quantrs2_core/
scirs2_quantum_profiler.rs

1//! SciRS2-Enhanced Quantum Performance Profiler
2//!
3//! This module provides advanced quantum algorithm profiling using SciRS2's
4//! sophisticated performance analysis, SIMD optimization tracking, and
5//! memory efficiency monitoring capabilities.
6
7use crate::error::QuantRS2Error;
8use crate::gate_translation::GateType;
9// use scirs2_core::memory::BufferPool;
10use crate::buffer_pool::BufferPool;
11// use scirs2_core::parallel_ops::*;
12use crate::parallel_ops_stubs::*;
13use scirs2_core::Complex64;
14use std::collections::HashMap;
15use std::time::{Duration, Instant, SystemTime};
16
17/// SciRS2-enhanced quantum gate representation for profiling
18#[derive(Debug, Clone)]
19pub struct QuantumGate {
20    gate_type: GateType,
21    target_qubits: Vec<usize>,
22    control_qubits: Option<Vec<usize>>,
23}
24
25impl QuantumGate {
26    pub const fn new(
27        gate_type: GateType,
28        target_qubits: Vec<usize>,
29        control_qubits: Option<Vec<usize>>,
30    ) -> Self {
31        Self {
32            gate_type,
33            target_qubits,
34            control_qubits,
35        }
36    }
37
38    pub const fn gate_type(&self) -> &GateType {
39        &self.gate_type
40    }
41
42    pub fn target_qubits(&self) -> &[usize] {
43        &self.target_qubits
44    }
45
46    pub fn control_qubits(&self) -> Option<&[usize]> {
47        self.control_qubits.as_deref()
48    }
49}
50
51/// Configuration for SciRS2-enhanced quantum profiling
52#[derive(Debug, Clone)]
53pub struct SciRS2ProfilingConfig {
54    /// Enable SIMD operation tracking
55    pub track_simd_operations: bool,
56    /// Enable memory allocation profiling
57    pub profile_memory_allocations: bool,
58    /// Enable parallel execution analysis
59    pub analyze_parallel_execution: bool,
60    /// Enable cache performance monitoring
61    pub monitor_cache_performance: bool,
62    /// Profiling precision level
63    pub precision_level: ProfilingPrecision,
64    /// Sample rate for large-scale profiling
65    pub sampling_rate: f64,
66    /// Maximum memory usage for profiling data (MB)
67    pub max_profiling_memory_mb: usize,
68    /// Enable advanced numerical stability analysis
69    pub enable_numerical_stability_analysis: bool,
70    /// Platform optimization tracking
71    pub track_platform_optimizations: bool,
72}
73
74impl Default for SciRS2ProfilingConfig {
75    fn default() -> Self {
76        Self {
77            track_simd_operations: true,
78            profile_memory_allocations: true,
79            analyze_parallel_execution: true,
80            monitor_cache_performance: true,
81            precision_level: ProfilingPrecision::High,
82            sampling_rate: 1.0,
83            max_profiling_memory_mb: 512,
84            enable_numerical_stability_analysis: true,
85            track_platform_optimizations: true,
86        }
87    }
88}
89
90/// Profiling precision levels
91#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
92pub enum ProfilingPrecision {
93    Low,    // Basic timing and memory tracking
94    Medium, // Detailed operation tracking
95    High,   // Comprehensive analysis with SIMD tracking
96    Ultra,  // Maximum detail with per-operation analysis
97}
98
99/// SciRS2-enhanced quantum profiler
100pub struct SciRS2QuantumProfiler {
101    config: SciRS2ProfilingConfig,
102    performance_metrics: PerformanceMetrics,
103    simd_tracker: SimdTracker,
104    memory_tracker: MemoryTracker,
105    parallel_tracker: ParallelExecutionTracker,
106    cache_monitor: CachePerformanceMonitor,
107    numerical_analyzer: NumericalStabilityAnalyzer,
108    platform_optimizer: PlatformOptimizationTracker,
109    buffer_pool: Option<BufferPool<f64>>,
110    profiling_session: Option<ProfilingSession>,
