quantrs2_core/qml/
nlp.rs

1//! Quantum Machine Learning for Natural Language Processing
2//!
3//! This module provides specialized quantum machine learning layers and algorithms
4//! optimized for natural language processing tasks such as text classification,
5//! sentiment analysis, and language modeling.
6
7use super::{Parameter, QMLLayer};
8use crate::{
9    error::{QuantRS2Error, QuantRS2Result},
10    gate::{multi::*, single::*, GateOp},
11    parametric::{ParametricRotationX, ParametricRotationY, ParametricRotationZ},
12    qubit::QubitId,
13};
14use scirs2_core::ndarray::Array1;
15use scirs2_core::Complex64;
16use std::collections::HashMap;
17use std::f64::consts::PI;
18
19/// Text embedding strategies for quantum NLP
20#[derive(Debug, Clone, Copy, PartialEq, Eq)]
21pub enum TextEmbeddingStrategy {
22    /// Word-level embeddings: each word is encoded separately
23    WordLevel,
24    /// Character-level embeddings: each character is encoded
25    CharLevel,
26    /// N-gram embeddings: overlapping n-grams are encoded
27    NGram(usize),
28    /// Token embeddings with positional encoding
29    TokenPositional,
30    /// Hierarchical embeddings: words -> sentences -> documents
31    Hierarchical,
32}
33
34/// Configuration for quantum NLP models
35#[derive(Debug, Clone)]
36pub struct QNLPConfig {
37    /// Number of qubits for text representation
38    pub text_qubits: usize,
39    /// Number of qubits for feature extraction
40    pub feature_qubits: usize,
41    /// Maximum sequence length
42    pub max_sequence_length: usize,
43    /// Vocabulary size
44    pub vocab_size: usize,
45    /// Embedding dimension
46    pub embedding_dim: usize,
47    /// Text embedding strategy
48    pub embedding_strategy: TextEmbeddingStrategy,
49    /// Number of attention heads (for quantum attention)
50    pub num_attention_heads: usize,
51    /// Hidden dimension for feedforward layers
52    pub hidden_dim: usize,
53}
54
55impl Default for QNLPConfig {
56    fn default() -> Self {
57        Self {
58            text_qubits: 8,
59            feature_qubits: 4,
60            max_sequence_length: 32,
61            vocab_size: 1000,
62            embedding_dim: 64,
63            embedding_strategy: TextEmbeddingStrategy::WordLevel,
64            num_attention_heads: 4,
65            hidden_dim: 128,
66        }
67    }
68}
69
70/// Quantum word embedding layer
71pub struct QuantumWordEmbedding {
72    /// Configuration
73    config: QNLPConfig,
74    /// Embedding parameters for each word in vocabulary
75    embeddings: Vec<Vec<Parameter>>,
76    /// Number of qubits
77    num_qubits: usize,
78}
79
80impl QuantumWordEmbedding {
81    /// Create a new quantum word embedding layer
82    pub fn new(config: QNLPConfig) -> Self {
83        let num_qubits = config.text_qubits;
84        let mut embeddings = Vec::new();
85
86        // Initialize embeddings for each word in vocabulary
87        for word_id in 0..config.vocab_size {
88            let mut word_embedding = Vec::new();
89            for qubit in 0..num_qubits {
90                // Initialize with random values
91                let value = ((word_id * qubit) as f64 * 0.1).sin() * 0.5;
92                word_embedding.push(Parameter {
93                    name: format!("embed_{word_id}_{qubit}"),
94                    value,
95                    bounds: None,
96                });
97            }
98            embeddings.push(word_embedding);
99        }
100
101        Self {
102            config,
103            embeddings,
104            num_qubits,
105        }
106    }
107
108    /// Encode a sequence of word IDs into quantum gates
109    pub fn encode_sequence(&self, word_ids: &[usize]) -> QuantRS2Result<Vec<Box<dyn GateOp>>> {
110        let mut gates: Vec<Box<dyn GateOp>> = Vec::new();
111
112        for (position, &word_id) in word_ids.iter().enumerate() {
113            if word_id >= self.config.vocab_size {
114                return Err(QuantRS2Error::InvalidInput(format!(
115                    "Word ID {} exceeds vocabulary size {}",
116                    word_id, self.config.vocab_size
117                )));
118            }
119
120            if position >= self.config.max_sequence_length {
121                break; // Truncate sequence if too long
122            }
123
124            // Encode word at this position
125            let word_embedding = &self.embeddings[word_id];
126            for (qubit_idx, param) in word_embedding.iter().enumerate() {
127                let qubit = QubitId(qubit_idx as u32);
128
129                // Use rotation gates to encode the embedding values
130                gates.push(Box::new(ParametricRotationY {
131                    target: qubit,
132                    theta: crate::parametric::Parameter::Constant(param.value * PI), // Scale to appropriate range
133                }));
134
135                // Add positional encoding
136                let positional_angle =
137                    (position as f64) / (self.config.max_sequence_length as f64) * PI;
138                gates.push(Box::new(ParametricRotationZ {
139                    target: qubit,
140                    theta: crate::parametric::Parameter::Constant(positional_angle * 0.1), // Smaller contribution
141                }));
142            }
143        }
144
145        Ok(gates)
146    }
147}
148
149impl QMLLayer for QuantumWordEmbedding {
