quantrs2_core/
ml_error_mitigation.rs

1//! Machine Learning-Based Quantum Error Mitigation
2//!
3//! This module implements advanced error mitigation techniques that use machine learning
4//! to adaptively learn and correct quantum errors. This goes beyond traditional error
5//! mitigation by learning error patterns from quantum hardware and optimizing mitigation
6//! strategies in real-time.
7
8use crate::error::{QuantRS2Error, QuantRS2Result};
9use crate::gate::GateOp;
10use crate::qubit::QubitId;
11use scirs2_core::ndarray::{Array1, Array2};
12use scirs2_core::random::{thread_rng, Rng};
13use scirs2_core::{Complex32, Complex64};
14use std::collections::HashMap;
15use std::sync::{Arc, RwLock};
16
17/// Neural network-based error predictor
18///
19/// Uses a simple feedforward neural network to predict error probabilities
20/// based on circuit characteristics and historical error data.
21#[derive(Debug, Clone)]
22pub struct NeuralErrorPredictor {
23    /// Input layer weights (circuit features -> hidden layer)
24    input_weights: Array2<f64>,
25    /// Hidden layer weights (hidden -> output)
26    hidden_weights: Array2<f64>,
27    /// Input layer bias
28    input_bias: Array1<f64>,
29    /// Hidden layer bias
30    hidden_bias: Array1<f64>,
31    /// Learning rate for gradient descent
32    learning_rate: f64,
33    /// Training history for adaptive learning
34    training_history: Arc<RwLock<Vec<TrainingExample>>>,
35}
36
37/// Training example for the neural error predictor
38#[derive(Debug, Clone)]
39pub struct TrainingExample {
40    /// Circuit features (depth, gate counts, connectivity, etc.)
41    pub features: Vec<f64>,
42    /// Observed error rate
43    pub error_rate: f64,
44    /// Timestamp of observation
45    pub timestamp: std::time::Instant,
46}
47
48/// Circuit features for error prediction
49#[derive(Debug, Clone)]
50pub struct CircuitFeatures {
51    /// Circuit depth (number of layers)
52    pub depth: usize,
53    /// Number of single-qubit gates
54    pub single_qubit_gates: usize,
55    /// Number of two-qubit gates
56    pub two_qubit_gates: usize,
57    /// Circuit connectivity (average qubits per gate)
58    pub connectivity: f64,
59    /// Estimated gate fidelity
60    pub average_gate_fidelity: f64,
61    /// Number of measurement operations
62    pub measurement_count: usize,
63    /// Circuit width (number of qubits)
64    pub width: usize,
65    /// Entanglement entropy estimate
66    pub entanglement_entropy: f64,
67}
68
69impl NeuralErrorPredictor {
70    /// Create a new neural error predictor
71    ///
72    /// # Arguments
73    /// * `input_size` - Number of input features
74    /// * `hidden_size` - Number of hidden neurons
75    /// * `learning_rate` - Learning rate for training
76    pub fn new(input_size: usize, hidden_size: usize, learning_rate: f64) -> Self {
77        let mut rng = thread_rng();
78
79        // Xavier initialization for better convergence
80        let xavier_input = (6.0 / (input_size + hidden_size) as f64).sqrt();
81        let xavier_hidden = (6.0 / (hidden_size + 1) as f64).sqrt();
82
83        let input_weights = Array2::from_shape_fn((hidden_size, input_size), |_| {
84            rng.gen_range(-xavier_input..xavier_input)
85        });
86
87        let hidden_weights = Array2::from_shape_fn((1, hidden_size), |_| {
88            rng.gen_range(-xavier_hidden..xavier_hidden)
89        });
90
91        let input_bias = Array1::zeros(hidden_size);
92        let hidden_bias = Array1::zeros(1);
93
94        Self {
95            input_weights,
96            hidden_weights,
97            input_bias,
98            hidden_bias,
99            learning_rate,
100            training_history: Arc::new(RwLock::new(Vec::new())),
101        }
102    }
103
104    /// Predict error rate for given circuit features
105    ///
106    /// # Arguments
107    /// * `features` - Circuit features to analyze
108    ///
109    /// # Returns
110    /// Predicted error rate (0.0 to 1.0)
111    pub fn predict(&self, features: &[f64]) -> QuantRS2Result<f64> {
112        if features.len() != self.input_weights.ncols() {
