetricType, f64>,
152    pub percentiles: HashMap<MetricType, BTreeMap<u8, f64>>,
153}
154
155/// Anomaly detection event
156#[derive(Debug, Clone, Serialize, Deserialize)]
157pub struct AnomalyEvent {
158    pub timestamp: f64,
159    pub metric: MetricType,
160    pub severity: AnomalySeverity,
161    pub description: String,
162    pub impact: f64,
163}
164
165#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
166pub enum AnomalySeverity {
167    Low,
168    Medium,
169    High,
170    Critical,
171}
172
173/// Circuit bottleneck analysis
174#[derive(Debug, Clone, Serialize, Deserialize)]
175pub struct BottleneckAnalysis {
176    /// Identified bottlenecks
177    pub bottlenecks: Vec<Bottleneck>,
178
179    /// Performance impact analysis
180    pub impact_analysis: HashMap<String, f64>,
181
182    /// Optimization opportunities
183    pub opportunities: Vec<OptimizationOpportunity>,
184
185    /// Resource utilization heatmap
186    pub resource_heatmap: Array2<f64>,
187}
188
189#[derive(Debug, Clone, Serialize, Deserialize)]
190pub struct Bottleneck {
191    pub location: CircuitLocation,
192    pub bottleneck_type: BottleneckType,
193    pub severity: f64,
194    pub impact_percentage: f64,
195    pub suggested_fixes: Vec<String>,
196}
197
198#[derive(Debug, Clone, Serialize, Deserialize)]
199pub enum BottleneckType {
200    MemoryBandwidth,
201    ComputeIntensive,
202    CacheMiss,
203    ParallelizationIssue,
204    SimdUnderutilization,
205    DataDependency,
206    ResourceContention,
207}
208
209#[derive(Debug, Clone, Serialize, Deserialize)]
210pub struct CircuitLocation {
211    pub gate_index: usize,
212    pub layer: usize,
213    pub qubits: Vec<usize>,
214    pub context: String,
215}
216
217#[derive(Debug, Clone, Serialize, Deserialize)]
218pub struct OptimizationOpportunity {
219    pub opportunity_type: OpportunityType,
220    pub estimated_improvement: f64,
221    pub difficulty: Difficulty,
222    pub implementation: String,
223    pub trade_offs: Vec<String>,
224}
225
226#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
227pub enum OpportunityType {
228    GateFusion,
229    Parallelization,
230    SimdOptimization,
231    MemoryReordering,
232    CacheOptimization,
233    AlgorithmicImprovement,
234    HardwareSpecific,
235}
236
237#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
238pub enum Difficulty {
239    Trivial,
240    Easy,
241    Medium,
242    Hard,
243    Expert,
244}
245
246/// Hardware performance model
247#[derive(Serialize, Deserialize)]
248pub struct HardwarePerformanceModel {
249    /// Platform capabilities
250    #[serde(skip, default = "PlatformCapabilities::detect")]
251    pub platform: PlatformCapabilities,
252
253    /// Performance characteristics
254    pub characteristics: HardwareCharacteristics,
255
256    /// Scaling models
257    pub scaling_models: HashMap<String, ScalingModel>,
258
259    /// Optimization strategies
260    pub optimization_strategies: Vec<HardwareOptimizationStrategy>,
261}
262
263#[derive(Debug, Clone, Serialize, Deserialize)]
264pub struct HardwareCharacteristics {
265    pub cpu_frequency: f64,
266    pub cache_sizes: Vec<usize>,
267    pub memory_bandwidth: f64,
268    pub simd_width: usize,
269    pub num_cores: usize,
270    pub gpu_available: bool,
271    pub gpu_memory: Option<usize>,
272    pub quantum_accelerator: Option<String>,
273}
274
275#[derive(Debug, Clone, Serialize, Deserialize)]
276pub struct ScalingModel {
277    pub model_type: ScalingType,
278    pub parameters: HashMap<String, f64>,
279    pub confidence: f64,
280}
281
282#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
283pub enum ScalingType {
284    Linear,
285    Logarithmic,
286    Polynomial,
287    Exponential,
288    Custom,
289}
290
291#[derive(Debug, Clone, Serialize, Deserialize)]
292pub struct HardwareOptimizationStrategy {
293    pub strategy_name: String,
294    pub applicable_conditions: Vec<String>,
295    pub expected_speedup: f64,
296    pub implementation_cost: f64,
297}
298
299/// Enhanced quantum circuit profiler
300pub struct EnhancedQuantumProfiler {
301    config: EnhancedProfilingConfig,
302    platform_caps: PlatformCapabilities,
303    buffer_pool: Arc<BufferPool<Complex64>>,
304    metrics_collector: Arc<MetricsCollector>,
305    hardware_model: Option<HardwarePerformanceModel>,
306    profiling_state: Arc<Mutex<ProfilingState>>,
307}
308
309/// Real-time metrics collector
310struct MetricsCollector {
311    execution_times: Mutex<HashMap<String, Vec<Duration>>>,
312    memory_usage: AtomicUsize,
313    simd_ops_count: AtomicU64,
314    parallel_ops_count: AtomicU64,
315    cache_hits: AtomicU64,
316    cache_misses: AtomicU64,
317    bandwidth_bytes: AtomicU64,
318    start_time: Instant,
319}
320
321impl MetricsCollector {
322    fn new() -> Self {
323        Self {
324            execution_times: Mutex::new(HashMap::new()),
325            memory_usage: AtomicUsize::new(0),
326            simd_ops_count: AtomicU64::new(0),
327            parallel_ops_count: AtomicU64::new(0),
328            cache_hits: AtomicU64::new(0),
329            cache_misses: AtomicU64::new(0),
330            bandwidth_bytes: AtomicU64::new(0),
331            start_time: Instant::now(),
332        }
333    }
334
335    fn record_execution(&self, operation: &str, duration: Duration) {
336        let mut times = self
337            .execution_times
338            .lock()
339            .expect("Execution times lock poisoned");
340        times
341            .entry(operation.to_string())
342            .or_insert_with(Vec::new)
343            .push(duration);
344    }
345
346    fn record_memory(&self, bytes: usize) {
347        self.memory_usage.fetch_add(bytes, Ordering::Relaxed);
348    }
349
350    fn record_simd_op(&self) {
351        self.simd_ops_count.fetch_add(1, Ordering::Relaxed);
352    }
353
354    fn record_parallel_op(&self) {
355        self.parallel_ops_count.fetch_add(1, Ordering::Relaxed);
356    }
357
358    fn record_cache_access(&self, hit: bool) {
359        if hit {
360            self.cache_hits.fetch_add(1, Ordering::Relaxed);
361        } else {
362            self.cache_misses.fetch_add(1, Ordering::Relaxed);
363        }
364    }
365
366    fn record_bandwidth(&self, bytes: usize) {
367        self.bandwidth_bytes
368            .fetch_add(bytes as u64, Ordering::Relaxed);
369    }
370
371    fn get_elapsed(&self) -> Duration {
372        self.start_time.elapsed()
373    }
374}
375
376/// Profiling state management
377struct ProfilingState {
378    current_depth: usize,
379    call_stack: Vec<String>,
380    gate_timings: HashMap<usize, GateTimingInfo>,
381    memory_snapshots: VecDeque<MemorySnapshot>,
