1use crate::error::{QuantRS2Error, QuantRS2Result};
8use scirs2_core::ndarray::{Array1, Array2};
9use scirs2_core::Complex64;
10use std::collections::HashMap;
11#[derive(Debug, Clone, Copy, PartialEq, Eq)]
13pub enum GameType {
14 QuantumPrisonersDilemma,
16 QuantumBattleOfSexes,
18 QuantumAuction,
20 QuantumCoordination,
22 QuantumMinorityGame,
24 Custom,
26}
27#[derive(Debug, Clone, PartialEq)]
29pub enum QuantumStrategy {
30 Classical(f64),
32 Superposition { theta: f64, phi: f64 },
34 Entangled,
36 Mixed(Vec<(f64, Self)>),
38}
39#[derive(Debug, Clone)]
41pub struct QuantumPlayer {
42 pub id: usize,
44 pub strategy: QuantumStrategy,
46 pub state: Option<Array1<Complex64>>,
48 pub utility_params: HashMap<String, f64>,
50}
51impl QuantumPlayer {
52 pub fn new(id: usize, strategy: QuantumStrategy) -> Self {
54 Self {
55 id,
56 strategy,
57 state: None,
58 utility_params: HashMap::new(),
59 }
60 }
61 pub fn set_utility_param(&mut self, param: String, value: f64) {
63 self.utility_params.insert(param, value);
64 }
65 pub fn prepare_quantum_state(&mut self) -> QuantRS2Result<Array1<Complex64>> {
67 match self.strategy {
68 QuantumStrategy::Classical(theta) => {
69 let state = Array1::from_vec(vec![
70 Complex64::new(theta.cos(), 0.0),
71 Complex64::new(theta.sin(), 0.0),
72 ]);
73 self.state = Some(state.clone());
74 Ok(state)
75 }
76 QuantumStrategy::Superposition { theta, phi } => {
77 let state = Array1::from_vec(vec![
78 Complex64::new((theta / 2.0).cos(), 0.0),
79 Complex64::new(
80 (theta / 2.0).sin() * phi.cos(),
81 (theta / 2.0).sin() * phi.sin(),
82 ),
83 ]);
84 self.state = Some(state.clone());
85 Ok(state)
86 }
87 QuantumStrategy::Entangled => {
88 let state = Array1::from_vec(vec![
89 Complex64::new(1.0 / 2.0_f64.sqrt(), 0.0),
90 Complex64::new(1.0 / 2.0_f64.sqrt(), 0.0),
91 ]);
92 self.state = Some(state.clone());
93 Ok(state)
94 }
95 QuantumStrategy::Mixed(_) => {
96 let state = Array1::from_vec(vec![
97 Complex64::new(1.0 / 2.0_f64.sqrt(), 0.0),
98 Complex64::new(1.0 / 2.0_f64.sqrt(), 0.0),
99 ]);
100 self.state = Some(state.clone());
101 Ok(state)
102 }
103 }
104 }
105 pub fn compute_utility(&self, game_outcome: &GameOutcome) -> f64 {
107 match &game_outcome.payoff_matrix {
108 Some(payoffs) => payoffs.iter().sum::<f64>() / payoffs.len() as f64,
109 None => 0.0,
110 }
111 }
112}
113#[derive(Debug, Clone)]
115pub struct GameOutcome {
116 pub classical_outcomes: Vec<usize>,
118 pub probabilities: Array1<f64>,
120 pub payoff_matrix: Option<Vec<f64>>,
122 pub is_nash_equilibrium: bool,
124}
125#[derive(Debug, Clone)]
127pub struct QuantumGame {
128 pub game_type: GameType,
130 pub num_players: usize,
132 pub players: Vec<QuantumPlayer>,
134 pub game_circuit: Option<Array2<Complex64>>,
136 pub payoff_matrices: Vec<Array2<f64>>,
138 pub entanglement_operator: Option<Array2<Complex64>>,
140}
141impl QuantumGame {
142 pub fn new(game_type: GameType, num_players: usize) -> Self {
144 let players = Vec::new();
145 let payoff_matrices = vec![Array2::zeros((2, 2)); num_players];
146 Self {
147 game_type,
148 num_players,
149 players,
150 game_circuit: None,
151 payoff_matrices,
152 entanglement_operator: None,
153 }
154 }
155 pub fn add_player(&mut self, player: QuantumPlayer) -> QuantRS2Result<()> {
157 if self.players.len() >= self.num_players {
158 return Err(QuantRS2Error::InvalidInput(
159 "Maximum number of players reached".to_string(),
160 ));
161 }
162 self.players.push(player);
163 Ok(())
164 }
165 pub fn set_payoff_matrix(
167 &mut self,
168 player_id: usize,
169 payoffs: Array2<f64>,
170 ) -> QuantRS2Result<()> {
171 if player_id >= self.num_players {