150    fn num_qubits(&self) -> usize {
151        self.num_qubits
152    }
153
154    fn parameters(&self) -> &[Parameter] {
155        // Flatten all embeddings into a single parameter vector
156        // This is a simplified approach - in practice might want more efficient storage
157        unimplemented!("Use flatten_parameters() method instead")
158    }
159
160    fn parameters_mut(&mut self) -> &mut [Parameter] {
161        unimplemented!("Use flatten_parameters_mut() method instead")
162    }
163
164    fn gates(&self) -> Vec<Box<dyn GateOp>> {
165        // Return empty - this layer provides encoding method
166        Vec::new()
167    }
168
169    fn compute_gradients(
170        &self,
171        _state: &Array1<Complex64>,
172        _loss_gradient: &Array1<Complex64>,
173    ) -> QuantRS2Result<Vec<f64>> {
174        // Placeholder for gradient computation
175        let total_params = self.config.vocab_size * self.num_qubits;
176        Ok(vec![0.0; total_params])
177    }
178
179    fn name(&self) -> &'static str {
180        "QuantumWordEmbedding"
181    }
182}
183
184/// Quantum attention mechanism for NLP
185pub struct QuantumAttention {
186    /// Number of qubits
187    num_qubits: usize,
188    /// Number of attention heads
189    num_heads: usize,
190    /// Query parameters
191    query_params: Vec<Parameter>,
192    /// Key parameters
193    key_params: Vec<Parameter>,
194    /// Value parameters
195    value_params: Vec<Parameter>,
196    /// Output projection parameters
197    output_params: Vec<Parameter>,
198}
199
200impl QuantumAttention {
201    /// Create a new quantum attention layer
202    pub fn new(num_qubits: usize, num_heads: usize) -> Self {
203        let params_per_head = num_qubits / num_heads;
204
205        let mut query_params = Vec::new();
206        let mut key_params = Vec::new();
207        let mut value_params = Vec::new();
208        let mut output_params = Vec::new();
209
210        // Initialize parameters for each head
211        for head in 0..num_heads {
212            for i in 0..params_per_head {
213                // Query parameters
214                query_params.push(Parameter {
215                    name: format!("query_{head}_{i}"),
216                    value: ((head + i) as f64 * 0.1).sin() * 0.5,
217                    bounds: None,
218                });
219
220                // Key parameters
221                key_params.push(Parameter {
222                    name: format!("key_{head}_{i}"),
223                    value: ((head + i + 1) as f64 * 0.1).cos() * 0.5,
224                    bounds: None,
225                });
226
227                // Value parameters
228                value_params.push(Parameter {
229                    name: format!("value_{head}_{i}"),
230                    value: ((head + i + 2) as f64 * 0.1).sin() * 0.5,
231                    bounds: None,
232                });
233
234                // Output parameters
235                output_params.push(Parameter {
236                    name: format!("output_{head}_{i}"),
237                    value: ((head + i + 3) as f64 * 0.1).cos() * 0.5,
238                    bounds: None,
239                });
240            }
241        }
242
243        Self {
244            num_qubits,
245            num_heads,
246            query_params,
247            key_params,
248            value_params,
249            output_params,
250        }
251    }
252
253    /// Generate attention gates for a sequence
254    pub fn attention_gates(&self) -> QuantRS2Result<Vec<Box<dyn GateOp>>> {
255        let mut gates: Vec<Box<dyn GateOp>> = Vec::new();
256        let params_per_head = self.num_qubits / self.num_heads;
257
258        // For each attention head
259        for head in 0..self.num_heads {
260            let head_offset = head * params_per_head;
261
262            // Apply query transformations
263            for i in 0..params_per_head {
264                let qubit = QubitId((head_offset + i) as u32);
265                let param_idx = head * params_per_head + i;
266
267                gates.push(Box::new(ParametricRotationY {
268                    target: qubit,
269                    theta: crate::parametric::Parameter::Constant(
270                        self.query_params[param_idx].value,
271                    ),
272                }));
273            }
274
275            // Apply key transformations
276            for i in 0..params_per_head {
277                let qubit = QubitId((head_offset + i) as u32);
278                let param_idx = head * params_per_head + i;
279
280                gates.push(Box::new(ParametricRotationZ {
281                    target: qubit,
282                    theta: crate::parametric::Parameter::Constant(self.key_params[param_idx].value),
283                }));
284            }
285
286            // Add entanglement within head (for attention computation)
287            for i in 0..params_per_head - 1 {
288                let control = QubitId((head_offset + i) as u32);
289                let target = QubitId((head_offset + i + 1) as u32);
290                gates.push(Box::new(CNOT { control, target }));
291            }
292
293            // Apply value transformations
294            for i in 0..params_per_head {
295                let qubit = QubitId((head_offset + i) as u32);
296                let param_idx = head * params_per_head + i;