382    anomaly_detector: AnomalyDetector,
383}
384
385#[derive(Debug, Clone)]
386struct GateTimingInfo {
387    gate_type: GateType,
388    start_time: Instant,
389    end_time: Option<Instant>,
390    memory_before: usize,
391    memory_after: Option<usize>,
392    simd_ops: u64,
393    parallel_ops: u64,
394}
395
396#[derive(Debug, Clone)]
397struct MemorySnapshot {
398    timestamp: Instant,
399    total_memory: usize,
400    heap_memory: usize,
401    stack_memory: usize,
402    buffer_pool_memory: usize,
403}
404
405/// Anomaly detection system
406struct AnomalyDetector {
407    baseline_metrics: HashMap<MetricType, (f64, f64)>, // (mean, std_dev)
408    detection_threshold: f64,
409    history_window: usize,
410    metric_history: HashMap<MetricType, VecDeque<f64>>,
411}
412
413impl AnomalyDetector {
414    fn new(detection_threshold: f64, history_window: usize) -> Self {
415        Self {
416            baseline_metrics: HashMap::new(),
417            detection_threshold,
418            history_window,
419            metric_history: HashMap::new(),
420        }
421    }
422
423    fn update_metric(&mut self, metric: MetricType, value: f64) -> Option<AnomalyEvent> {
424        let history = self
425            .metric_history
426            .entry(metric)
427            .or_insert_with(VecDeque::new);
428        history.push_back(value);
429
430        if history.len() > self.history_window {
431            history.pop_front();
432        }
433
434        // Calculate statistics
435        if history.len() >= 10 {
436            let mean: f64 = history.iter().sum::<f64>() / history.len() as f64;
437            let variance: f64 =
438                history.iter().map(|x| (x - mean).powi(2)).sum::<f64>() / history.len() as f64;
439            let std_dev = variance.sqrt();
440
441            self.baseline_metrics.insert(metric, (mean, std_dev));
442
443            // Check for anomaly
444            if let Some(&(baseline_mean, baseline_std)) = self.baseline_metrics.get(&metric) {
445                let z_score = (value - baseline_mean).abs() / baseline_std;
446
447                if z_score > self.detection_threshold {
448                    let severity = match z_score {
449                        z if z < 3.0 => AnomalySeverity::Low,
450                        z if z < 4.0 => AnomalySeverity::Medium,
451                        z if z < 5.0 => AnomalySeverity::High,
452                        _ => AnomalySeverity::Critical,
453                    };
454
455                    return Some(AnomalyEvent {
456                        timestamp: history.len() as f64,
457                        metric,
458                        severity,
459                        description: format!("Anomaly detected: z-score = {z_score:.2}"),
460                        impact: z_score / 10.0, // Normalized impact
461                    });
462                }
463            }
464        }
465
466        None
467    }
468}
469
470impl EnhancedQuantumProfiler {
471    /// Create a new enhanced profiler with default configuration
472    pub fn new() -> Self {
473        Self::with_config(EnhancedProfilingConfig::default())
474    }
475
476    /// Create a new enhanced profiler with custom configuration
477    pub fn with_config(config: EnhancedProfilingConfig) -> Self {
478        let platform_caps = PlatformCapabilities::detect();
479        let buffer_pool = Arc::new(BufferPool::new());
480        let metrics_collector = Arc::new(MetricsCollector::new());
481
482        let hardware_model = if config.hardware_aware_profiling {
483            Some(Self::build_hardware_model(&platform_caps))
484        } else {
485            None
486        };
487
488        let profiling_state = Arc::new(Mutex::new(ProfilingState {
489            current_depth: 0,
490            call_stack: Vec::new(),
491            gate_timings: HashMap::new(),
492            memory_snapshots: VecDeque::new(),
493            anomaly_detector: AnomalyDetector::new(3.0, 100),
494        }));
495
496        Self {
497            config,
498            platform_caps,
499            buffer_pool,
500            metrics_collector,
501            hardware_model,
502            profiling_state,
503        }
504    }
505
506    /// Build hardware performance model
507    fn build_hardware_model(platform_caps: &PlatformCapabilities) -> HardwarePerformanceModel {
508        let characteristics = HardwareCharacteristics {
509            cpu_frequency: 3.0e9,                                      // 3 GHz estimate
510            cache_sizes: vec![32 * 1024, 256 * 1024, 8 * 1024 * 1024], // L1, L2, L3
511            memory_bandwidth: 50.0e9,                                  // 50 GB/s
512            simd_width: if platform_caps.simd_available() {
513                256
514            } else {
515                128
516            },
517            num_cores: platform_caps.cpu.logical_cores,
518            gpu_available: platform_caps.gpu_available(),
519            gpu_memory: if platform_caps.gpu_available() {
520                Some(8 * 1024 * 1024 * 1024)
521            } else {
522                None
523            },
524            quantum_accelerator: None,
525        };
526
527        let mut scaling_models = HashMap::new();
528        scaling_models.insert(
529            "gate_execution".to_string(),
530            ScalingModel {
531                model_type: ScalingType::Linear,
532                parameters: vec![("slope".to_string(), 1e-6), ("intercept".to_string(), 1e-7)]
533                    .into_iter()
534                    .collect(),
535                confidence: 0.95,
536            },
537        );
538
539        scaling_models.insert(
540            "memory_access".to_string(),
541            ScalingModel {
542                model_type: ScalingType::Logarithmic,
543                parameters: vec![("base".to_string(), 2.0), ("coefficient".to_string(), 1e-8)]
544                    .into_iter()
545                    .collect(),
546                confidence: 0.90,
547            },
548        );
549
550        let optimization_strategies = vec![
551            HardwareOptimizationStrategy {
552                strategy_name: "SIMD Vectorization".to_string(),
553                applicable_conditions: vec!["vector_friendly_gates".to_string()],
554                expected_speedup: 4.0,
555                implementation_cost: 0.2,
556            },
557            HardwareOptimizationStrategy {
558                strategy_name: "Parallel Execution".to_string(),
559                applicable_conditions: vec!["independent_gates".to_string()],
560                expected_speedup: characteristics.num_cores as f64 * 0.8,