172 return Err(QuantRS2Error::InvalidInput(
173 "Player ID out of bounds".to_string(),
174 ));
175 }
176 self.payoff_matrices[player_id] = payoffs;
177 Ok(())
178 }
179 pub fn quantum_prisoners_dilemma() -> QuantRS2Result<Self> {
181 let mut game = Self::new(GameType::QuantumPrisonersDilemma, 2);
182 let payoff_p1 = Array2::from_shape_vec((2, 2), vec![3.0, 0.0, 5.0, 1.0]).map_err(|e| {
183 QuantRS2Error::InvalidInput(format!("Failed to create payoff matrix: {e}"))
184 })?;
185 let payoff_p2 = Array2::from_shape_vec((2, 2), vec![3.0, 5.0, 0.0, 1.0]).map_err(|e| {
186 QuantRS2Error::InvalidInput(format!("Failed to create payoff matrix: {e}"))
187 })?;
188 game.set_payoff_matrix(0, payoff_p1)?;
189 game.set_payoff_matrix(1, payoff_p2)?;
190 let entanglement = Self::create_entanglement_operator(std::f64::consts::PI / 2.0)?;
191 game.entanglement_operator = Some(entanglement);
192 Ok(game)
193 }
194 pub fn quantum_coordination_game() -> QuantRS2Result<Self> {
196 let mut game = Self::new(GameType::QuantumCoordination, 2);
197 let payoff_p1 = Array2::from_shape_vec((2, 2), vec![2.0, 0.0, 0.0, 1.0]).map_err(|e| {
198 QuantRS2Error::InvalidInput(format!("Failed to create payoff matrix: {e}"))
199 })?;
200 let payoff_p2 = payoff_p1.clone();
201 game.set_payoff_matrix(0, payoff_p1)?;
202 game.set_payoff_matrix(1, payoff_p2)?;
203 Ok(game)
204 }
205 pub fn quantum_auction(num_bidders: usize) -> QuantRS2Result<Self> {
207 let mut game = Self::new(GameType::QuantumAuction, num_bidders);
208 for i in 0..num_bidders {
209 let payoff = Array2::from_shape_vec((2, 2), vec![1.0, 0.5, 2.0, 0.0]).map_err(|e| {
210 QuantRS2Error::InvalidInput(format!("Failed to create payoff matrix: {e}"))
211 })?;
212 game.set_payoff_matrix(i, payoff)?;
213 }
214 Ok(game)
215 }
216 fn create_entanglement_operator(gamma: f64) -> QuantRS2Result<Array2<Complex64>> {
218 let cos_g = (gamma / 2.0).cos();
219 let sin_g = (gamma / 2.0).sin();
220 Array2::from_shape_vec(
221 (4, 4),
222 vec![
223 Complex64::new(cos_g, 0.0),
224 Complex64::new(0.0, 0.0),
225 Complex64::new(0.0, 0.0),
226 Complex64::new(0.0, sin_g),
227 Complex64::new(0.0, 0.0),
228 Complex64::new(cos_g, 0.0),
229 Complex64::new(0.0, -sin_g),
230 Complex64::new(0.0, 0.0),
231 Complex64::new(0.0, 0.0),
232 Complex64::new(0.0, -sin_g),
233 Complex64::new(cos_g, 0.0),
234 Complex64::new(0.0, 0.0),
235 Complex64::new(0.0, sin_g),
236 Complex64::new(0.0, 0.0),
237 Complex64::new(0.0, 0.0),
238 Complex64::new(cos_g, 0.0),
239 ],
240 )
241 .map_err(|e| {
242 QuantRS2Error::InvalidInput(format!("Failed to create entanglement operator: {e}"))
243 })
244 }
245 pub fn play_game(&mut self) -> QuantRS2Result<GameOutcome> {
247 if self.players.len() != self.num_players {
248 return Err(QuantRS2Error::InvalidInput(
249 "Not all players have joined the game".to_string(),
250 ));
251 }
252 let mut joint_state = self.prepare_joint_state()?;
253 if let Some(entanglement_op) = &self.entanglement_operator {
254 joint_state = entanglement_op.dot(&joint_state);
255 }
256 joint_state = self.apply_player_strategies(joint_state)?;
257 self.measure_game_outcome(joint_state)
258 }
259 fn prepare_joint_state(&mut self) -> QuantRS2Result<Array1<Complex64>> {
261 let total_dim = 1 << self.num_players;
262 let mut joint_state = Array1::zeros(total_dim);
263 joint_state[0] = Complex64::new(1.0, 0.0);
264 let mut player_states = Vec::new();
265 for player in &mut self.players {
266 let player_state = player.prepare_quantum_state()?;
267 player_states.push(player_state);
268 }
269 for (i, player_state) in player_states.into_iter().enumerate() {
270 joint_state = Self::tensor_product_player_state(joint_state, player_state, i)?;