297
298                gates.push(Box::new(ParametricRotationX {
299                    target: qubit,
300                    theta: crate::parametric::Parameter::Constant(
301                        self.value_params[param_idx].value,
302                    ),
303                }));
304            }
305        }
306
307        // Add inter-head entanglement (for multi-head attention)
308        for head in 0..self.num_heads - 1 {
309            let control = QubitId((head * params_per_head) as u32);
310            let target = QubitId(((head + 1) * params_per_head) as u32);
311            gates.push(Box::new(CNOT { control, target }));
312        }
313
314        // Apply output projection
315        for i in 0..self.output_params.len() {
316            let qubit = QubitId(i as u32);
317            gates.push(Box::new(ParametricRotationY {
318                target: qubit,
319                theta: crate::parametric::Parameter::Constant(self.output_params[i].value),
320            }));
321        }
322
323        Ok(gates)
324    }
325}
326
327impl QMLLayer for QuantumAttention {
328    fn num_qubits(&self) -> usize {
329        self.num_qubits
330    }
331
332    fn parameters(&self) -> &[Parameter] {
333        // This would need a flattened view of all parameters
334        unimplemented!("Use all_parameters() method instead")
335    }
336
337    fn parameters_mut(&mut self) -> &mut [Parameter] {
338        unimplemented!("Use all_parameters_mut() method instead")
339    }
340
341    fn gates(&self) -> Vec<Box<dyn GateOp>> {
342        self.attention_gates().unwrap_or_default()
343    }
344
345    fn compute_gradients(
346        &self,
347        _state: &Array1<Complex64>,
348        _loss_gradient: &Array1<Complex64>,
349    ) -> QuantRS2Result<Vec<f64>> {
350        let total_params = self.query_params.len()
351            + self.key_params.len()
352            + self.value_params.len()
353            + self.output_params.len();
354        Ok(vec![0.0; total_params])
355    }
356
357    fn name(&self) -> &'static str {
358        "QuantumAttention"
359    }
360}
361
362/// Quantum text classifier for sentiment analysis and text classification
363pub struct QuantumTextClassifier {
364    /// Configuration
365    config: QNLPConfig,
366    /// Word embedding layer
367    embedding: QuantumWordEmbedding,
368    /// Attention layers
369    attention_layers: Vec<QuantumAttention>,
370    /// Classification parameters
371    classifier_params: Vec<Parameter>,
372    /// Number of output classes
373    num_classes: usize,
374}
375
376impl QuantumTextClassifier {
377    /// Create a new quantum text classifier
378    pub fn new(config: QNLPConfig, num_classes: usize) -> Self {
379        let embedding = QuantumWordEmbedding::new(config.clone());
380
381        // Create multiple attention layers for deeper models
382        let mut attention_layers = Vec::new();
383        for _layer_idx in 0..2 {
384            // 2 attention layers
385            attention_layers.push(QuantumAttention::new(
386                config.text_qubits,
387                config.num_attention_heads,
388            ));
389        }
390
391        // Create classification parameters
392        let mut classifier_params = Vec::new();
393        for class in 0..num_classes {
394            for qubit in 0..config.feature_qubits {
395                classifier_params.push(Parameter {
396                    name: format!("classifier_{class}_{qubit}"),
397                    value: ((class + qubit) as f64 * 0.2).sin() * 0.3,
398                    bounds: None,
399                });
400            }
401        }
402
403        Self {
404            config,
405            embedding,
406            attention_layers,
407            classifier_params,
408            num_classes,
409        }
410    }
411
412    /// Classify a text sequence
413    pub fn classify(&self, word_ids: &[usize]) -> QuantRS2Result<Vec<f64>> {
414        // This would implement the full forward pass
415        // For now, return dummy probabilities
416        let mut probs = vec![1.0 / self.num_classes as f64; self.num_classes];
417
418        // Add some variation based on input
419        for (i, &word_id) in word_ids.iter().enumerate() {
420            let variation = ((word_id + i) as f64 * 0.1).sin() * 0.1;
421            probs[i % self.num_classes] += variation;
422        }
423
424        // Normalize probabilities
425        let sum: f64 = probs.iter().sum();
426        if sum > 0.0 {
427            for prob in &mut probs {
428                *prob /= sum;
429            }
430        }
431
432        Ok(probs)
433    }
434
435    /// Generate the full circuit for text classification
436    pub fn build_circuit(&self, word_ids: &[usize]) -> QuantRS2Result<Vec<Box<dyn GateOp>>> {
437        let mut gates = Vec::new();
438
439        // 1. Word embedding
440        gates.extend(self.embedding.encode_sequence(word_ids)?);
441
442        // 2. Attention layers
443        for attention in &self.attention_layers {
444            gates.extend(attention.attention_gates()?);
445        }
446
447        // 3. Feature extraction and pooling (using measurement-like operations)
448        // This would include global pooling operations
449        for qubit in 0..self.config.text_qubits {
450            gates.push(Box::new(Hadamard {
451                target: QubitId(qubit as u32),
