quantrs2_core/
qpca.rs

1//! Quantum Principal Component Analysis (qPCA)
2//!
3//! This module implements quantum principal component analysis for
4//! efficient dimensionality reduction and eigenvalue estimation.
5
6use crate::error::QuantRS2Error;
7use scirs2_core::ndarray::{Array1, Array2};
8use scirs2_core::Complex64;
9use std::f64::consts::PI;
10
11/// Parameters for quantum PCA
12#[derive(Debug, Clone)]
13pub struct QPCAParams {
14    /// Number of precision qubits for phase estimation
15    pub precision_qubits: usize,
16    /// Number of samples for density matrix estimation
17    pub num_samples: usize,
18    /// Threshold for eigenvalue selection
19    pub eigenvalue_threshold: f64,
20    /// Maximum number of iterations for quantum phase estimation
21    pub max_iterations: usize,
22}
23
24impl Default for QPCAParams {
25    fn default() -> Self {
26        Self {
27            precision_qubits: 8,
28            num_samples: 1000,
29            eigenvalue_threshold: 0.01,
30            max_iterations: 100,
31        }
32    }
33}
34
35/// Quantum Principal Component Analysis implementation
36pub struct QuantumPCA {
37    params: QPCAParams,
38    data_matrix: Array2<f64>,
39    density_matrix: Option<Array2<Complex64>>,
40    eigenvalues: Option<Array1<f64>>,
41    eigenvectors: Option<Array2<Complex64>>,
42}
43
44impl QuantumPCA {
45    /// Create new qPCA instance with data matrix
46    pub const fn new(data: Array2<f64>, params: QPCAParams) -> Self {
47        Self {
48            params,
49            data_matrix: data,
50            density_matrix: None,
51            eigenvalues: None,
52            eigenvectors: None,
53        }
54    }
55
56    /// Compute the quantum density matrix from classical data
57    pub fn compute_density_matrix(&mut self) -> Result<&Array2<Complex64>, QuantRS2Error> {
58        let (n_samples, n_features) = (self.data_matrix.nrows(), self.data_matrix.ncols());
59
60        // Center the data
61        let mean = self
62            .data_matrix
63            .mean_axis(scirs2_core::ndarray::Axis(0))
64            .ok_or_else(|| {
65                QuantRS2Error::UnsupportedOperation("Failed to compute mean".to_string())
66            })?;
67
68        let centered_data = &self.data_matrix - &mean;
69
70        // Compute covariance matrix
71        let cov_matrix = centered_data.t().dot(&centered_data) / (n_samples - 1) as f64;
72
73        // Convert to complex density matrix and normalize
74        let mut density = Array2::<Complex64>::zeros((n_features, n_features));
75        for i in 0..n_features {
76            for j in 0..n_features {
77                density[[i, j]] = Complex64::new(cov_matrix[[i, j]], 0.0);
78            }
79        }
80
81        // Normalize to trace 1
82        let trace: Complex64 = (0..n_features).map(|i| density[[i, i]]).sum();
83        if trace.norm() > 1e-10 {
84            density /= trace;
85        }
86
87        self.density_matrix = Some(density);
88        self.density_matrix
89            .as_ref()
90            .ok_or(QuantRS2Error::UnsupportedOperation(
91                "Failed to create density matrix".to_string(),
92            ))
93    }
94
95    /// Quantum phase estimation for eigenvalue extraction
96    pub fn quantum_phase_estimation(
97        &self,
98        unitary: &Array2<Complex64>,
99        state: &Array1<Complex64>,
100    ) -> Result<f64, QuantRS2Error> {
101        let precision = self.params.precision_qubits;
102        // let _n = 1 << precision;
103
104        // Simulate quantum phase estimation
105        // In a real quantum computer, this would use controlled-U operations
106        let mut phase_estimate = 0.0;
107
108        // Apply inverse QFT and measure
109        for k in 0..precision {
110            // Simplified simulation of controlled unitary application
111            let controlled_phase = self.estimate_controlled_phase(unitary, state, 1 << k)?;
112            phase_estimate += controlled_phase * (1.0 / (1 << (precision - k - 1)) as f64);