271 }
272 Ok(joint_state)
273 }
274 fn tensor_product_player_state(
276 joint_state: Array1<Complex64>,
277 player_state: Array1<Complex64>,
278 player_index: usize,
279 ) -> QuantRS2Result<Array1<Complex64>> {
280 let mut new_state = joint_state;
281 for i in 0..new_state.len() {
282 let bit = (i >> player_index) & 1;
283 if bit == 0 {
284 new_state[i] *= player_state[0];
285 } else {
286 new_state[i] *= player_state[1];
287 }
288 }
289 Ok(new_state)
290 }
291 fn apply_player_strategies(
293 &self,
294 mut joint_state: Array1<Complex64>,
295 ) -> QuantRS2Result<Array1<Complex64>> {
296 for (i, player) in self.players.iter().enumerate() {
297 joint_state = Self::apply_single_player_strategy(joint_state, &player.strategy, i)?;
298 }
299 Ok(joint_state)
300 }
301 fn apply_single_player_strategy(
303 mut joint_state: Array1<Complex64>,
304 strategy: &QuantumStrategy,
305 player_index: usize,
306 ) -> QuantRS2Result<Array1<Complex64>> {
307 match strategy {
308 QuantumStrategy::Classical(theta) => {
309 let cos_theta = theta.cos();
310 let sin_theta = theta.sin();
311 for i in 0..joint_state.len() {
312 let bit = (i >> player_index) & 1;
313 if bit == 1 {
314 joint_state[i] *= Complex64::new(cos_theta, sin_theta);
315 }
316 }
317 }
318 QuantumStrategy::Superposition { theta, phi } => {
319 let half_theta = theta / 2.0;
320 let cos_half = half_theta.cos();
321 let sin_half = half_theta.sin();
322 let mut new_state = Array1::zeros(joint_state.len());
323 for i in 0..joint_state.len() {
324 let bit = (i >> player_index) & 1;
325 let flipped_i = i ^ (1 << player_index);
326 if bit == 0 {
327 new_state[i] += cos_half * joint_state[i];
328 new_state[flipped_i] +=
329 sin_half * Complex64::new(phi.cos(), phi.sin()) * joint_state[i];
330 }
331 }
332 joint_state = new_state;
333 }
334 QuantumStrategy::Entangled => {}
335 QuantumStrategy::Mixed(_strategies) => {
336 let mut new_state = joint_state.clone();
337 for i in 0..new_state.len() {
338 new_state[i] *= Complex64::new(1.0 / 2.0_f64.sqrt(), 0.0);
339 }
340 joint_state = new_state;
341 }
342 }
343 Ok(joint_state)
344 }
345 fn measure_game_outcome(&self, joint_state: Array1<Complex64>) -> QuantRS2Result<GameOutcome> {
347 let num_outcomes = joint_state.len();
348 let mut probabilities = Array1::zeros(num_outcomes);
349 for i in 0..num_outcomes {
350 probabilities[i] = joint_state[i].norm_sqr();
351 }
352 let outcome_index = Self::sample_outcome(&probabilities)?;
353 let mut classical_outcomes = Vec::new();
354 for player_idx in 0..self.num_players {
355 let bit = (outcome_index >> player_idx) & 1;
356 classical_outcomes.push(bit);
357 }
358 let payoffs = self.compute_payoffs(&classical_outcomes)?;
359 let is_nash = self.is_nash_equilibrium(&classical_outcomes, &payoffs)?;
360 Ok(GameOutcome {
361 classical_outcomes,
362 probabilities,
363 payoff_matrix: Some(payoffs),
364 is_nash_equilibrium: is_nash,
365 })
366 }
367 fn sample_outcome(probabilities: &Array1<f64>) -> QuantRS2Result<usize> {
369 let mut rng = thread_rng();
370 use scirs2_core::random::prelude::*;
371 let random_value: f64 = rng.random();
372 let mut cumulative = 0.0;
373 for (i, &prob) in probabilities.iter().enumerate() {
374 cumulative += prob;
375 if random_value <= cumulative {
376 return Ok(i);
377 }
378 }
379 Ok(probabilities.len() - 1)
380 }
381 fn compute_payoffs(&self, outcomes: &[usize]) -> QuantRS2Result<Vec<f64>> {
383 let mut payoffs = Vec::new();
384 for (player_idx, payoff_matrix) in self.payoff_matrices.iter().enumerate() {
385 if outcomes.len() < 2 {
386 return Err(QuantRS2Error::InvalidInput(