452            }));
453        }
454
455        // 4. Classification layer
456        for (_class, chunk) in self
457            .classifier_params
458            .chunks(self.config.feature_qubits)
459            .enumerate()
460        {
461            for (i, param) in chunk.iter().enumerate() {
462                let qubit = QubitId(i as u32);
463                gates.push(Box::new(ParametricRotationY {
464                    target: qubit,
465                    theta: crate::parametric::Parameter::Constant(param.value),
466                }));
467            }
468        }
469
470        Ok(gates)
471    }
472
473    /// Train the classifier using a dataset
474    pub fn train(
475        &mut self,
476        training_data: &[(Vec<usize>, usize)],
477        learning_rate: f64,
478        epochs: usize,
479    ) -> QuantRS2Result<Vec<f64>> {
480        let mut losses = Vec::new();
481
482        for epoch in 0..epochs {
483            let mut epoch_loss = 0.0;
484
485            for (word_ids, true_label) in training_data {
486                // Forward pass
487                let predictions = self.classify(word_ids)?;
488
489                // Compute loss (cross-entropy)
490                let loss = -predictions[*true_label].ln();
491                epoch_loss += loss;
492
493                // Backward pass (simplified gradient computation)
494                // In practice, this would use automatic differentiation
495                self.update_parameters(predictions, *true_label, learning_rate)?;
496            }
497
498            epoch_loss /= training_data.len() as f64;
499            losses.push(epoch_loss);
500
501            if epoch % 10 == 0 {
502                println!("Epoch {epoch}: Loss = {epoch_loss:.4}");
503            }
504        }
505
506        Ok(losses)
507    }
508
509    /// Update parameters based on gradients (simplified)
510    fn update_parameters(
511        &mut self,
512        predictions: Vec<f64>,
513        true_label: usize,
514        learning_rate: f64,
515    ) -> QuantRS2Result<()> {
516        // Simplified parameter update
517        // In practice, would compute proper gradients using parameter shift rule
518
519        for (i, param) in self.classifier_params.iter_mut().enumerate() {
520            // All parameters are learnable in this simplified implementation
521            {
522                let class_idx = i / self.config.feature_qubits;
523                let error = if class_idx == true_label {
524                    predictions[class_idx] - 1.0
525                } else {
526                    predictions[class_idx]
527                };
528
529                // Simple gradient descent update
530                param.value -= learning_rate * error * 0.1;
531            }
532        }
533
534        Ok(())
535    }
536}
537
538/// Quantum language model for text generation
539pub struct QuantumLanguageModel {
540    /// Configuration
541    config: QNLPConfig,
542    /// Embedding layer
543    embedding: QuantumWordEmbedding,
544    /// Transformer layers
545    transformer_layers: Vec<QuantumAttention>,
546    /// Output parameters
547    output_params: Vec<Parameter>,
548}
549
550impl QuantumLanguageModel {
551    /// Create a new quantum language model
552    pub fn new(config: QNLPConfig) -> Self {
553        let embedding = QuantumWordEmbedding::new(config.clone());
554
555        // Create transformer layers
556        let mut transformer_layers = Vec::new();
557        for _layer in 0..3 {
558            // 3 transformer layers
559            transformer_layers.push(QuantumAttention::new(
560                config.text_qubits,
561                config.num_attention_heads,
562            ));
563        }
564
565        // Create output parameters for next token prediction
566        let mut output_params = Vec::new();
567        for token in 0..config.vocab_size {
568            output_params.push(Parameter {
569                name: format!("output_{token}"),
570                value: (token as f64 * 0.01).sin() * 0.1,
571                bounds: None,
572            });
573        }
574
575        Self {
576            config,
577            embedding,
578            transformer_layers,
579            output_params,
580        }
581    }
582
583    /// Generate next token probabilities given a context
584    pub fn predict_next_token(&self, context: &[usize]) -> QuantRS2Result<Vec<f64>> {
585        // Build circuit for the context
586        let _gates = self.build_circuit(context)?;
587
588        // Simulate the circuit (placeholder)
589        // In practice, would run the quantum circuit and measure
590
591        // Return dummy probabilities for now
592        let mut probs = vec![1.0 / self.config.vocab_size as f64; self.config.vocab_size];
593
594        // Add some variation based on context
595        for (i, &token) in context.iter().enumerate() {
596            let variation = ((token + i) as f64 * 0.05).sin() * 0.01;
597            probs[token % self.config.vocab_size] += variation;
598        }
599
600        // Normalize
601        let sum: f64 = probs.iter().sum();
602        if sum > 0.0 {
603            for prob in &mut probs {
604                *prob /= sum;
605            }
606        }
607
608        Ok(probs)
609    }
610
611    /// Generate text given a starting context
612    pub fn generate_text(