113        }
114
115        Ok(phase_estimate)
116    }
117
118    /// Estimate phase from controlled unitary (simplified simulation)
119    fn estimate_controlled_phase(
120        &self,
121        unitary: &Array2<Complex64>,
122        state: &Array1<Complex64>,
123        power: usize,
124    ) -> Result<f64, QuantRS2Error> {
125        // Compute U^power
126        let mut u_power = unitary.clone();
127        for _ in 1..power {
128            u_power = u_power.dot(unitary);
129        }
130
131        // Apply to state and extract phase
132        let result = u_power.dot(state);
133        let inner_product: Complex64 = state
134            .iter()
135            .zip(result.iter())
136            .map(|(a, b)| a.conj() * b)
137            .sum();
138
139        Ok(inner_product.arg() / (2.0 * PI))
140    }
141
142    /// Extract principal components using quantum algorithm
143    pub fn extract_components(&mut self) -> Result<(), QuantRS2Error> {
144        // Ensure density matrix is computed
145        if self.density_matrix.is_none() {
146            self.compute_density_matrix()?;
147        }
148
149        let density = self.density_matrix.as_ref().ok_or_else(|| {
150            QuantRS2Error::UnsupportedOperation("Density matrix not computed".to_string())
151        })?;
152        let dim = density.nrows();
153
154        // Use quantum phase estimation to find eigenvalues
155        // In practice, this would be done on a quantum computer
156        let (eigenvalues, eigenvectors) = self.quantum_eigendecomposition(density)?;
157
158        // Filter by threshold
159        let mut filtered_indices: Vec<usize> = eigenvalues
160            .iter()
161            .enumerate()
162            .filter(|(_, &val)| val.abs() > self.params.eigenvalue_threshold)
163            .map(|(idx, _)| idx)
164            .collect();
165
166        // Sort by eigenvalue magnitude (descending)
167        filtered_indices.sort_by(|&a, &b| {
168            eigenvalues[b]
169                .abs()
170                .partial_cmp(&eigenvalues[a].abs())
171                .unwrap_or(std::cmp::Ordering::Equal)
172        });
173
174        // Extract filtered eigenvalues and eigenvectors
175        let n_components = filtered_indices.len();
176        let mut filtered_eigenvalues = Array1::zeros(n_components);
177        let mut filtered_eigenvectors = Array2::zeros((dim, n_components));
178
179        for (new_idx, &old_idx) in filtered_indices.iter().enumerate() {
180            filtered_eigenvalues[new_idx] = eigenvalues[old_idx];
181            for i in 0..dim {
182                filtered_eigenvectors[[i, new_idx]] = eigenvectors[[i, old_idx]];
183            }
184        }
185
186        self.eigenvalues = Some(filtered_eigenvalues);
187        self.eigenvectors = Some(filtered_eigenvectors);
188
189        Ok(())
190    }
191
192    /// Quantum eigendecomposition (simulated)
193    fn quantum_eigendecomposition(
194        &self,
195        matrix: &Array2<Complex64>,
196    ) -> Result<(Array1<f64>, Array2<Complex64>), QuantRS2Error> {
197        // In a real implementation, this would use quantum phase estimation
198        // For now, we use a simplified eigendecomposition approach
199
200        // Ensure matrix is Hermitian
201        let hermitian = (matrix + &matrix.t().mapv(|x| x.conj())) / Complex64::new(2.0, 0.0);
202
203        // Convert to real symmetric matrix if possible
204        let is_real = hermitian.iter().all(|x| x.im.abs() < 1e-10);
205
206        if is_real {
207            let n = hermitian.nrows();
208            let real_matrix = hermitian.mapv(|x| x.re);
209
210            // Use power iteration method for finding dominant eigenvalues
211            // This is a simplified approach - in practice use proper eigensolvers
212            let mut eigenvalues = Vec::with_capacity(n);
213            let mut eigenvectors = Array2::<Complex64>::zeros((n, n));
214