387 "Need at least 2 players for payoff calculation".to_string(),
388 ));
389 }
390 let player_action = outcomes[player_idx];
391 let opponent_action = outcomes[1 - player_idx % 2];
392 let payoff = payoff_matrix[[player_action, opponent_action]];
393 payoffs.push(payoff);
394 }
395 Ok(payoffs)
396 }
397 fn is_nash_equilibrium(&self, outcomes: &[usize], _payoffs: &[f64]) -> QuantRS2Result<bool> {
399 match self.game_type {
400 GameType::QuantumPrisonersDilemma => Ok(outcomes == &[1, 1]),
401 GameType::QuantumCoordination => Ok(outcomes[0] == outcomes[1]),
402 _ => Ok(false),
403 }
404 }
405 pub fn find_quantum_nash_equilibria(&mut self) -> QuantRS2Result<Vec<GameOutcome>> {
407 let mut equilibria = Vec::new();
408 let theta_steps = 10;
409 let phi_steps = 10;
410 for i in 0..theta_steps {
411 for j in 0..phi_steps {
412 let theta = (i as f64) * std::f64::consts::PI / (theta_steps as f64);
413 let phi = (j as f64) * 2.0 * std::f64::consts::PI / (phi_steps as f64);
414 for player in &mut self.players {
415 player.strategy = QuantumStrategy::Superposition { theta, phi };
416 }
417 let outcome = self.play_game()?;
418 if outcome.is_nash_equilibrium {
419 equilibria.push(outcome);
420 }
421 }
422 }
423 Ok(equilibria)
424 }
425 pub fn quantum_advantage(&mut self) -> QuantRS2Result<f64> {
427 let quantum_outcome = self.play_game()?;
428 let quantum_payoffs = quantum_outcome.payoff_matrix.unwrap_or_default();
429 let quantum_total = quantum_payoffs.iter().sum::<f64>();
430 let classical_total = self.compute_classical_nash_payoff()?;
431 Ok(quantum_total - classical_total)
432 }
433 const fn compute_classical_nash_payoff(&self) -> QuantRS2Result<f64> {
435 match self.game_type {
436 GameType::QuantumPrisonersDilemma => Ok(2.0),
437 GameType::QuantumCoordination | _ => Ok(0.0),
438 }
439 }
440}
441#[derive(Debug, Clone)]
443pub struct QuantumMechanism {
444 pub num_players: usize,
446 pub mechanism_type: String,
448 pub circuit: Option<Array2<Complex64>>,
450 pub revenue_function: Option<fn(&[f64]) -> f64>,
452}
453impl QuantumMechanism {
454 pub fn quantum_auction_mechanism(num_bidders: usize) -> Self {
456 Self {
457 num_players: num_bidders,
458 mechanism_type: "Quantum Auction".to_string(),
459 circuit: None,
460 revenue_function: Some(|bids| bids.iter().sum::<f64>() * 0.1),
461 }
462 }
463 pub fn quantum_voting_mechanism(num_voters: usize) -> Self {
465 Self {
466 num_players: num_voters,
467 mechanism_type: "Quantum Voting".to_string(),
468 circuit: None,
469 revenue_function: None,
470 }
471 }
472 pub fn design_optimal_mechanism(&mut self) -> QuantRS2Result<Array2<Complex64>> {
474 let dim = 1 << self.num_players;
475 Ok(Array2::eye(dim))
476 }
477 pub const fn verify_mechanism_properties(&self) -> QuantRS2Result<(bool, bool)> {
479 let incentive_compatible = true;
480 let individually_rational = true;
481 Ok((incentive_compatible, individually_rational))
482 }
483}
484#[cfg(test)]
485mod tests {
486 use super::*;
487 #[test]
488 fn test_quantum_player_creation() {
489 let strategy = QuantumStrategy::Superposition {
490 theta: std::f64::consts::PI / 4.0,
491 phi: 0.0,
492 };
493 let player = QuantumPlayer::new(0, strategy.clone());
494 assert_eq!(player.id, 0);
495 assert_eq!(player.strategy, strategy);
496 assert!(player.state.is_none());
497 }
498 #[test]
499 fn test_quantum_state_preparation() {
500 let mut player =
501 QuantumPlayer::new(0, QuantumStrategy::Classical(std::f64::consts::PI / 4.0));
502 let state = player
503 .prepare_quantum_state()
504 .expect("failed to prepare quantum state");
505 assert_eq!(state.len(), 2);
506 assert!(state[0].norm() > 0.0);
507 assert!(player.state.is_some());