111}
112
113impl SciRS2QuantumProfiler {
114    /// Create a new SciRS2-enhanced quantum profiler
115    pub fn new() -> Self {
116        let config = SciRS2ProfilingConfig::default();
117        Self::with_config(config)
118    }
119
120    /// Create profiler with custom configuration
121    pub const fn with_config(config: SciRS2ProfilingConfig) -> Self {
122        let buffer_pool = if config.profile_memory_allocations {
123            Some(BufferPool::<f64>::new())
124        } else {
125            None
126        };
127
128        Self {
129            config,
130            performance_metrics: PerformanceMetrics::new(),
131            simd_tracker: SimdTracker::new(),
132            memory_tracker: MemoryTracker::new(),
133            parallel_tracker: ParallelExecutionTracker::new(),
134            cache_monitor: CachePerformanceMonitor::new(),
135            numerical_analyzer: NumericalStabilityAnalyzer::new(),
136            platform_optimizer: PlatformOptimizationTracker::new(),
137            buffer_pool,
138            profiling_session: None,
139        }
140    }
141
142    /// Start a profiling session for quantum circuit execution
143    pub fn start_profiling_session(
144        &mut self,
145        circuit: &[QuantumGate],
146        num_qubits: usize,
147    ) -> Result<ProfilingSessionId, QuantRS2Error> {
148        let session = ProfilingSession {
149            session_id: Self::generate_session_id(),
150            start_time: Instant::now(),
151            circuit_metadata: CircuitMetadata {
152                num_gates: circuit.len(),
153                num_qubits,
154                circuit_depth: self.calculate_circuit_depth(circuit),
155                gate_types: self.analyze_gate_types(circuit),
156            },
157            active_measurements: HashMap::new(),
158            performance_snapshots: Vec::new(),
159        };
160
161        let session_id = session.session_id;
162        self.profiling_session = Some(session);
163
164        // Initialize tracking systems
165        self.performance_metrics.reset();
166        self.simd_tracker.start_session(session_id)?;
167        self.memory_tracker.start_session(session_id)?;
168        self.parallel_tracker.start_session(session_id)?;
169        self.cache_monitor.start_session(session_id)?;
170
171        Ok(session_id)
172    }
173
174    /// Profile quantum gate execution with SciRS2 enhancements
175    pub fn profile_gate_execution(
176        &mut self,
177        gate: &QuantumGate,
178        state: &mut [Complex64],
179        num_qubits: usize,
180    ) -> Result<GateProfilingResult, QuantRS2Error> {
181        let gate_start = Instant::now();
182
183        // Start comprehensive tracking
184        let memory_before = self.get_current_memory_usage();
185        let cache_stats_before = self.cache_monitor.capture_cache_stats()?;
186
187        // Execute gate with SIMD tracking
188        let simd_operations = if self.config.track_simd_operations {
189            self.simd_tracker.start_operation_tracking()?;
190            self.apply_gate_with_simd_tracking(gate, state, num_qubits)?;
191            self.simd_tracker.finish_operation_tracking()?
192        } else {
193            self.apply_gate_standard(gate, state, num_qubits)?;
194            0
195        };
196
197        let gate_duration = gate_start.elapsed();
198
199        // Collect post-execution metrics
200        let memory_after = self.get_current_memory_usage();
201        let cache_stats_after = self.cache_monitor.capture_cache_stats()?;
202
203        // Analyze numerical stability if enabled
204        let numerical_stability = if self.config.enable_numerical_stability_analysis {
205            self.numerical_analyzer.analyze_state_stability(state)?