613        &self,
614        start_context: &[usize],
615        max_length: usize,
616        temperature: f64,
617    ) -> QuantRS2Result<Vec<usize>> {
618        let mut generated = start_context.to_vec();
619
620        for _step in 0..max_length {
621            // Get context (last N tokens)
622            let context_start = if generated.len() > self.config.max_sequence_length {
623                generated.len() - self.config.max_sequence_length
624            } else {
625                0
626            };
627            let context = &generated[context_start..];
628
629            // Predict next token
630            let mut probs = self.predict_next_token(context)?;
631
632            // Apply temperature scaling
633            if temperature != 1.0 {
634                for prob in &mut probs {
635                    *prob = (*prob).powf(1.0 / temperature);
636                }
637                let sum: f64 = probs.iter().sum();
638                for prob in &mut probs {
639                    *prob /= sum;
640                }
641            }
642
643            // Sample next token (using simple deterministic selection for now)
644            let next_token = probs
645                .iter()
646                .enumerate()
647                .max_by(|(_, a), (_, b)| a.partial_cmp(b).unwrap_or(std::cmp::Ordering::Equal))
648                .map(|(i, _)| i)
649                .unwrap_or(0);
650
651            generated.push(next_token);
652        }
653
654        Ok(generated)
655    }
656
657    /// Build the full language model circuit
658    fn build_circuit(&self, context: &[usize]) -> QuantRS2Result<Vec<Box<dyn GateOp>>> {
659        let mut gates = Vec::new();
660
661        // 1. Embedding
662        gates.extend(self.embedding.encode_sequence(context)?);
663
664        // 2. Transformer layers
665        for transformer in &self.transformer_layers {
666            gates.extend(transformer.attention_gates()?);
667        }
668
669        // 3. Output projection
670        for (i, param) in self.output_params.iter().enumerate() {
671            let qubit = QubitId((i % self.config.text_qubits) as u32);
672            gates.push(Box::new(ParametricRotationZ {
673                target: qubit,
674                theta: crate::parametric::Parameter::Constant(param.value),
675            }));
676        }
677
678        Ok(gates)
679    }
680}
681
682#[cfg(test)]
683mod tests {
684    use super::*;
685
686    #[test]
687    fn test_quantum_word_embedding() {
688        let config = QNLPConfig {
689            vocab_size: 100,
690            text_qubits: 4,
691            ..Default::default()
692        };
693
694        let embedding = QuantumWordEmbedding::new(config);
695        assert_eq!(embedding.num_qubits(), 4);
696
697        // Test encoding a simple sequence
698        let word_ids = vec![1, 5, 10];
699        let gates = embedding
700            .encode_sequence(&word_ids)
701            .expect("Failed to encode sequence");
702        assert!(!gates.is_empty());
703    }
704
705    #[test]
706    fn test_quantum_attention() {
707        let attention = QuantumAttention::new(8, 2);
708        assert_eq!(attention.num_qubits(), 8);
709        assert_eq!(attention.num_heads, 2);
710
711        let gates = attention
712            .attention_gates()
713            .expect("Failed to get attention gates");
714        assert!(!gates.is_empty());
715    }
716
717    #[test]
718    fn test_quantum_text_classifier() {
719        let config = QNLPConfig {
720            vocab_size: 50,
721            text_qubits: 4,
722            feature_qubits: 2,
723            ..Default::default()
724        };
725
726        let classifier = QuantumTextClassifier::new(config, 3);
727
728        // Test classification
729        let word_ids = vec![1, 2, 3];
730        let probs = classifier
731            .classify(&word_ids)
732            .expect("Failed to classify text");
733        assert_eq!(probs.len(), 3);
734
735        // Check probabilities sum to 1
736        let sum: f64 = probs.iter().sum();
737        assert!((sum - 1.0).abs() < 1e-10);
738    }
739
740    #[test]
741    fn test_quantum_language_model() {
742        let config = QNLPConfig {
743            vocab_size: 20,
744            text_qubits: 4,
745            max_sequence_length: 8,
746            ..Default::default()
747        };
748
749        let lm = QuantumLanguageModel::new(config);
750
751        // Test next token prediction
752        let context = vec![1, 2, 3];
753        let probs = lm
754            .predict_next_token(&context)
755            .expect("Failed to predict next token");
756        assert_eq!(probs.len(), 20);
757
758        // Test text generation
759        let generated = lm
760            .generate_text(&context, 5, 1.0)
761            .expect("Failed to generate text");
762        assert_eq!(generated.len(), 8); // 3 context + 5 generated
763    }
764
765    #[test]
766    fn test_text_classifier_training() {
767        let config = QNLPConfig {
768            vocab_size: 10,
769            text_qubits: 3,
770            feature_qubits: 2,
771            ..Default::default()
772        };
773
774        let mut classifier = QuantumTextClassifier::new(config, 2);
775
776        // Create dummy training data
777        let training_data = vec![
778            (vec![1, 2], 0), // Class 0
779            (vec![3, 4], 1), // Class 1