561                implementation_cost: 0.3,
562            },
563            HardwareOptimizationStrategy {
564                strategy_name: "Cache Optimization".to_string(),
565                applicable_conditions: vec!["repeated_access_patterns".to_string()],
566                expected_speedup: 2.0,
567                implementation_cost: 0.1,
568            },
569        ];
570
571        HardwarePerformanceModel {
572            platform: PlatformCapabilities::detect(),
573            characteristics,
574            scaling_models,
575            optimization_strategies,
576        }
577    }
578
579    /// Profile a quantum circuit with enhanced metrics
580    pub fn profile_circuit(
581        &self,
582        circuit: &[QuantumGate],
583        num_qubits: usize,
584    ) -> Result<EnhancedProfilingReport, QuantRS2Error> {
585        let start_time = Instant::now();
586
587        // Initialize profiling
588        self.initialize_profiling(num_qubits)?;
589
590        // Profile each gate
591        let mut gate_results = Vec::new();
592        for (idx, gate) in circuit.iter().enumerate() {
593            let gate_result = self.profile_gate(gate, idx, num_qubits)?;
594            gate_results.push(gate_result);
595        }
596
597        // Collect overall metrics
598        let performance_metrics = self.collect_performance_metrics()?;
599
600        // Perform bottleneck analysis
601        let bottleneck_analysis = if self.config.enable_deep_analysis {
602            Some(self.analyze_bottlenecks(&gate_results, num_qubits)?)
603        } else {
604            None
605        };
606
607        // Generate optimization recommendations
608        let optimizations = if self.config.generate_optimizations {
609            self.generate_optimization_recommendations(&gate_results, &bottleneck_analysis)?
610        } else {
611            Vec::new()
612        };
613
614        // Predict performance on different hardware
615        let performance_predictions = if self.config.enable_performance_prediction {
616            Some(self.predict_performance(&gate_results, num_qubits)?)
617        } else {
618            None
619        };
620
621        // Create comprehensive report
622        let total_time = start_time.elapsed();
623
624        // Prepare export data before moving gate_results
625        let export_data = self.prepare_export_data(&gate_results)?;
626
627        Ok(EnhancedProfilingReport {
628            summary: ProfilingSummary {
629                total_execution_time: total_time,
630                num_gates: circuit.len(),
631                num_qubits,
632                platform_info: PlatformCapabilities::detect(),
633                profiling_config: self.config.clone(),
634            },
635            gate_results,
636            performance_metrics,
637            bottleneck_analysis,
638            optimizations,
639            performance_predictions,
640            export_data,
641        })
642    }
643
644    /// Initialize profiling state
645    fn initialize_profiling(&self, num_qubits: usize) -> Result<(), QuantRS2Error> {
646        let mut state = self
647            .profiling_state
648            .lock()
649            .map_err(|e| QuantRS2Error::RuntimeError(format!("Lock poisoned: {e}")))?;
650        state.current_depth = 0;
651        state.call_stack.clear();
652        state.gate_timings.clear();
653        state.memory_snapshots.clear();
654
655        // Take initial memory snapshot
656        let initial_snapshot = MemorySnapshot {
657            timestamp: Instant::now(),
658            total_memory: self.estimate_memory_usage(num_qubits),
659            heap_memory: 0,
660            stack_memory: 0,
661            buffer_pool_memory: 0,
662        };
663        state.memory_snapshots.push_back(initial_snapshot);
664
665        Ok(())
666    }
667
668    /// Profile individual gate
669    fn profile_gate(
670        &self,
671        gate: &QuantumGate,
672        gate_index: usize,
673        num_qubits: usize,
674    ) -> Result<EnhancedGateProfilingResult, QuantRS2Error> {
675        let start_time = Instant::now();
676        let memory_before = self.estimate_memory_usage(num_qubits);
677
678        // Record gate start
679        {
680            let mut state = self
681                .profiling_state
682                .lock()
683                .map_err(|e| QuantRS2Error::RuntimeError(format!("Lock poisoned: {e}")))?;
684            state.gate_timings.insert(
685                gate_index,
686                GateTimingInfo {
687                    gate_type: gate.gate_type().clone(),
688                    start_time,
689                    end_time: None,
690                    memory_before,
691                    memory_after: None,
692                    simd_ops: 0,
693                    parallel_ops: 0,
694                },
695            );
696        }
697
698        // Simulate gate execution with metrics collection
699        self.simulate_gate_execution(gate, num_qubits)?;
700
701        let end_time = Instant::now();
702        let memory_after = self.estimate_memory_usage(num_qubits);
703        let execution_time = end_time - start_time;
704
705        // Update gate timing info
706        {
707            let mut state = self
708                .profiling_state
709                .lock()
710                .map_err(|e| QuantRS2Error::RuntimeError(format!("Lock poisoned: {e}")))?;
711            if let Some(timing_info) = state.gate_timings.get_mut(&gate_index) {
712                timing_info.end_time = Some(end_time);
713                timing_info.memory_after = Some(memory_after);
714                timing_info.simd_ops = self
715                    .metrics_collector
716                    .simd_ops_count
717                    .load(Ordering::Relaxed);
718                timing_info.parallel_ops = self
719                    .metrics_collector
720                    .parallel_ops_count
721                    .load(Ordering::Relaxed);
722            }
723        }
724
725        // Record metrics
726        self.metrics_collector
727            .record_execution(&format!("{:?}", gate.gate_type()), execution_time);
728        self.metrics_collector
729            .record_memory(memory_after.saturating_sub(memory_before));
730
731        // Check for anomalies
732        let mut anomalies = Vec::new();
733        {
734            let mut state = self
735                .profiling_state
736                .lock()
737                .map_err(|e| QuantRS2Error::RuntimeError(format!("Lock poisoned: {e}")))?;
738            if let Some(anomaly) = state
739                .anomaly_detector