215            // For demonstration, we'll just extract a few principal components
216            let num_components = n.min(self.params.precision_qubits);
217
218            for comp in 0..num_components {
219                // Power iteration for finding dominant eigenvector
220                let mut v = Array1::from_vec(vec![1.0 / (n as f64).sqrt(); n]);
221                let mut eigenvalue = 0.0;
222
223                for _ in 0..self.params.max_iterations {
224                    let av = real_matrix.dot(&v);
225                    eigenvalue = v.dot(&av);
226                    let norm = av.dot(&av).sqrt();
227                    if norm > 1e-10 {
228                        v = av / norm;
229                    }
230                }
231
232                eigenvalues.push(eigenvalue);
233                for i in 0..n {
234                    eigenvectors[[i, comp]] = Complex64::new(v[i], 0.0);
235                }
236            }
237
238            // Fill remaining with zeros
239            eigenvalues.extend(vec![0.0; n - num_components]);
240
241            Ok((Array1::from_vec(eigenvalues), eigenvectors))
242        } else {
243            // For complex Hermitian matrices, we need specialized algorithms
244            // This is a placeholder - in practice, use quantum phase estimation
245            Err(QuantRS2Error::UnsupportedOperation(
246                "Complex eigendecomposition not yet implemented".to_string(),
247            ))
248        }
249    }
250
251    /// Project data onto principal components
252    pub fn transform(&self, data: &Array2<f64>) -> Result<Array2<f64>, QuantRS2Error> {
253        let eigenvectors =
254            self.eigenvectors
255                .as_ref()
256                .ok_or(QuantRS2Error::UnsupportedOperation(
257                    "Components not yet extracted".to_string(),
258                ))?;
259
260        // Center the data
261        let mean = self
262            .data_matrix
263            .mean_axis(scirs2_core::ndarray::Axis(0))
264            .ok_or_else(|| {
265                QuantRS2Error::UnsupportedOperation("Failed to compute mean".to_string())
266            })?;
267
268        let centered_data = data - &mean;
269
270        // Project onto principal components
271        let n_components = eigenvectors.ncols();
272        let n_samples = centered_data.nrows();
273        let mut transformed = Array2::zeros((n_samples, n_components));
274
275        for i in 0..n_samples {
276            for j in 0..n_components {
277                let mut sum = 0.0;
278                for k in 0..centered_data.ncols() {
279                    sum += centered_data[[i, k]] * eigenvectors[[k, j]].re;
280                }
281                transformed[[i, j]] = sum;
282            }
283        }
284
285        Ok(transformed)
286    }
287
288    /// Get explained variance ratio for each component
289    pub fn explained_variance_ratio(&self) -> Result<Array1<f64>, QuantRS2Error> {
290        let eigenvalues = self
291            .eigenvalues
292            .as_ref()
293            .ok_or(QuantRS2Error::UnsupportedOperation(
294                "Components not yet extracted".to_string(),
295            ))?;
296
297        let total_variance: f64 = eigenvalues.sum();
298        if total_variance.abs() < 1e-10 {
299            return Err(QuantRS2Error::UnsupportedOperation(
300                "Total variance is zero".to_string(),
301            ));
302        }
303
304        Ok(eigenvalues / total_variance)
305    }
306
307    /// Get the number of components
308    pub fn n_components(&self) -> Option<usize> {
309        self.eigenvalues.as_ref().map(|e| e.len())
310    }
311
312    /// Get eigenvalues
313    pub const fn eigenvalues(&self) -> Option<&Array1<f64>> {
314        self.eigenvalues.as_ref()
315    }
316
317    /// Get eigenvectors
318    pub const fn eigenvectors(&self) -> Option<&Array2<Complex64>> {
319        self.eigenvectors.as_ref()
320    }
321}
322