780            (vec![1, 3], 0), // Class 0
781            (vec![2, 4], 1), // Class 1
782        ];
783
784        let losses = classifier
785            .train(&training_data, 0.01, 5)
786            .expect("Failed to train classifier");
787        assert_eq!(losses.len(), 5);
788    }
789}
790
791/// Advanced quantum NLP utilities and algorithms
792pub mod advanced {
793    use super::*;
794
795    /// Quantum text preprocessing utilities
796    pub struct QuantumTextPreprocessor {
797        /// Vocabulary mapping
798        vocab: HashMap<String, usize>,
799        /// Reverse vocabulary mapping
800        reverse_vocab: HashMap<usize, String>,
801        /// Special tokens
802        special_tokens: HashMap<String, usize>,
803    }
804
805    impl QuantumTextPreprocessor {
806        /// Create a new preprocessor
807        pub fn new() -> Self {
808            let mut special_tokens = HashMap::new();
809            special_tokens.insert("<PAD>".to_string(), 0);
810            special_tokens.insert("<UNK>".to_string(), 1);
811            special_tokens.insert("<START>".to_string(), 2);
812            special_tokens.insert("<END>".to_string(), 3);
813
814            Self {
815                vocab: HashMap::new(),
816                reverse_vocab: HashMap::new(),
817                special_tokens,
818            }
819        }
820
821        /// Build vocabulary from text corpus
822        pub fn build_vocab(&mut self, texts: &[String], max_vocab_size: usize) {
823            let mut word_counts: HashMap<String, usize> = HashMap::new();
824
825            // Count word frequencies
826            for text in texts {
827                for word in text.split_whitespace() {
828                    *word_counts.entry(word.to_lowercase()).or_insert(0) += 1;
829                }
830            }
831
832            // Sort by frequency and take top words
833            let mut word_freq: Vec<_> = word_counts.into_iter().collect();
834            word_freq.sort_by(|a, b| b.1.cmp(&a.1));
835
836            // Add special tokens first
837            for (token, id) in &self.special_tokens {
838                self.vocab.insert(token.clone(), *id);
839                self.reverse_vocab.insert(*id, token.clone());
840            }
841
842            // Add most frequent words
843            let mut vocab_id = self.special_tokens.len();
844            for (word, _count) in word_freq
845                .into_iter()
846                .take(max_vocab_size - self.special_tokens.len())
847            {
848                self.vocab.insert(word.clone(), vocab_id);
849                self.reverse_vocab.insert(vocab_id, word);
850                vocab_id += 1;
851            }
852        }
853
854        /// Tokenize text to word IDs
855        pub fn tokenize(&self, text: &str) -> Vec<usize> {
856            let mut tokens = vec![self.special_tokens["<START>"]];
857
858            for word in text.split_whitespace() {
859                let word = word.to_lowercase();
860                let token_id = self
861                    .vocab
862                    .get(&word)
863                    .copied()
864                    .unwrap_or_else(|| self.special_tokens["<UNK>"]);
865                tokens.push(token_id);
866            }
867
868            tokens.push(self.special_tokens["<END>"]);
869            tokens
870        }
871
872        /// Convert token IDs back to text
873        pub fn detokenize(&self, token_ids: &[usize]) -> String {
874            token_ids
875                .iter()
876                .filter_map(|&id| self.reverse_vocab.get(&id))
877                .filter(|&word| !["<PAD>", "<START>", "<END>"].contains(&word.as_str()))
878                .cloned()
879                .collect::<Vec<_>>()
880                .join(" ")
881        }
882
883        /// Get vocabulary size
884        pub fn vocab_size(&self) -> usize {
885            self.vocab.len()
886        }
887    }
888
889    /// Quantum semantic similarity computation
890    pub struct QuantumSemanticSimilarity {
891        /// Embedding dimension
892        embedding_dim: usize,
893        /// Number of qubits
894        num_qubits: usize,
895        /// Similarity computation parameters
896        similarity_params: Vec<Parameter>,
897    }
898
899    impl QuantumSemanticSimilarity {
900        /// Create a new quantum semantic similarity computer
901        pub fn new(embedding_dim: usize, num_qubits: usize) -> Self {
902            let mut similarity_params = Vec::new();
903
904            // Parameters for similarity computation
905            for i in 0..num_qubits * 2 {
906                // For two text inputs
907                similarity_params.push(Parameter {
908                    name: format!("sim_{i}"),
909                    value: (i as f64 * 0.1).sin() * 0.5,
910                    bounds: None,
911                });
912            }
913
914            Self {
915                embedding_dim,
916                num_qubits,
917                similarity_params,
918            }
919        }
920
921        /// Compute semantic similarity between two texts
922        pub fn compute_similarity(
923            &self,
924            text1_tokens: &[usize],
925            text2_tokens: &[usize],
926        ) -> QuantRS2Result<f64> {
927            // Create embeddings for both texts
928            let config = QNLPConfig {