740                .update_metric(MetricType::ExecutionTime, execution_time.as_secs_f64())
741            {
742                anomalies.push(anomaly);
743            }
744        }
745
746        Ok(EnhancedGateProfilingResult {
747            gate_index,
748            gate_type: gate.gate_type().clone(),
749            execution_time,
750            memory_delta: memory_after as i64 - memory_before as i64,
751            simd_operations: self
752                .metrics_collector
753                .simd_ops_count
754                .load(Ordering::Relaxed),
755            parallel_operations: self
756                .metrics_collector
757                .parallel_ops_count
758                .load(Ordering::Relaxed),
759            cache_efficiency: self.calculate_cache_efficiency(),
760            bandwidth_usage: self.calculate_bandwidth_usage(execution_time),
761            anomalies,
762            detailed_metrics: self.collect_detailed_gate_metrics(gate, execution_time)?,
763        })
764    }
765
766    /// Simulate gate execution for profiling
767    fn simulate_gate_execution(
768        &self,
769        gate: &QuantumGate,
770        num_qubits: usize,
771    ) -> Result<(), QuantRS2Error> {
772        // Simulate different aspects based on gate type
773        match gate.gate_type() {
774            GateType::H | GateType::X | GateType::Y | GateType::Z => {
775                // Single-qubit gates
776                if self.platform_caps.simd_available() {
777                    self.metrics_collector.record_simd_op();
778                }
779                self.metrics_collector
780                    .record_bandwidth(16 * (1 << num_qubits)); // Complex64 operations
781            }
782            GateType::CNOT | GateType::CZ => {
783                // Two-qubit gates
784                if num_qubits > 10 {
785                    self.metrics_collector.record_parallel_op();
786                }
787                self.metrics_collector
788                    .record_bandwidth(32 * (1 << num_qubits));
789            }
790            _ => {
791                // Multi-qubit gates
792                self.metrics_collector.record_parallel_op();
793                self.metrics_collector
794                    .record_bandwidth(64 * (1 << num_qubits));
795            }
796        }
797
798        // Simulate cache behavior
799        use scirs2_core::random::prelude::*;
800        let cache_hit = thread_rng().gen::<f64>() > 0.2; // 80% hit rate simulation
801        self.metrics_collector.record_cache_access(cache_hit);
802
803        Ok(())
804    }
805
806    /// Estimate memory usage
807    const fn estimate_memory_usage(&self, num_qubits: usize) -> usize {
808        let state_vector_size = (1 << num_qubits) * std::mem::size_of::<Complex64>();
809        let overhead = state_vector_size / 10; // 10% overhead estimate
810        state_vector_size + overhead
811    }
812
813    /// Calculate cache efficiency
814    fn calculate_cache_efficiency(&self) -> f64 {
815        let hits = self.metrics_collector.cache_hits.load(Ordering::Relaxed) as f64;
816        let misses = self.metrics_collector.cache_misses.load(Ordering::Relaxed) as f64;
817        let total = hits + misses;
818
819        if total > 0.0 {
820            hits / total
821        } else {
822            1.0 // Assume perfect efficiency if no data
823        }
824    }
825
826    /// Calculate bandwidth usage
827    fn calculate_bandwidth_usage(&self, duration: Duration) -> f64 {
828        let bytes = self
829            .metrics_collector
830            .bandwidth_bytes
831            .load(Ordering::Relaxed) as f64;
832        let seconds = duration.as_secs_f64();
833
834        if seconds > 0.0 {
835            bytes / seconds
836        } else {
837            0.0
838        }
839    }
840
841    /// Collect detailed gate metrics
842    fn collect_detailed_gate_metrics(
843        &self,
844        gate: &QuantumGate,
845        execution_time: Duration,
846    ) -> Result<HashMap<String, f64>, QuantRS2Error> {
847        let mut metrics = HashMap::new();
848
849        metrics.insert(
850            "execution_time_us".to_string(),
851            execution_time.as_micros() as f64,
852        );
853        metrics.insert(
854            "cache_efficiency".to_string(),
855            self.calculate_cache_efficiency(),
856        );
857        metrics.insert(
858            "bandwidth_mbps".to_string(),
859            self.calculate_bandwidth_usage(execution_time) / 1e6,
860        );
861
862        if let Some(ref hw_model) = self.hardware_model {
863            metrics.insert(
864                "theoretical_flops".to_string(),
865                self.estimate_flops(gate, &hw_model.characteristics),
866            );
867        }
868
869        Ok(metrics)
870    }
871
872    /// Estimate FLOPS for a gate
873    fn estimate_flops(&self, gate: &QuantumGate, hw_chars: &HardwareCharacteristics) -> f64 {
874        let base_flops = match gate.gate_type() {
875            GateType::H => 8.0, // 4 complex multiplications
876            GateType::X | GateType::Y | GateType::Z => 4.0,
877            GateType::CNOT | GateType::CZ => 16.0,
878            _ => 32.0, // Conservative estimate for complex gates
879        };
880
881        base_flops * hw_chars.cpu_frequency
882    }
883
884    /// Collect overall performance metrics
885    fn collect_performance_metrics(&self) -> Result<PerformanceMetrics, QuantRS2Error> {
886        let mut values = HashMap::new();
887        let elapsed = self.metrics_collector.get_elapsed();
888
889        values.insert(MetricType::ExecutionTime, elapsed.as_secs_f64());
890        values.insert(
891            MetricType::MemoryUsage,
892            self.metrics_collector.memory_usage.load(Ordering::Relaxed) as f64,
893        );
894        values.insert(
895            MetricType::SimdUtilization,
896            self.metrics_collector
897                .simd_ops_count
898                .load(Ordering::Relaxed) as f64,
899        );
900        values.insert(
901            MetricType::ParallelEfficiency,
902            self.metrics_collector
903                .parallel_ops_count
904                .load(Ordering::Relaxed) as f64,
905        );
906        values.insert(MetricType::CacheHitRate, self.calculate_cache_efficiency());
907        values.insert(
908            MetricType::MemoryBandwidth,
909            self.calculate_bandwidth_usage(elapsed),
910        );
911
912        // Calculate statistics
913        let statistics = self.calculate_metric_statistics(&values)?;
914
915        // Time series data (simplified for this implementation)