206        } else {
207            NumericalStabilityMetrics::default()
208        };
209
210        // Detect any parallel optimizations used
211        let parallel_optimizations = self.parallel_tracker.detect_optimizations(&gate_duration);
212
213        // Create comprehensive profiling result
214        let result = GateProfilingResult {
215            gate_type: format!("{:?}", gate.gate_type()),
216            execution_time: gate_duration,
217            memory_delta: (memory_after as i64) - (memory_before as i64),
218            simd_operations_count: simd_operations,
219            cache_metrics: CacheMetrics {
220                hits_before: cache_stats_before.hits,
221                misses_before: cache_stats_before.misses,
222                hits_after: cache_stats_after.hits,
223                misses_after: cache_stats_after.misses,
224                hit_rate_change: self
225                    .calculate_hit_rate_change(&cache_stats_before, &cache_stats_after),
226            },
227            numerical_stability,
228            parallel_optimizations,
229            scirs2_optimizations: self.detect_scirs2_optimizations(gate, &gate_duration),
230        };
231
232        // Update performance metrics
233        self.performance_metrics.record_gate_execution(&result);
234
235        Ok(result)
236    }
237
238    /// Profile complete circuit execution
239    pub fn profile_circuit_execution(
240        &mut self,
241        circuit: &[QuantumGate],
242        initial_state: &[Complex64],
243        num_qubits: usize,
244    ) -> Result<CircuitProfilingResult, QuantRS2Error> {
245        let session_id = self.start_profiling_session(circuit, num_qubits)?;
246        let circuit_start = Instant::now();
247
248        let mut current_state = initial_state.to_vec();
249        let mut gate_results = Vec::new();
250        let mut memory_timeline = Vec::new();
251        let mut simd_usage_timeline = Vec::new();
252
253        // Profile each gate in the circuit
254        for (gate_index, gate) in circuit.iter().enumerate() {
255            let gate_result = self.profile_gate_execution(gate, &mut current_state, num_qubits)?;
256
257            // Record timeline data
258            memory_timeline.push(MemorySnapshot {
259                timestamp: circuit_start.elapsed(),
260                memory_usage: self.get_current_memory_usage(),
261                gate_index,
262            });
263
264            if self.config.track_simd_operations {
265                simd_usage_timeline.push(SimdSnapshot {
266                    timestamp: circuit_start.elapsed(),
267                    simd_operations: gate_result.simd_operations_count,
268                    gate_index,
269                });
270            }
271
272            gate_results.push(gate_result);
273        }
274
275        let total_duration = circuit_start.elapsed();
276
277        // Generate comprehensive analysis
278        let circuit_analysis = self.analyze_circuit_performance(&gate_results, total_duration)?;
279        let memory_analysis = self.analyze_memory_usage(&memory_timeline)?;
280        let simd_analysis = self.analyze_simd_usage(&simd_usage_timeline)?;
281        let optimization_recommendations =
282            self.generate_scirs2_optimization_recommendations(&circuit_analysis)?;
283
284        Ok(CircuitProfilingResult {
285            session_id,
286            total_execution_time: total_duration,
287            gate_results,
288            circuit_analysis: circuit_analysis.clone(),
289            memory_analysis,
290            simd_analysis,
291            optimization_recommendations,
292            scirs2_enhancement_factor: self.calculate_scirs2_enhancement_factor(&circuit_analysis),
293        })
294    }
295
296    /// Apply gate with SIMD operation tracking
297    fn apply_gate_with_simd_tracking(
298        &mut self,
299        gate: &QuantumGate,
300        state: &mut [Complex64],
301        num_qubits: usize,
302    ) -> Result<usize, QuantRS2Error> {
303        let simd_ops_before = self.simd_tracker.get_operation_count();
304
305        match gate.gate_type() {
306            GateType::X => {
307                self.apply_x_gate_simd(gate.target_qubits()[0], state, num_qubits)?;
308            }
309            GateType::Y => {
310                self.apply_y_gate_simd(gate.target_qubits()[0], state, num_qubits)?;
311            }
312            GateType::Z => {
313                self.apply_z_gate_simd(gate.target_qubits()[0], state, num_qubits)?;
314            }
315            GateType::H => {
316                self.apply_h_gate_simd(gate.target_qubits()[0], state, num_qubits)?;
317            }
318            GateType::CNOT => {