929                text_qubits: self.num_qubits,
930                vocab_size: 1000, // Default
931                ..Default::default()
932            };
933
934            let embedding1 = QuantumWordEmbedding::new(config.clone());
935            let embedding2 = QuantumWordEmbedding::new(config);
936
937            // Generate quantum circuits for both texts
938            let gates1 = embedding1.encode_sequence(text1_tokens)?;
939            let gates2 = embedding2.encode_sequence(text2_tokens)?;
940
941            // Compute similarity using quantum interference
942            // This is a simplified version - full implementation would measure overlap
943            let similarity = self.quantum_text_overlap(gates1, gates2)?;
944
945            Ok(similarity)
946        }
947
948        /// Compute quantum overlap between two text representations
949        fn quantum_text_overlap(
950            &self,
951            _gates1: Vec<Box<dyn GateOp>>,
952            _gates2: Vec<Box<dyn GateOp>>,
953        ) -> QuantRS2Result<f64> {
954            // Placeholder for quantum overlap computation
955            // In practice, would:
956            // 1. Prepare states using gates1 and gates2
957            // 2. Compute fidelity/overlap between states
958            // 3. Return similarity score
959
960            // Return dummy similarity for now
961            Ok(0.7)
962        }
963    }
964
965    /// Quantum text summarization model
966    pub struct QuantumTextSummarizer {
967        /// Configuration
968        config: QNLPConfig,
969        /// Encoder for input text
970        encoder: QuantumWordEmbedding,
971        /// Attention mechanism for importance scoring
972        attention: QuantumAttention,
973        /// Summary generation parameters
974        summary_params: Vec<Parameter>,
975    }
976
977    impl QuantumTextSummarizer {
978        /// Create a new quantum text summarizer
979        pub fn new(config: QNLPConfig) -> Self {
980            let encoder = QuantumWordEmbedding::new(config.clone());
981            let attention = QuantumAttention::new(config.text_qubits, config.num_attention_heads);
982
983            let mut summary_params = Vec::new();
984            for i in 0..config.text_qubits {
985                summary_params.push(Parameter {
986                    name: format!("summary_{i}"),
987                    value: (i as f64 * 0.15).sin() * 0.4,
988                    bounds: None,
989                });
990            }
991
992            Self {
993                config,
994                encoder,
995                attention,
996                summary_params,
997            }
998        }
999
1000        /// Generate extractive summary from input text
1001        pub fn extractive_summarize(
1002            &self,
1003            text_tokens: &[usize],
1004            summary_length: usize,
1005        ) -> QuantRS2Result<Vec<usize>> {
1006            // Encode input text
1007            let _encoding_gates = self.encoder.encode_sequence(text_tokens)?;
1008
1009            // Apply attention to find important tokens
1010            let _attention_gates = self.attention.attention_gates()?;
1011
1012            // Score tokens for importance (simplified)
1013            let mut token_scores = Vec::new();
1014            for (i, &token) in text_tokens.iter().enumerate() {
1015                // Simple scoring based on token frequency and position
1016                let position_weight = (i as f64 / text_tokens.len() as f64).mul_add(-0.5, 1.0);
1017                let token_weight = (token as f64 * 0.1).sin().abs();
1018                let score = position_weight * token_weight;
1019                token_scores.push((i, token, score));
1020            }
1021
1022            // Sort by score and select top tokens
1023            token_scores.sort_by(|a, b| b.2.partial_cmp(&a.2).unwrap_or(std::cmp::Ordering::Equal));
1024
1025            let mut summary_tokens = Vec::new();
1026            for (_, token, _) in token_scores.into_iter().take(summary_length) {
1027                summary_tokens.push(token);
1028            }
1029
1030            Ok(summary_tokens)
1031        }
1032
1033        /// Generate abstractive summary (placeholder)
1034        pub fn abstractive_summarize(
1035            &self,
1036            _text_tokens: &[usize],
1037            _summary_length: usize,
1038        ) -> QuantRS2Result<Vec<usize>> {
1039            // Placeholder for abstractive summarization
1040            // Would use sequence-to-sequence quantum model
1041            Ok(vec![1, 2, 3]) // Dummy summary
1042        }
1043    }
1044
1045    /// Quantum named entity recognition
1046    pub struct QuantumNamedEntityRecognition {
1047        /// Configuration
1048        config: QNLPConfig,
1049        /// Token encoder
1050        encoder: QuantumWordEmbedding,
1051        /// Entity type classifiers
1052        entity_classifiers: HashMap<String, Vec<Parameter>>,
1053        /// Supported entity types
1054        entity_types: Vec<String>,
1055    }
1056
1057    impl QuantumNamedEntityRecognition {
1058        /// Create a new quantum NER model
1059        pub fn new(config: QNLPConfig) -> Self {
1060            let encoder = QuantumWordEmbedding::new(config.clone());
1061            let entity_types = vec![
1062                "PERSON".to_string(),
1063                "ORGANIZATION".to_string(),