916        let mut time_series = HashMap::new();
917        for (metric, value) in &values {
918            time_series.insert(*metric, vec![(0.0, 0.0), (elapsed.as_secs_f64(), *value)]);
919        }
920
921        Ok(PerformanceMetrics {
922            values,
923            time_series,
924            statistics,
925            correlations: HashMap::new(), // Simplified
926            anomalies: Vec::new(),        // Collected separately
927        })
928    }
929
930    /// Calculate metric statistics
931    fn calculate_metric_statistics(
932        &self,
933        values: &HashMap<MetricType, f64>,
934    ) -> Result<MetricStatistics, QuantRS2Error> {
935        let mut mean = HashMap::new();
936        let mut std_dev = HashMap::new();
937        let mut min = HashMap::new();
938        let mut max = HashMap::new();
939        let mut percentiles = HashMap::new();
940
941        for (metric, value) in values {
942            mean.insert(*metric, *value);
943            std_dev.insert(*metric, 0.0); // Simplified
944            min.insert(*metric, *value);
945            max.insert(*metric, *value);
946
947            let mut percs = BTreeMap::new();
948            percs.insert(50, *value); // Median
949            percs.insert(95, *value * 1.1); // 95th percentile estimate
950            percs.insert(99, *value * 1.2); // 99th percentile estimate
951            percentiles.insert(*metric, percs);
952        }
953
954        Ok(MetricStatistics {
955            mean,
956            std_dev,
957            min,
958            max,
959            percentiles,
960        })
961    }
962
963    /// Analyze bottlenecks in the circuit
964    fn analyze_bottlenecks(
965        &self,
966        gate_results: &[EnhancedGateProfilingResult],
967        num_qubits: usize,
968    ) -> Result<BottleneckAnalysis, QuantRS2Error> {
969        let mut bottlenecks = Vec::new();
970        let mut impact_analysis = HashMap::new();
971        let mut opportunities = Vec::new();
972
973        // Find execution time bottlenecks
974        let total_time: Duration = gate_results.iter().map(|r| r.execution_time).sum();
975        let avg_time = total_time / gate_results.len() as u32;
976
977        for (idx, result) in gate_results.iter().enumerate() {
978            if result.execution_time > avg_time * 2 {
979                let impact = result.execution_time.as_secs_f64() / total_time.as_secs_f64();
980
981                bottlenecks.push(Bottleneck {
982                    location: CircuitLocation {
983                        gate_index: idx,
984                        layer: idx / num_qubits, // Simplified layer calculation
985                        qubits: vec![idx % num_qubits], // Simplified
986                        context: format!("Gate {:?} at index {}", result.gate_type, idx),
987                    },
988                    bottleneck_type: BottleneckType::ComputeIntensive,
989                    severity: impact * 100.0,
990                    impact_percentage: impact * 100.0,
991                    suggested_fixes: vec![
992                        "Consider gate decomposition".to_string(),
993                        "Explore parallel execution".to_string(),
994                    ],
995                });
996
997                impact_analysis.insert(format!("gate_{idx}"), impact);
998            }
999
1000            // Check for low cache efficiency
1001            if result.cache_efficiency < 0.5 {
1002                bottlenecks.push(Bottleneck {
1003                    location: CircuitLocation {
1004                        gate_index: idx,
1005                        layer: idx / num_qubits,
1006                        qubits: vec![idx % num_qubits],
1007                        context: format!("Poor cache efficiency at gate {idx}"),
1008                    },
1009                    bottleneck_type: BottleneckType::CacheMiss,
1010                    severity: (1.0 - result.cache_efficiency) * 50.0,
1011                    impact_percentage: 10.0, // Estimated impact
1012                    suggested_fixes: vec![
1013                        "Reorder operations for better locality".to_string(),
1014                        "Consider data prefetching".to_string(),
1015                    ],
1016                });
1017            }
1018        }
1019
1020        // Identify optimization opportunities
1021        if self.platform_caps.simd_available() {
1022            let simd_utilization = gate_results
1023                .iter()
1024                .filter(|r| r.simd_operations > 0)
1025                .count() as f64
1026                / gate_results.len() as f64;
1027
1028            if simd_utilization < 0.5 {
1029                opportunities.push(OptimizationOpportunity {
1030                    opportunity_type: OpportunityType::SimdOptimization,
1031                    estimated_improvement: (1.0 - simd_utilization) * 2.0,
1032                    difficulty: Difficulty::Medium,
1033                    implementation: "Vectorize gate operations using AVX2".to_string(),
1034                    trade_offs: vec!["Increased code complexity".to_string()],
1035                });
1036            }
1037        }
1038
1039        // Create resource heatmap
1040        let resource_heatmap = Array2::zeros((gate_results.len(), 4)); // gates x resource types
1041
1042        Ok(BottleneckAnalysis {
1043            bottlenecks,
1044            impact_analysis,
1045            opportunities,
1046            resource_heatmap,
1047        })
1048    }
1049
1050    /// Generate optimization recommendations
1051    fn generate_optimization_recommendations(
1052        &self,
1053        gate_results: &[EnhancedGateProfilingResult],
1054        bottleneck_analysis: &Option<BottleneckAnalysis>,
1055    ) -> Result<Vec<EnhancedOptimizationRecommendation>, QuantRS2Error> {
1056        let mut recommendations = Vec::new();
1057
1058        // Gate fusion opportunities
1059        for window in gate_results.windows(2) {
1060            if Self::can_fuse_gates(&window[0].gate_type, &window[1].gate_type) {
1061                recommendations.push(EnhancedOptimizationRecommendation {
1062                    recommendation_type: RecommendationType::GateFusion,
1063                    priority: Priority::High,
1064                    estimated_speedup: 1.5,
1065                    implementation_difficulty: Difficulty::Easy,
1066                    description: format!(
1067                        "Fuse {:?} and {:?} gates",
1068                        window[0].gate_type, window[1].gate_type
1069                    ),
1070                    code_example: Some(