323/// Quantum-inspired PCA using density matrix formulation
324pub struct DensityMatrixPCA {
325    params: QPCAParams,
326    pub trace_threshold: f64,
327}
328
329impl DensityMatrixPCA {
330    /// Create new density matrix PCA
331    pub const fn new(params: QPCAParams) -> Self {
332        Self {
333            params,
334            trace_threshold: 0.95, // Capture 95% of trace
335        }
336    }
337
338    /// Compute low-rank approximation using quantum-inspired method
339    pub fn fit_transform(
340        &self,
341        data: &Array2<f64>,
342    ) -> Result<(Array2<f64>, Array1<f64>), QuantRS2Error> {
343        let mut qpca = QuantumPCA::new(data.clone(), self.params.clone());
344
345        // Compute density matrix and extract components
346        qpca.compute_density_matrix()?;
347        qpca.extract_components()?;
348
349        // Find number of components to retain based on trace threshold
350        let explained_variance = qpca.explained_variance_ratio()?;
351        let mut cumsum = 0.0;
352        let mut n_components_retain = 0;
353
354        for (i, &var) in explained_variance.iter().enumerate() {
355            cumsum += var;
356            n_components_retain = i + 1;
357            if cumsum >= self.trace_threshold {
358                break;
359            }
360        }
361
362        // Transform data
363        let transformed = qpca.transform(data)?;
364
365        // Return only the retained components
366        let retained_transform = transformed
367            .slice(scirs2_core::ndarray::s![.., ..n_components_retain])
368            .to_owned();
369        let retained_variance = explained_variance
370            .slice(scirs2_core::ndarray::s![..n_components_retain])
371            .to_owned();
372
373        Ok((retained_transform, retained_variance))
374    }
375}
376
377#[cfg(test)]
378mod tests {
379    use super::*;
380    use scirs2_core::ndarray::Array2;
381
382    #[test]
383    fn test_qpca_basic() {
384        // Create simple test data
385        let data = Array2::from_shape_vec(
386            (5, 3),
387            vec![
388                1.0, 2.0, 3.0, 2.0, 4.0, 6.0, 3.0, 6.0, 9.0, 4.0, 8.0, 12.0, 5.0, 10.0, 15.0,
389            ],
390        )
391        .expect("Failed to create test data array");
392
393        let params = QPCAParams::default();
394        let mut qpca = QuantumPCA::new(data.clone(), params);
395
396        // Compute density matrix
397        let density = qpca
398            .compute_density_matrix()
399            .expect("Failed to compute density matrix");
400        assert_eq!(density.shape(), &[3, 3]);
401
402        // Extract components
403        qpca.extract_components()
404            .expect("Failed to extract components");
405
406        let eigenvalues = qpca.eigenvalues().expect("No eigenvalues computed");
407        assert!(!eigenvalues.is_empty());
408
409        // Check that eigenvalues are sorted in descending order
410        for i in 1..eigenvalues.len() {
411            assert!(eigenvalues[i - 1] >= eigenvalues[i]);
412        }
413    }
414
415    #[test]
416    fn test_density_matrix_pca() {
417        // Create test data with clear principal components
418        let mut data = Array2::zeros((10, 4));
419        for i in 0..10 {
420            data[[i, 0]] = i as f64;
421            data[[i, 1]] = 2.0 * i as f64;
422            data[[i, 2]] = 0.1 * ((i * 7) % 10) as f64 / 10.0;
423            data[[i, 3]] = 0.1 * ((i * 13) % 10) as f64 / 10.0;
424        }
425
426        let params = QPCAParams::default();
427        let pca = DensityMatrixPCA::new(params);
428
429        let (transformed, variance) = pca.fit_transform(&data).expect("Failed to fit transform");
430
431        // Should retain at least one component
432        assert!(transformed.ncols() >= 1);
433        assert!(transformed.ncols() <= data.ncols());
434        // Variance should be normalized
435        assert!(variance.sum() <= 1.0 + 1e-6);
436    }
437}