1064                "LOCATION".to_string(),
1065                "DATE".to_string(),
1066                "MONEY".to_string(),
1067            ];
1068
1069            let mut entity_classifiers = HashMap::new();
1070            for entity_type in &entity_types {
1071                let mut classifier_params = Vec::new();
1072                for i in 0..config.text_qubits {
1073                    classifier_params.push(Parameter {
1074                        name: format!("{entity_type}_{i}"),
1075                        value: (i as f64).mul_add(0.1, entity_type.len() as f64).sin() * 0.3,
1076                        bounds: None,
1077                    });
1078                }
1079                entity_classifiers.insert(entity_type.clone(), classifier_params);
1080            }
1081
1082            Self {
1083                config,
1084                encoder,
1085                entity_classifiers,
1086                entity_types,
1087            }
1088        }
1089
1090        /// Recognize named entities in text
1091        pub fn recognize_entities(
1092            &self,
1093            text_tokens: &[usize],
1094        ) -> QuantRS2Result<Vec<(usize, usize, String)>> {
1095            let mut entities = Vec::new();
1096
1097            // Simple sliding window approach
1098            for start in 0..text_tokens.len() {
1099                for end in start + 1..=text_tokens.len().min(start + 5) {
1100                    // Max entity length 5
1101                    let entity_tokens = &text_tokens[start..end];
1102
1103                    // Classify this span
1104                    if let Some(entity_type) = self.classify_span(entity_tokens)? {
1105                        entities.push((start, end, entity_type));
1106                    }
1107                }
1108            }
1109
1110            // Remove overlapping entities (keep longer ones)
1111            entities.sort_by(|a, b| (b.1 - b.0).cmp(&(a.1 - a.0)));
1112            let mut final_entities = Vec::new();
1113            let mut used_positions = vec![false; text_tokens.len()];
1114
1115            for (start, end, entity_type) in entities {
1116                if used_positions[start..end].iter().all(|&used| !used) {
1117                    for pos in start..end {
1118                        used_positions[pos] = true;
1119                    }
1120                    final_entities.push((start, end, entity_type));
1121                }
1122            }
1123
1124            final_entities.sort_by_key(|&(start, _, _)| start);
1125            Ok(final_entities)
1126        }
1127
1128        /// Classify a span of tokens as an entity type
1129        fn classify_span(&self, tokens: &[usize]) -> QuantRS2Result<Option<String>> {
1130            // Encode the span
1131            let _encoding_gates = self.encoder.encode_sequence(tokens)?;
1132
1133            let mut best_score = 0.0;
1134            let mut best_type = None;
1135
1136            // Score each entity type
1137            for entity_type in &self.entity_types {
1138                let score = self.compute_entity_score(tokens, entity_type)?;
1139                if score > best_score && score > 0.5 {
1140                    // Threshold
1141                    best_score = score;
1142                    best_type = Some(entity_type.clone());
1143                }
1144            }
1145
1146            Ok(best_type)
1147        }
1148
1149        /// Compute score for a specific entity type
1150        fn compute_entity_score(&self, tokens: &[usize], entity_type: &str) -> QuantRS2Result<f64> {
1151            // Simple scoring based on token patterns
1152            let mut score = 0.0;
1153
1154            for &token in tokens {
1155                // Simple heuristics based on token ID patterns
1156                match entity_type {
1157                    "PERSON" => {
1158                        if token % 7 == 1 {
1159                            // Arbitrary pattern for person names
1160                            score += 0.3;
1161                        }
1162                    }
1163                    "LOCATION" => {
1164                        if token % 5 == 2 {
1165                            // Arbitrary pattern for locations
1166                            score += 0.3;
1167                        }
1168                    }
1169                    "ORGANIZATION" => {
1170                        if token % 11 == 3 {
1171                            // Arbitrary pattern for organizations
1172                            score += 0.3;
1173                        }
1174                    }
1175                    "DATE" => {
1176                        if token % 13 == 4 {
1177                            // Arbitrary pattern for dates
1178                            score += 0.3;
1179                        }
1180                    }
1181                    "MONEY" => {
1182                        if token % 17 == 5 {
1183                            // Arbitrary pattern for money
1184                            score += 0.3;
1185                        }
1186                    }
1187                    _ => {}
1188                }
1189            }
1190
1191            score /= tokens.len() as f64; // Normalize by span length
1192            Ok(score)
1193        }
1194    }
1195}
1196
1197// Re-export advanced utilities
1198pub use advanced::*;