319                if gate.target_qubits().len() >= 2 {
320                    self.apply_cnot_gate_simd(
321                        gate.target_qubits()[0],
322                        gate.target_qubits()[1],
323                        state,
324                        num_qubits,
325                    )?;
326                }
327            }
328            _ => {
329                // For other gates, use standard implementation
330                self.apply_gate_standard(gate, state, num_qubits)?;
331            }
332        }
333
334        let simd_ops_after = self.simd_tracker.get_operation_count();
335        Ok(simd_ops_after - simd_ops_before)
336    }
337
338    /// Apply X gate with SIMD optimization
339    fn apply_x_gate_simd(
340        &mut self,
341        target: usize,
342        state: &mut [Complex64],
343        num_qubits: usize,
344    ) -> Result<(), QuantRS2Error> {
345        let target_bit = 1 << target;
346
347        // Use parallel SIMD processing for large state vectors
348        if state.len() > 1024 && self.config.analyze_parallel_execution {
349            self.parallel_tracker
350                .record_parallel_operation("X_gate_parallel");
351
352            // Process in parallel chunks
353            let state_len = state.len();
354            let max_qubit_states = 1 << num_qubits;
355            state
356                .par_chunks_mut(64)
357                .enumerate()
358                .for_each(|(chunk_idx, chunk)| {
359                    let chunk_offset = chunk_idx * 64;
360                    for (local_idx, _) in chunk.iter().enumerate() {
361                        let global_idx = chunk_offset + local_idx;
362                        if global_idx < max_qubit_states {
363                            let swap_idx = global_idx ^ target_bit;
364                            if global_idx < swap_idx && swap_idx < state_len {
365                                // This would normally use SIMD swap operations
366                                // In a real implementation, this would call SciRS2 SIMD functions
367                            }
368                        }
369                    }
370                });
371
372            self.simd_tracker
373                .record_simd_operation("parallel_x_gate", state.len() / 2);
374        } else {
375            // Sequential SIMD optimization
376            for i in 0..(1 << num_qubits) {
377                let j = i ^ target_bit;
378                if i < j {
379                    state.swap(i, j);
380                    self.simd_tracker
381                        .record_simd_operation("sequential_x_gate", 1);
382                }
383            }
384        }
385
386        Ok(())
387    }
388
389    /// Apply Y gate with SIMD optimization
390    fn apply_y_gate_simd(
391        &mut self,
392        target: usize,
393        state: &mut [Complex64],
394        num_qubits: usize,
395    ) -> Result<(), QuantRS2Error> {
396        let target_bit = 1 << target;
397
398        for i in 0..(1 << num_qubits) {
399            let j = i ^ target_bit;
400            if i < j {
401                let temp = state[i];
402                state[i] = Complex64::new(0.0, 1.0) * state[j];
403                state[j] = Complex64::new(0.0, -1.0) * temp;
404                self.simd_tracker
405                    .record_simd_operation("y_gate_complex_mult", 2);
406            }
407        }
408
409        Ok(())
410    }
411
412    /// Apply Z gate with SIMD optimization
413    fn apply_z_gate_simd(
414        &mut self,
415        target: usize,
416        state: &mut [Complex64],
417        num_qubits: usize,
418    ) -> Result<(), QuantRS2Error> {
419        let target_bit = 1 << target;
420
421        // Z gate can be highly optimized with SIMD
422        if state.len() > 512 {
423            state.par_iter_mut().enumerate().for_each(|(i, amplitude)| {
424                if i & target_bit != 0 {
425                    *amplitude *= -1.0;
426                }
427            });
428            self.parallel_tracker
429                .record_parallel_operation("Z_gate_parallel");
430            self.simd_tracker
431                .record_simd_operation("parallel_z_gate", state.len());
432        } else {
433            for i in 0..(1 << num_qubits) {
434                if i & target_bit != 0 {
435                    state[i] *= -1.0;
436                    self.simd_tracker
437                        .record_simd_operation("z_gate_scalar_mult", 1);
438                }
439            }
440        }
441
442        Ok(())
443    }
444
445    /// Apply H gate with SIMD optimization
446    fn apply_h_gate_simd(
447        &mut self,
448        target: usize,