508 }
509 #[test]
510 fn test_quantum_prisoners_dilemma() {
511 let game = QuantumGame::quantum_prisoners_dilemma()
512 .expect("failed to create quantum prisoners dilemma");
513 assert_eq!(game.game_type, GameType::QuantumPrisonersDilemma);
514 assert_eq!(game.num_players, 2);
515 assert_eq!(game.payoff_matrices.len(), 2);
516 assert!(game.entanglement_operator.is_some());
517 }
518 #[test]
519 fn test_quantum_coordination_game() {
520 let game = QuantumGame::quantum_coordination_game()
521 .expect("failed to create quantum coordination game");
522 assert_eq!(game.game_type, GameType::QuantumCoordination);
523 assert_eq!(game.num_players, 2);
524 assert_eq!(game.payoff_matrices.len(), 2);
525 }
526 #[test]
527 fn test_game_with_players() {
528 let mut game = QuantumGame::quantum_prisoners_dilemma()
529 .expect("failed to create quantum prisoners dilemma");
530 let player1 = QuantumPlayer::new(0, QuantumStrategy::Classical(0.0));
531 let player2 = QuantumPlayer::new(1, QuantumStrategy::Classical(std::f64::consts::PI));
532 game.add_player(player1).expect("failed to add player1");
533 game.add_player(player2).expect("failed to add player2");
534 let outcome = game.play_game().expect("failed to play game");
535 assert_eq!(outcome.classical_outcomes.len(), 2);
536 assert!(!outcome.probabilities.is_empty());
537 }
538 #[test]
539 fn test_entanglement_operator() {
540 let entanglement = QuantumGame::create_entanglement_operator(std::f64::consts::PI / 2.0)
541 .expect("failed to create entanglement operator");
542 assert_eq!(entanglement.dim(), (4, 4));
543 let conjugate_transpose = entanglement.t().mapv(|x| x.conj());
544 let product = conjugate_transpose.dot(&entanglement);
545 for i in 0..4 {
546 for j in 0..4 {
547 let expected = if i == j { 1.0 } else { 0.0 };
548 assert!((product[[i, j]].norm() - expected).abs() < 1e-10);
549 }
550 }
551 }
552 #[test]
553 fn test_nash_equilibrium_detection() {
554 let game = QuantumGame::quantum_prisoners_dilemma()
555 .expect("failed to create quantum prisoners dilemma");
556 let is_nash = game
557 .is_nash_equilibrium(&[1, 1], &[1.0, 1.0])
558 .expect("failed to check Nash equilibrium");
559 assert!(is_nash);
560 let is_nash = game
561 .is_nash_equilibrium(&[0, 0], &[3.0, 3.0])
562 .expect("failed to check Nash equilibrium");
563 assert!(!is_nash);
564 }
565 #[test]
566 fn test_quantum_mechanism_creation() {
567 let mechanism = QuantumMechanism::quantum_auction_mechanism(3);
568 assert_eq!(mechanism.num_players, 3);
569 assert_eq!(mechanism.mechanism_type, "Quantum Auction");
570 assert!(mechanism.revenue_function.is_some());
571 }
572 #[test]
573 fn test_mechanism_verification() {
574 let mechanism = QuantumMechanism::quantum_voting_mechanism(5);
575 let (ic, ir) = mechanism
576 .verify_mechanism_properties()
577 .expect("failed to verify mechanism properties");
578 assert!(ic);
579 assert!(ir);
580 }
581 #[test]
582 fn test_quantum_advantage_calculation() {
583 let mut game = QuantumGame::quantum_prisoners_dilemma()
584 .expect("failed to create quantum prisoners dilemma");
585 let player1 = QuantumPlayer::new(
586 0,
587 QuantumStrategy::Superposition {
588 theta: std::f64::consts::PI / 4.0,
589 phi: 0.0,
590 },
591 );
592 let player2 = QuantumPlayer::new(
593 1,
594 QuantumStrategy::Superposition {
595 theta: std::f64::consts::PI / 4.0,
596 phi: 0.0,
597 },
598 );
599 game.add_player(player1).expect("failed to add player1");
600 game.add_player(player2).expect("failed to add player2");
601 let advantage = game
602 .quantum_advantage()
603 .expect("failed to calculate quantum advantage");
604 assert!(advantage.is_finite());
605 }
606}