1071                        self.generate_fusion_code(&window[0].gate_type, &window[1].gate_type),
1072                    ),
1073                    prerequisites: vec!["Adjacent gates must commute".to_string()],
1074                    risks: vec!["May increase numerical error".to_string()],
1075                });
1076            }
1077        }
1078
1079        // Hardware-specific optimizations
1080        if let Some(ref hw_model) = self.hardware_model {
1081            for strategy in &hw_model.optimization_strategies {
1082                if strategy.expected_speedup > 1.5 {
1083                    recommendations.push(EnhancedOptimizationRecommendation {
1084                        recommendation_type: RecommendationType::HardwareSpecific,
1085                        priority: Priority::Medium,
1086                        estimated_speedup: strategy.expected_speedup,
1087                        implementation_difficulty: Difficulty::Hard,
1088                        description: strategy.strategy_name.clone(),
1089                        code_example: None,
1090                        prerequisites: strategy.applicable_conditions.clone(),
1091                        risks: vec!["Platform-specific code".to_string()],
1092                    });
1093                }
1094            }
1095        }
1096
1097        // Bottleneck-based recommendations
1098        if let Some(bottleneck_analysis) = bottleneck_analysis {
1099            for opportunity in &bottleneck_analysis.opportunities {
1100                recommendations.push(EnhancedOptimizationRecommendation {
1101                    recommendation_type: match opportunity.opportunity_type {
1102                        OpportunityType::GateFusion => RecommendationType::GateFusion,
1103                        OpportunityType::Parallelization => RecommendationType::Parallelization,
1104                        OpportunityType::SimdOptimization => RecommendationType::SimdVectorization,
1105                        OpportunityType::MemoryReordering => RecommendationType::MemoryOptimization,
1106                        OpportunityType::CacheOptimization => RecommendationType::CacheOptimization,
1107                        OpportunityType::AlgorithmicImprovement => {
1108                            RecommendationType::AlgorithmicChange
1109                        }
1110                        OpportunityType::HardwareSpecific => RecommendationType::HardwareSpecific,
1111                    },
1112                    priority: match opportunity.difficulty {
1113                        Difficulty::Trivial | Difficulty::Easy => Priority::High,
1114                        Difficulty::Medium => Priority::Medium,
1115                        Difficulty::Hard | Difficulty::Expert => Priority::Low,
1116                    },
1117                    estimated_speedup: opportunity.estimated_improvement,
1118                    implementation_difficulty: opportunity.difficulty,
1119                    description: opportunity.implementation.clone(),
1120                    code_example: None,
1121                    prerequisites: Vec::new(),
1122                    risks: opportunity.trade_offs.clone(),
1123                });
1124            }
1125        }
1126
1127        Ok(recommendations)
1128    }
1129
1130    /// Check if two gates can be fused
1131    const fn can_fuse_gates(gate1: &GateType, gate2: &GateType) -> bool {
1132        use GateType::{Rx, Ry, Rz, H, X, Y, Z};
1133        matches!(
1134            (gate1, gate2),
1135            (H, H) | (X, X) | (Y, Y) | (Z, Z) | // Self-inverse gates
1136            (Rz(_), Rz(_)) | (Rx(_), Rx(_)) | (Ry(_), Ry(_)) // Rotation gates
1137        )
1138    }
1139
1140    /// Generate fusion code example
1141    fn generate_fusion_code(&self, gate1: &GateType, gate2: &GateType) -> String {
1142        format!(
1143            "// Fused {gate1:?} and {gate2:?}\nlet fused_gate = FusedGate::new({gate1:?}, {gate2:?});\nfused_gate.apply(state);"
1144        )
1145    }
1146
1147    /// Predict performance on different hardware
1148    fn predict_performance(
1149        &self,
1150        gate_results: &[EnhancedGateProfilingResult],
1151        num_qubits: usize,
1152    ) -> Result<PerformancePredictions, QuantRS2Error> {
1153        let mut predictions = HashMap::new();
1154
1155        // Current hardware baseline
1156        let current_time: Duration = gate_results.iter().map(|r| r.execution_time).sum();
1157
1158        predictions.insert(
1159            "current".to_string(),
1160            PredictedPerformance {
1161                hardware_description: "Current Platform".to_string(),
1162                estimated_time: current_time,
1163                confidence: 1.0,
1164                limiting_factors: vec!["Actual measurement".to_string()],
1165            },
1166        );
1167
1168        // GPU prediction
1169        if self.platform_caps.gpu_available() {
1170            let gpu_speedup = (num_qubits as f64).ln() * 2.0; // Logarithmic speedup model
1171            predictions.insert(
1172                "gpu".to_string(),
1173                PredictedPerformance {
1174                    hardware_description: "GPU Acceleration".to_string(),
1175                    estimated_time: current_time / gpu_speedup as u32,
1176                    confidence: 0.8,
1177                    limiting_factors: vec!["Memory transfer overhead".to_string()],
1178                },
1179            );
1180        }
1181
1182        // Quantum hardware prediction
1183        predictions.insert(
1184            "quantum_hw".to_string(),
1185            PredictedPerformance {
1186                hardware_description: "Quantum Hardware (NISQ)".to_string(),
1187                estimated_time: Duration::from_millis(gate_results.len() as u64 * 10), // 10ms per gate
1188                confidence: 0.5,
1189                limiting_factors: vec![
1190                    "Gate fidelity".to_string(),
1191                    "Connectivity constraints".to_string(),
1192                    "Decoherence".to_string(),
1193                ],
1194            },
1195        );
1196
1197        // Cloud QPU prediction
1198        predictions.insert(
1199            "cloud_qpu".to_string(),
1200            PredictedPerformance {
1201                hardware_description: "Cloud Quantum Processor".to_string(),
1202                estimated_time: Duration::from_secs(1)
1203                    + Duration::from_millis(gate_results.len() as u64),
1204                confidence: 0.6,
1205                limiting_factors: vec!["Network latency".to_string(), "Queue time".to_string()],
1206            },
1207        );
1208
1209        // Generate hardware recommendations before moving predictions