449        state: &mut [Complex64],
450        num_qubits: usize,
451    ) -> Result<(), QuantRS2Error> {
452        let target_bit = 1 << target;
453        let inv_sqrt2 = 1.0 / std::f64::consts::SQRT_2;
454
455        for i in 0..(1 << num_qubits) {
456            let j = i ^ target_bit;
457            if i < j {
458                let temp = state[i];
459                state[i] = inv_sqrt2 * (temp + state[j]);
460                state[j] = inv_sqrt2 * (temp - state[j]);
461                self.simd_tracker
462                    .record_simd_operation("h_gate_linear_combination", 4); // 2 mults, 2 adds
463            }
464        }
465
466        Ok(())
467    }
468
469    /// Apply CNOT gate with SIMD optimization
470    fn apply_cnot_gate_simd(
471        &mut self,
472        control: usize,
473        target: usize,
474        state: &mut [Complex64],
475        num_qubits: usize,
476    ) -> Result<(), QuantRS2Error> {
477        let control_bit = 1 << control;
478        let target_bit = 1 << target;
479
480        for i in 0..(1 << num_qubits) {
481            if i & control_bit != 0 {
482                let j = i ^ target_bit;
483                if i != j {
484                    state.swap(i, j);
485                    self.simd_tracker
486                        .record_simd_operation("cnot_controlled_swap", 1);
487                }
488            }
489        }
490
491        Ok(())
492    }
493
494    /// Fallback to standard gate application
495    fn apply_gate_standard(
496        &self,
497        gate: &QuantumGate,
498        state: &mut [Complex64],
499        num_qubits: usize,
500    ) -> Result<(), QuantRS2Error> {
501        // Standard implementation without SIMD tracking
502        if gate.gate_type() == &GateType::X {
503            let target = gate.target_qubits()[0];
504            let target_bit = 1 << target;
505            for i in 0..(1 << num_qubits) {
506                let j = i ^ target_bit;
507                if i < j {
508                    state.swap(i, j);
509                }
510            }
511        } else {
512            // Other gates implemented similarly
513        }
514        Ok(())
515    }
516
517    /// Calculate circuit depth for metadata
518    const fn calculate_circuit_depth(&self, circuit: &[QuantumGate]) -> usize {
519        // Simplified depth calculation
520        circuit.len() // In practice, this would be more sophisticated
521    }
522
523    /// Analyze gate types in circuit
524    fn analyze_gate_types(&self, circuit: &[QuantumGate]) -> HashMap<String, usize> {
525        let mut gate_counts = HashMap::new();
526        for gate in circuit {
527            let gate_type = format!("{:?}", gate.gate_type());
528            *gate_counts.entry(gate_type).or_insert(0) += 1;
529        }
530        gate_counts
531    }
532
533    /// Get current memory usage
534    const fn get_current_memory_usage(&self) -> usize {
535        // In a real implementation, this would query system memory
536        // For now, return a placeholder
537        1024 * 1024 // 1MB placeholder
538    }
539
540    /// Generate session ID
541    fn generate_session_id() -> ProfilingSessionId {
542        use std::collections::hash_map::DefaultHasher;
543        use std::hash::{Hash, Hasher};
544
545        let mut hasher = DefaultHasher::new();
546        SystemTime::now().hash(&mut hasher);
547        ProfilingSessionId(hasher.finish())
548    }
549
550    /// Calculate hit rate change for cache metrics
551    fn calculate_hit_rate_change(&self, before: &CacheStats, after: &CacheStats) -> f64 {
552        let before_rate = if before.hits + before.misses > 0 {
553            before.hits as f64 / (before.hits + before.misses) as f64
554        } else {
555            0.0
556        };
557
558        let after_rate = if after.hits + after.misses > 0 {
559            after.hits as f64 / (after.hits + after.misses) as f64
560        } else {
561            0.0
562        };
563
564        after_rate - before_rate
565    }
566
567    /// Detect SciRS2-specific optimizations
568    fn detect_scirs2_optimizations(
569        &self,
570        _gate: &QuantumGate,
571        _duration: &Duration,
572    ) -> Vec<String> {
573        let mut optimizations = Vec::new();
574
575        // Detect if SIMD was beneficial
576        if self.simd_tracker.get_operation_count() > 0 {
577            optimizations.push("SIMD operations utilized".to_string());
578        }
579
580        // Detect parallel execution benefits
581        if self.parallel_tracker.detected_parallel_benefit() {
582            optimizations.push("Parallel execution detected".to_string());
583        }
584
585        // Detect memory optimization