113            return Err(QuantRS2Error::InvalidInput(format!(
114                "Expected {} features, got {}",
115                self.input_weights.ncols(),
116                features.len()
117            )));
118        }
119
120        // Forward pass
121        let input = Array1::from_vec(features.to_vec());
122
123        // Hidden layer: ReLU(W1 * x + b1)
124        let hidden_pre = self.input_weights.dot(&input) + &self.input_bias;
125        let hidden = hidden_pre.mapv(|x| x.max(0.0)); // ReLU activation
126
127        // Output layer: sigmoid(W2 * h + b2)
128        let output_pre = self.hidden_weights.dot(&hidden) + &self.hidden_bias;
129        let output = 1.0 / (1.0 + (-output_pre[0]).exp()); // Sigmoid activation
130
131        Ok(output.clamp(0.0, 1.0))
132    }
133
134    /// Train the predictor with a new example
135    ///
136    /// # Arguments
137    /// * `features` - Circuit features
138    /// * `observed_error_rate` - Observed error rate from execution
139    pub fn train(&mut self, features: &[f64], observed_error_rate: f64) -> QuantRS2Result<()> {
140        if features.len() != self.input_weights.ncols() {
141            return Err(QuantRS2Error::InvalidInput(
142                "Feature size mismatch".to_string(),
143            ));
144        }
145
146        // Store training example
147        {
148            let mut history = self
149                .training_history
150                .write()
151                .unwrap_or_else(|e| e.into_inner());
152            history.push(TrainingExample {
153                features: features.to_vec(),
154                error_rate: observed_error_rate,
155                timestamp: std::time::Instant::now(),
156            });
157
158            // Keep only recent history (last 1000 examples)
159            let len = history.len();
160            if len > 1000 {
161                history.drain(0..len - 1000);
162            }
163        }
164
165        // Backpropagation
166        let input = Array1::from_vec(features.to_vec());
167
168        // Forward pass
169        let hidden_pre = self.input_weights.dot(&input) + &self.input_bias;
170        let hidden = hidden_pre.mapv(|x| x.max(0.0));
171
172        let output_pre = self.hidden_weights.dot(&hidden) + &self.hidden_bias;
173        let predicted = 1.0 / (1.0 + (-output_pre[0]).exp());
174
175        // Backward pass
176        // Output layer gradient
177        let output_error = predicted - observed_error_rate;
178        let output_delta = output_error * predicted * (1.0 - predicted); // Sigmoid derivative
179
180        // Hidden layer gradient
181        let hidden_error = output_delta * self.hidden_weights.row(0).to_owned();
182        let hidden_delta = hidden_error.mapv(|x| if x > 0.0 { x } else { 0.0 }); // ReLU derivative
183
184        // Update weights
185        for i in 0..self.hidden_weights.ncols() {
186            self.hidden_weights[[0, i]] -= self.learning_rate * output_delta * hidden[i];
187        }
188        self.hidden_bias[0] -= self.learning_rate * output_delta;
189
190        for i in 0..self.input_weights.nrows() {
191            for j in 0..self.input_weights.ncols() {
192                self.input_weights[[i, j]] -= self.learning_rate * hidden_delta[i] * input[j];
193            }
194            self.input_bias[i] -= self.learning_rate * hidden_delta[i];
195        }
196
197        Ok(())
198    }
199
200    /// Get training history
201    pub fn get_training_history(&self) -> Vec<TrainingExample> {
202        self.training_history
203            .read()
204            .unwrap_or_else(|e| e.into_inner())
205            .clone()
206    }
207
208    /// Calculate prediction accuracy on historical data
209    pub fn calculate_accuracy(&self) -> f64 {
210        let history = self
211            .training_history
212            .read()
213            .unwrap_or_else(|e| e.into_inner());
214        if history.is_empty() {
215            return 0.0;
216        }
217
218        let mut total_error = 0.0;
219        for example in history.iter() {
220            if let Ok(predicted) = self.predict(&example.features) {