1210        let hardware_recommendations =
1211            self.generate_hardware_recommendations(num_qubits, &predictions);
1212
1213        Ok(PerformancePredictions {
1214            predictions,
1215            scaling_analysis: self.analyze_scaling(num_qubits)?,
1216            hardware_recommendations,
1217        })
1218    }
1219
1220    /// Analyze scaling behavior
1221    fn analyze_scaling(&self, num_qubits: usize) -> Result<ScalingAnalysis, QuantRS2Error> {
1222        Ok(ScalingAnalysis {
1223            qubit_scaling: ScalingType::Exponential,
1224            gate_scaling: ScalingType::Linear,
1225            memory_scaling: ScalingType::Exponential,
1226            predicted_limits: HashMap::from([
1227                ("max_qubits_cpu".to_string(), 30.0),
1228                ("max_qubits_gpu".to_string(), 35.0),
1229                ("max_gates_per_second".to_string(), 1e6),
1230            ]),
1231        })
1232    }
1233
1234    /// Generate hardware recommendations
1235    fn generate_hardware_recommendations(
1236        &self,
1237        num_qubits: usize,
1238        predictions: &HashMap<String, PredictedPerformance>,
1239    ) -> Vec<String> {
1240        let mut recommendations = Vec::new();
1241
1242        if num_qubits > 20 {
1243            recommendations.push("Consider GPU acceleration for large circuits".to_string());
1244        }
1245
1246        if num_qubits > 30 {
1247            recommendations.push("Tensor network methods recommended".to_string());
1248        }
1249
1250        if let Some(gpu_pred) = predictions.get("gpu") {
1251            if gpu_pred.confidence > 0.7 {
1252                recommendations.push("GPU acceleration shows promising speedup".to_string());
1253            }
1254        }
1255
1256        recommendations
1257    }
1258
1259    /// Prepare export data
1260    fn prepare_export_data(
1261        &self,
1262        gate_results: &[EnhancedGateProfilingResult],
1263    ) -> Result<HashMap<ExportFormat, Vec<u8>>, QuantRS2Error> {
1264        let mut export_data = HashMap::new();
1265
1266        for format in &self.config.export_formats {
1267            let data = match format {
1268                ExportFormat::JSON => self.export_to_json(gate_results)?,
1269                ExportFormat::CSV => self.export_to_csv(gate_results)?,
1270                ExportFormat::HTML => self.export_to_html(gate_results)?,
1271                _ => Vec::new(), // Other formats not implemented in this example
1272            };
1273            export_data.insert(*format, data);
1274        }
1275
1276        Ok(export_data)
1277    }
1278
1279    /// Export to JSON format
1280    fn export_to_json(
1281        &self,
1282        gate_results: &[EnhancedGateProfilingResult],
1283    ) -> Result<Vec<u8>, QuantRS2Error> {
1284        let json = serde_json::to_vec_pretty(gate_results)
1285            .map_err(|e| QuantRS2Error::ComputationError(format!("CSV generation failed: {e}")))?;
1286        Ok(json)
1287    }
1288
1289    /// Export to CSV format
1290    fn export_to_csv(
1291        &self,
1292        gate_results: &[EnhancedGateProfilingResult],
1293    ) -> Result<Vec<u8>, QuantRS2Error> {
1294        let mut csv = Vec::new();
1295        writeln!(csv, "gate_index,gate_type,execution_time_us,memory_delta,simd_ops,parallel_ops,cache_efficiency")
1296            .map_err(|e| QuantRS2Error::ComputationError(format!("IO error: {e}")))?;
1297
1298        for result in gate_results {
1299            writeln!(
1300                csv,
1301                "{},{:?},{},{},{},{},{:.2}",
1302                result.gate_index,
1303                result.gate_type,
1304                result.execution_time.as_micros(),
1305                result.memory_delta,
1306                result.simd_operations,
1307                result.parallel_operations,
1308                result.cache_efficiency
1309            )
1310            .map_err(|e| QuantRS2Error::ComputationError(format!("IO error: {e}")))?;
1311        }
1312
1313        Ok(csv)
1314    }
1315
1316    /// Export to HTML format
1317    fn export_to_html(
1318        &self,
1319        gate_results: &[EnhancedGateProfilingResult],
1320    ) -> Result<Vec<u8>, QuantRS2Error> {
1321        let mut html = Vec::new();
1322        writeln!(
1323            html,
1324            "<html><head><title>Quantum Circuit Profiling Report</title>"
1325        )
1326        .map_err(|e| QuantRS2Error::ComputationError(format!("IO error: {e}")))?;
1327        writeln!(html, "<style>table {{ border-collapse: collapse; }} th, td {{ border: 1px solid black; padding: 8px; }}</style>")
1328            .map_err(|e| QuantRS2Error::ComputationError(format!("IO error: {e}")))?;
1329        writeln!(html, "</head><body><h1>Profiling Results</h1><table>")
1330            .map_err(|e| QuantRS2Error::ComputationError(format!("IO error: {e}")))?;
1331        writeln!(html, "<tr><th>Gate</th><th>Type</th><th>Time (μs)</th><th>Memory</th><th>SIMD</th><th>Parallel</th><th>Cache</th></tr>")
1332            .map_err(|e| QuantRS2Error::ComputationError(format!("IO error: {e}")))?;
1333
1334        for result in gate_results {
1335            writeln!(html, "<tr><td>{}</td><td>{:?}</td><td>{}</td><td>{}</td><td>{}</td><td>{}</td><td>{:.1}%</td></tr>",
1336                result.gate_index,
1337                result.gate_type,
1338                result.execution_time.as_micros(),
1339                result.memory_delta,
1340                result.simd_operations,
1341                result.parallel_operations,
1342                result.cache_efficiency * 100.0
1343            ).map_err(|e| QuantRS2Error::ComputationError(format!("IO error: {e}")))?;
1344        }
1345
1346        writeln!(html, "</table></body></html>")
1347            .map_err(|e| QuantRS2Error::ComputationError(format!("IO error: {e}")))?;
1348
1349        Ok(html)
1350    }
1351}
1352
1353/// Enhanced gate profiling result
1354#[derive(Debug, Clone, Serialize, Deserialize)]
1355pub struct EnhancedGateProfilingResult {
1356    pub gate_index: usize,
1357    pub gate_type: GateType,
1358    pub execution_time: Duration,
1359    pub memory_delta: i64,
1360    pub simd_operations: u64,
1361    pub parallel_operations: u64,
1362    pub cache_efficiency: f64,
1363    pub bandwidth_usage: f64,
1364    pub anomalies: Vec<AnomalyEvent>,
1365    pub detailed_metrics: HashMap<String, f64>,
1366}
1367
1368/// Enhanced optimization recommendation
1369#[derive(Debug, Clone, Serialize, Deserialize)]
1370pub struct EnhancedOptimizationRecommendation {
1371    pub recommendation_type: RecommendationType,
1372    pub priority: Priority,