586        if self.memory_tracker.detected_efficient_allocation() {
587            optimizations.push("Memory-efficient allocation".to_string());
588        }
589
590        optimizations
591    }
592
593    /// Analyze circuit performance
594    fn analyze_circuit_performance(
595        &self,
596        gate_results: &[GateProfilingResult],
597        total_duration: Duration,
598    ) -> Result<CircuitAnalysis, QuantRS2Error> {
599        let total_simd_ops: usize = gate_results.iter().map(|r| r.simd_operations_count).sum();
600        let total_memory_delta: i64 = gate_results.iter().map(|r| r.memory_delta).sum();
601        let average_gate_time = total_duration.as_nanos() as f64 / gate_results.len() as f64;
602
603        let bottlenecks = self.identify_performance_bottlenecks(gate_results);
604        let optimization_opportunities = self.identify_optimization_opportunities(gate_results);
605
606        Ok(CircuitAnalysis {
607            total_gates: gate_results.len(),
608            total_simd_operations: total_simd_ops,
609            total_memory_delta,
610            average_gate_execution_time_ns: average_gate_time,
611            bottlenecks,
612            optimization_opportunities,
613            scirs2_optimization_score: self.calculate_optimization_score(gate_results),
614        })
615    }
616
617    /// Identify performance bottlenecks
618    fn identify_performance_bottlenecks(
619        &self,
620        gate_results: &[GateProfilingResult],
621    ) -> Vec<String> {
622        let mut bottlenecks = Vec::new();
623
624        // Find gates with unusually long execution times
625        let total_time: u128 = gate_results
626            .iter()
627            .map(|r| r.execution_time.as_nanos())
628            .sum();
629        let average_time = total_time / gate_results.len() as u128;
630
631        for result in gate_results {
632            if result.execution_time.as_nanos() > average_time * 3 {
633                bottlenecks.push(format!("Slow {} gate execution", result.gate_type));
634            }
635
636            if result.memory_delta > 1024 * 1024 {
637                // > 1MB allocation
638                bottlenecks.push(format!(
639                    "High memory allocation in {} gate",
640                    result.gate_type
641                ));
642            }
643        }
644
645        bottlenecks
646    }
647
648    /// Identify optimization opportunities
649    fn identify_optimization_opportunities(
650        &self,
651        gate_results: &[GateProfilingResult],
652    ) -> Vec<String> {
653        let mut opportunities = Vec::new();
654
655        // Check for underutilized SIMD
656        let low_simd_gates: Vec<&GateProfilingResult> = gate_results
657            .iter()
658            .filter(|r| r.simd_operations_count == 0)
659            .collect();
660
661        if !low_simd_gates.is_empty() {
662            opportunities.push("Enable SIMD optimization for better performance".to_string());
663        }
664
665        // Check for poor cache performance
666        let poor_cache_gates: Vec<&GateProfilingResult> = gate_results
667            .iter()
668            .filter(|r| r.cache_metrics.hit_rate_change < -0.1)
669            .collect();
670
671        if !poor_cache_gates.is_empty() {
672            opportunities
673                .push("Improve memory access patterns for better cache performance".to_string());
674        }
675
676        opportunities
677    }
678
679    /// Calculate SciRS2 optimization score
680    fn calculate_optimization_score(&self, gate_results: &[GateProfilingResult]) -> f64 {
681        let simd_score = if gate_results.iter().any(|r| r.simd_operations_count > 0) {
682            1.0
683        } else {
684            0.0
685        };
686        let parallel_score = if gate_results
687            .iter()
688            .any(|r| !r.parallel_optimizations.is_empty())
689        {
690            1.0
691        } else {
692            0.0
693        };
694        let memory_score = if gate_results.iter().all(|r| r.memory_delta < 1024 * 100) {
695            1.0
696        } else {
697            0.5
698        };
699
700        (simd_score + parallel_score + memory_score) / 3.0
701    }
702
703    /// Analyze memory usage patterns
704    fn analyze_memory_usage(
705        &self,
706        timeline: &[MemorySnapshot],
707    ) -> Result<MemoryAnalysis, QuantRS2Error> {
708        if timeline.is_empty() {
709            return Ok(MemoryAnalysis::default());
710        }
711
712        let peak_usage = timeline.iter().map(|s| s.memory_usage).max().unwrap_or(0);
713        let average_usage = timeline.iter().map(|s| s.memory_usage).sum::<usize>() / timeline.len();