221                total_error += (predicted - example.error_rate).abs();
222            }
223        }
224
225        1.0 - (total_error / history.len() as f64)
226    }
227}
228
229impl CircuitFeatures {
230    /// Extract features from a quantum circuit
231    ///
232    /// # Arguments
233    /// * `gates` - List of quantum gates in the circuit
234    /// * `num_qubits` - Total number of qubits
235    pub fn extract_from_circuit(gates: &[Box<dyn GateOp>], num_qubits: usize) -> Self {
236        let mut single_qubit_gates = 0;
237        let mut two_qubit_gates = 0;
238        let mut measurement_count = 0;
239        let mut max_depth = 0;
240        let mut qubit_depths: HashMap<QubitId, usize> = HashMap::new();
241
242        // Analyze gate structure
243        for gate in gates {
244            let qubits = gate.qubits();
245
246            match qubits.len() {
247                1 => single_qubit_gates += 1,
248                2 => two_qubit_gates += 1,
249                _ => {}
250            }
251
252            // Track depth per qubit
253            let current_depth = qubits
254                .iter()
255                .map(|q| *qubit_depths.get(q).unwrap_or(&0))
256                .max()
257                .unwrap_or(0)
258                + 1;
259
260            for qubit in qubits {
261                qubit_depths.insert(qubit, current_depth);
262            }
263
264            max_depth = max_depth.max(current_depth);
265
266            // Count measurements (check gate name)
267            if gate.name().to_lowercase().contains("measure") {
268                measurement_count += 1;
269            }
270        }
271
272        let total_gates = single_qubit_gates + two_qubit_gates;
273        let connectivity = if total_gates > 0 {
274            (single_qubit_gates + 2 * two_qubit_gates) as f64 / total_gates as f64
275        } else {
276            0.0
277        };
278
279        // Estimate entanglement entropy (simplified)
280        // More two-qubit gates relative to qubits = higher entanglement
281        let entanglement_entropy = if num_qubits > 0 {
282            (two_qubit_gates as f64 / num_qubits as f64).min(num_qubits as f64)
283        } else {
284            0.0
285        };
286
287        // Estimate average gate fidelity (simplified, would be calibrated)
288        let average_gate_fidelity = (two_qubit_gates as f64).mul_add(-0.005, 0.99);
289
290        Self {
291            depth: max_depth,
292            single_qubit_gates,
293            two_qubit_gates,
294            connectivity,
295            average_gate_fidelity: average_gate_fidelity.max(0.90),
296            measurement_count,
297            width: num_qubits,
298            entanglement_entropy,
299        }
300    }
301
302    /// Convert features to vector for ML input
303    pub fn to_vector(&self) -> Vec<f64> {
304        vec![
305            self.depth as f64,
306            self.single_qubit_gates as f64,
307            self.two_qubit_gates as f64,
308            self.connectivity,
309            self.average_gate_fidelity,
310            self.measurement_count as f64,
311            self.width as f64,
312            self.entanglement_entropy,
313        ]
314    }
315}
316
317/// Adaptive error mitigation strategy
318///
319/// Dynamically adjusts mitigation parameters based on learned error patterns
320pub struct AdaptiveErrorMitigation {
321    /// Neural predictor for error rates
322    predictor: NeuralErrorPredictor,
323    /// Mitigation strength multiplier
324    mitigation_strength: f64,
325    /// Minimum shots for statistical significance
326    min_shots: usize,
327    /// Performance metrics
328    metrics: Arc<RwLock<MitigationMetrics>>,
329}
330
331/// Metrics tracking mitigation performance
332#[derive(Debug, Clone)]
333pub struct MitigationMetrics {
334    pub total_circuits: usize,
335    pub average_improvement: f64,
336    pub prediction_accuracy: f64,
337    pub adaptive_adjustments: usize,
338}
339
340impl AdaptiveErrorMitigation {
341    /// Create new adaptive error mitigation system
342    pub fn new() -> Self {
343        Self {
344            predictor: NeuralErrorPredictor::new(8, 16, 0.01),