1373    pub estimated_speedup: f64,
1374    pub implementation_difficulty: Difficulty,
1375    pub description: String,
1376    pub code_example: Option<String>,
1377    pub prerequisites: Vec<String>,
1378    pub risks: Vec<String>,
1379}
1380
1381#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
1382pub enum RecommendationType {
1383    GateFusion,
1384    Parallelization,
1385    SimdVectorization,
1386    MemoryOptimization,
1387    CacheOptimization,
1388    AlgorithmicChange,
1389    HardwareSpecific,
1390}
1391
1392#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
1393pub enum Priority {
1394    Low,
1395    Medium,
1396    High,
1397    Critical,
1398}
1399
1400/// Performance predictions
1401#[derive(Debug, Clone, Serialize, Deserialize)]
1402pub struct PerformancePredictions {
1403    pub predictions: HashMap<String, PredictedPerformance>,
1404    pub scaling_analysis: ScalingAnalysis,
1405    pub hardware_recommendations: Vec<String>,
1406}
1407
1408#[derive(Debug, Clone, Serialize, Deserialize)]
1409pub struct PredictedPerformance {
1410    pub hardware_description: String,
1411    pub estimated_time: Duration,
1412    pub confidence: f64,
1413    pub limiting_factors: Vec<String>,
1414}
1415
1416#[derive(Debug, Clone, Serialize, Deserialize)]
1417pub struct ScalingAnalysis {
1418    pub qubit_scaling: ScalingType,
1419    pub gate_scaling: ScalingType,
1420    pub memory_scaling: ScalingType,
1421    pub predicted_limits: HashMap<String, f64>,
1422}
1423
1424/// Enhanced profiling report
1425#[derive(Serialize, Deserialize)]
1426pub struct EnhancedProfilingReport {
1427    pub summary: ProfilingSummary,
1428    pub gate_results: Vec<EnhancedGateProfilingResult>,
1429    pub performance_metrics: PerformanceMetrics,
1430    pub bottleneck_analysis: Option<BottleneckAnalysis>,
1431    pub optimizations: Vec<EnhancedOptimizationRecommendation>,
1432    pub performance_predictions: Option<PerformancePredictions>,
1433    pub export_data: HashMap<ExportFormat, Vec<u8>>,
1434}
1435
1436#[derive(Serialize, Deserialize)]
1437pub struct ProfilingSummary {
1438    pub total_execution_time: Duration,
1439    pub num_gates: usize,
1440    pub num_qubits: usize,
1441    #[serde(skip, default = "PlatformCapabilities::detect")]
1442    pub platform_info: PlatformCapabilities,
1443    pub profiling_config: EnhancedProfilingConfig,
1444}
1445
1446#[cfg(test)]
1447mod tests {
1448    use super::*;
1449
1450    #[test]
1451    fn test_enhanced_profiler_creation() {
1452        let profiler = EnhancedQuantumProfiler::new();
1453        assert!(profiler.platform_caps.simd_available());
1454    }
1455
1456    #[test]
1457    fn test_basic_profiling() {
1458        let profiler = EnhancedQuantumProfiler::new();
1459        let gates = vec![
1460            QuantumGate::new(GateType::H, vec![0], None),
1461            QuantumGate::new(GateType::CNOT, vec![0, 1], None),
1462            QuantumGate::new(GateType::H, vec![1], None),
1463        ];
1464
1465        let result = profiler
1466            .profile_circuit(&gates, 2)
1467            .expect("Failed to profile circuit");
1468        assert_eq!(result.gate_results.len(), 3);
1469        assert!(result.summary.total_execution_time.as_nanos() > 0);
1470    }
1471
1472    #[test]
1473    fn test_bottleneck_detection() {
1474        let config = EnhancedProfilingConfig {
1475            enable_deep_analysis: true,
1476            ..Default::default()
1477        };
1478        let profiler = EnhancedQuantumProfiler::with_config(config);
1479
1480        let gates = vec![
1481            QuantumGate::new(GateType::H, vec![0], None),
1482            QuantumGate::new(GateType::T, vec![0], None),
1483            QuantumGate::new(GateType::H, vec![0], None),
1484        ];
1485
1486        let result = profiler
1487            .profile_circuit(&gates, 1)
1488            .expect("Failed to profile circuit");
1489        assert!(result.bottleneck_analysis.is_some());
1490    }
1491
1492    #[test]
1493    fn test_optimization_recommendations() {
1494        let config = EnhancedProfilingConfig {
1495            generate_optimizations: true,
1496            ..Default::default()
1497        };
1498        let profiler = EnhancedQuantumProfiler::with_config(config);
1499
1500        let gates = vec![
1501            QuantumGate::new(GateType::H, vec![0], None),
1502            QuantumGate::new(GateType::H, vec![0], None), // H^2 = I
1503        ];
1504
1505        let result = profiler
1506            .profile_circuit(&gates, 1)
1507            .expect("Failed to profile circuit");
1508        assert!(!result.optimizations.is_empty());
1509        assert!(result
1510            .optimizations
1511            .iter()
1512            .any(|opt| opt.recommendation_type == RecommendationType::GateFusion));
1513    }
1514
1515    #[test]
1516    fn test_performance_prediction() {
1517        let config = EnhancedProfilingConfig {
1518            enable_performance_prediction: true,
1519            ..Default::default()
1520        };
1521        let profiler = EnhancedQuantumProfiler::with_config(config);
1522
1523        let gates = vec![
1524            QuantumGate::new(GateType::X, vec![0], None),
1525            QuantumGate::new(GateType::Y, vec![1], None),
1526            QuantumGate::new(GateType::Z, vec![2], None),
1527        ];
1528
1529        let result = profiler
1530            .profile_circuit(&gates, 3)
1531            .expect("Failed to profile circuit");
1532        assert!(result.performance_predictions.is_some());
1533
1534        let predictions = result
1535            .performance_predictions
1536            .expect("Missing performance predictions");
1537        assert!(predictions.predictions.contains_key("current"));
1538        assert!(predictions.predictions.contains_key("quantum_hw"));
1539    }
1540
1541    #[test]
1542    fn test_export_formats() {
1543        let config = EnhancedProfilingConfig {
1544            export_formats: vec![ExportFormat::JSON, ExportFormat::CSV, ExportFormat::HTML],
1545            ..Default::default()
1546        };
1547        let profiler = EnhancedQuantumProfiler::with_config(config);
1548
1549        let gates = vec![QuantumGate::new(GateType::H, vec![0], None)];
1550
1551        let result = profiler
1552            .profile_circuit(&gates, 1)
1553            .expect("Failed to profile circuit");
1554        assert_eq!(result.export_data.len(), 3);
1555        assert!(result.export_data.contains_key(&ExportFormat::JSON));
1556        assert!(result.export_data.contains_key(&ExportFormat::CSV));
1557        assert!(result.export_data.contains_key(&ExportFormat::HTML));
1558    }
1559}