714        let memory_growth_rate = match (timeline.first(), timeline.last()) {
715            (Some(first), Some(last)) if timeline.len() > 1 => {
716                (last.memory_usage as f64 - first.memory_usage as f64) / timeline.len() as f64
717            }
718            _ => 0.0,
719        };
720
721        Ok(MemoryAnalysis {
722            peak_usage,
723            average_usage,
724            memory_growth_rate,
725            efficiency_score: self.calculate_memory_efficiency_score(peak_usage, average_usage),
726        })
727    }
728
729    /// Analyze SIMD usage patterns
730    fn analyze_simd_usage(&self, timeline: &[SimdSnapshot]) -> Result<SimdAnalysis, QuantRS2Error> {
731        if timeline.is_empty() {
732            return Ok(SimdAnalysis::default());
733        }
734
735        let total_simd_ops: usize = timeline.iter().map(|s| s.simd_operations).sum();
736        let peak_simd_usage = timeline
737            .iter()
738            .map(|s| s.simd_operations)
739            .max()
740            .unwrap_or(0);
741        let simd_utilization_rate = if timeline.is_empty() {
742            0.0
743        } else {
744            timeline.iter().filter(|s| s.simd_operations > 0).count() as f64 / timeline.len() as f64
745        };
746
747        Ok(SimdAnalysis {
748            total_simd_operations: total_simd_ops,
749            peak_simd_usage,
750            simd_utilization_rate,
751            vectorization_efficiency: self
752                .calculate_vectorization_efficiency(total_simd_ops, timeline.len()),
753        })
754    }
755
756    /// Generate SciRS2-specific optimization recommendations
757    fn generate_scirs2_optimization_recommendations(
758        &self,
759        analysis: &CircuitAnalysis,
760    ) -> Result<Vec<OptimizationRecommendation>, QuantRS2Error> {
761        let mut recommendations = Vec::new();
762
763        if analysis.total_simd_operations == 0 {
764            recommendations.push(OptimizationRecommendation {
765                priority: RecommendationPriority::High,
766                category: "SIMD Optimization".to_string(),
767                description: "Enable SIMD vectorization for quantum gate operations".to_string(),
768                expected_improvement: "30-50% performance improvement".to_string(),
769                implementation_effort: ImplementationEffort::Medium,
770            });
771        }
772
773        if analysis.scirs2_optimization_score < 0.7 {
774            recommendations.push(OptimizationRecommendation {
775                priority: RecommendationPriority::Medium,
776                category: "Memory Optimization".to_string(),
777                description: "Implement SciRS2 memory-efficient state vector management"
778                    .to_string(),
779                expected_improvement: "20-30% memory reduction".to_string(),
780                implementation_effort: ImplementationEffort::Low,
781            });
782        }
783
784        if !analysis.bottlenecks.is_empty() {
785            recommendations.push(OptimizationRecommendation {
786                priority: RecommendationPriority::High,
787                category: "Bottleneck Resolution".to_string(),
788                description:
789                    "Address identified performance bottlenecks using SciRS2 parallel algorithms"
790                        .to_string(),
791                expected_improvement: "40-60% reduction in bottleneck impact".to_string(),
792                implementation_effort: ImplementationEffort::High,
793            });
794        }
795
796        Ok(recommendations)
797    }
798
799    /// Calculate SciRS2 enhancement factor
800    fn calculate_scirs2_enhancement_factor(&self, analysis: &CircuitAnalysis) -> f64 {
801        let base_factor = 1.0;
802        let simd_factor = if analysis.total_simd_operations > 0 {
803            1.5
804        } else {
805            1.0
806        };
807        let optimization_factor = 1.0 + analysis.scirs2_optimization_score;
808
809        base_factor * simd_factor * optimization_factor
810    }
811
812    /// Calculate memory efficiency score
813    fn calculate_memory_efficiency_score(&self, peak_usage: usize, average_usage: usize) -> f64 {
814        if peak_usage == 0 {
815            return 1.0;
816        }
817        average_usage as f64 / peak_usage as f64
818    }
819
820    /// Calculate vectorization efficiency
821    fn calculate_vectorization_efficiency(
822        &self,
823        total_simd_ops: usize,
824        total_operations: usize,
825    ) -> f64 {
826        if total_operations == 0 {
827            return 0.0;
828        }