345            mitigation_strength: 1.0,
346            min_shots: 1024,
347            metrics: Arc::new(RwLock::new(MitigationMetrics {
348                total_circuits: 0,
349                average_improvement: 0.0,
350                prediction_accuracy: 0.0,
351                adaptive_adjustments: 0,
352            })),
353        }
354    }
355
356    /// Predict optimal mitigation parameters for a circuit
357    ///
358    /// # Arguments
359    /// * `features` - Circuit features
360    ///
361    /// # Returns
362    /// Recommended number of shots and mitigation strength
363    pub fn recommend_mitigation(&self, features: &CircuitFeatures) -> QuantRS2Result<(usize, f64)> {
364        let predicted_error = self.predictor.predict(&features.to_vector())?;
365
366        // Adaptive shot allocation: more errors = more shots needed
367        let recommended_shots =
368            (self.min_shots as f64 * predicted_error.mul_add(10.0, 1.0)) as usize;
369
370        // Adaptive mitigation strength
371        let strength = self.mitigation_strength * predicted_error.mul_add(2.0, 1.0);
372
373        Ok((recommended_shots, strength))
374    }
375
376    /// Update predictor with observed results
377    pub fn update_from_results(
378        &mut self,
379        features: &CircuitFeatures,
380        observed_error: f64,
381    ) -> QuantRS2Result<()> {
382        self.predictor
383            .train(&features.to_vector(), observed_error)?;
384
385        // Update metrics
386        {
387            let mut metrics = self.metrics.write().unwrap_or_else(|e| e.into_inner());
388            metrics.total_circuits += 1;
389            metrics.prediction_accuracy = self.predictor.calculate_accuracy();
390        }
391
392        Ok(())
393    }
394
395    /// Get current metrics
396    pub fn get_metrics(&self) -> MitigationMetrics {
397        self.metrics
398            .read()
399            .unwrap_or_else(|e| e.into_inner())
400            .clone()
401    }
402}
403
404impl Default for AdaptiveErrorMitigation {
405    fn default() -> Self {
406        Self::new()
407    }
408}
409
410#[cfg(test)]
411mod tests {
412    use super::*;
413
414    #[test]
415    fn test_neural_predictor_creation() {
416        let predictor = NeuralErrorPredictor::new(8, 16, 0.01);
417        assert_eq!(predictor.input_weights.ncols(), 8);
418        assert_eq!(predictor.input_weights.nrows(), 16);
419    }
420
421    #[test]
422    fn test_prediction() {
423        let predictor = NeuralErrorPredictor::new(8, 16, 0.01);
424        let features = vec![10.0, 5.0, 3.0, 1.5, 0.99, 2.0, 4.0, 1.2];
425
426        let result = predictor.predict(&features);
427        assert!(result.is_ok());
428
429        let error_rate = result.expect("Failed to predict error rate");
430        assert!(error_rate >= 0.0 && error_rate <= 1.0);
431    }
432
433    #[test]
434    fn test_training() {
435        let mut predictor = NeuralErrorPredictor::new(8, 16, 0.01);
436        let features = vec![10.0, 5.0, 3.0, 1.5, 0.99, 2.0, 4.0, 1.2];
437
438        // Train multiple times
439        for _ in 0..100 {
440            let result = predictor.train(&features, 0.05);
441            assert!(result.is_ok());
442        }
443
444        // Check that training history is updated
445        let history = predictor.get_training_history();
446        assert_eq!(history.len(), 100);
447    }
448
449    #[test]
450    fn test_adaptive_mitigation() {
451        let mitigation = AdaptiveErrorMitigation::new();
452
453        let features = CircuitFeatures {
454            depth: 10,
455            single_qubit_gates: 20,
456            two_qubit_gates: 8,
457            connectivity: 1.4,
458            average_gate_fidelity: 0.99,
459            measurement_count: 4,
460            width: 4,
461            entanglement_entropy: 2.0,
462        };
463
464        let result = mitigation.recommend_mitigation(&features);
465        assert!(result.is_ok());
466
467        let (shots, strength) = result.expect("Failed to recommend mitigation");
468        assert!(shots >= 1024);
469        assert!(strength > 0.0);
470    }
471}