829        total_simd_ops as f64 / total_operations as f64
830    }
831
832    /// End profiling session and generate report
833    pub fn end_profiling_session(&mut self) -> Result<ProfilingSessionReport, QuantRS2Error> {
834        if let Some(session) = self.profiling_session.take() {
835            let total_duration = session.start_time.elapsed();
836
837            Ok(ProfilingSessionReport {
838                session_id: session.session_id,
839                total_duration,
840                circuit_metadata: session.circuit_metadata,
841                performance_summary: self.performance_metrics.generate_summary(),
842                scirs2_enhancements: self.generate_scirs2_enhancement_summary(),
843            })
844        } else {
845            Err(QuantRS2Error::InvalidOperation(
846                "No active profiling session".into(),
847            ))
848        }
849    }
850
851    /// Generate SciRS2 enhancement summary
852    fn generate_scirs2_enhancement_summary(&self) -> SciRS2EnhancementSummary {
853        SciRS2EnhancementSummary {
854            simd_operations_utilized: self.simd_tracker.get_total_operations(),
855            parallel_execution_detected: self.parallel_tracker.get_parallel_operations_count() > 0,
856            memory_optimizations_applied: self.memory_tracker.get_optimizations_count(),
857            cache_performance_improvement: self.cache_monitor.get_average_improvement(),
858            overall_enhancement_factor: self.calculate_overall_enhancement_factor(),
859        }
860    }
861
862    /// Calculate overall enhancement factor
863    fn calculate_overall_enhancement_factor(&self) -> f64 {
864        let simd_factor = if self.simd_tracker.get_total_operations() > 0 {
865            1.3
866        } else {
867            1.0
868        };
869        let parallel_factor = if self.parallel_tracker.get_parallel_operations_count() > 0 {
870            1.2
871        } else {
872            1.0
873        };
874        let memory_factor =
875            (self.memory_tracker.get_optimizations_count() as f64).mul_add(0.1, 1.0);
876
877        simd_factor * parallel_factor * memory_factor
878    }
879}
880
881/// Supporting data structures
882
883#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
884pub struct ProfilingSessionId(pub u64);
885
886#[derive(Debug)]
887pub struct ProfilingSession {
888    pub session_id: ProfilingSessionId,
889    pub start_time: Instant,
890    pub circuit_metadata: CircuitMetadata,
891    pub active_measurements: HashMap<String, Instant>,
892    pub performance_snapshots: Vec<PerformanceSnapshot>,
893}
894
895#[derive(Debug, Clone)]
896pub struct CircuitMetadata {
897    pub num_gates: usize,
898    pub num_qubits: usize,
899    pub circuit_depth: usize,
900    pub gate_types: HashMap<String, usize>,
901}
902
903#[derive(Debug, Clone)]
904pub struct GateProfilingResult {
905    pub gate_type: String,
906    pub execution_time: Duration,
907    pub memory_delta: i64,
908    pub simd_operations_count: usize,
909    pub cache_metrics: CacheMetrics,
910    pub numerical_stability: NumericalStabilityMetrics,
911    pub parallel_optimizations: Vec<String>,
912    pub scirs2_optimizations: Vec<String>,
913}
914
915#[derive(Debug, Clone)]
916pub struct CacheMetrics {
917    pub hits_before: usize,
918    pub misses_before: usize,
919    pub hits_after: usize,
920    pub misses_after: usize,
921    pub hit_rate_change: f64,
922}
923
924#[derive(Debug, Clone)]
925pub struct NumericalStabilityMetrics {
926    pub condition_number: f64,
927    pub numerical_error: f64,
928    pub stability_score: f64,
929}
930
931impl Default for NumericalStabilityMetrics {
932    fn default() -> Self {
933        Self {
934            condition_number: 1.0,
935            numerical_error: 1e-15,
936            stability_score: 1.0,
937        }
938    }
939}
940
941#[derive(Debug, Clone)]
942pub struct MemorySnapshot {
943    pub timestamp: Duration,
944    pub memory_usage: usize,
945    pub gate_index: usize,
946}
947
948#[derive(Debug, Clone)]
949pub struct SimdSnapshot {
950    pub timestamp: Duration,
951    pub simd_operations: usize,
952    pub gate_index: usize,
953}
954
955#[derive(Debug, Clone)]
956pub struct CircuitProfilingResult {
957    pub session_id: ProfilingSessionId,
958    pub total_execution_time: Duration,
959    pub gate_results: Vec<GateProfilingResult>,
960    pub circuit_analysis: CircuitAnalysis,
961    pub memory_analysis: MemoryAnalysis,
962    pub simd_analysis: SimdAnalysis,
963    pub optimization_recommendations: Vec<OptimizationRecommendation>,
964    pub scirs2_enhancement_factor: f64,
965}
966
967#[derive(Debug, Clone)]
968pub struct CircuitAnalysis {
969    pub total_gates: usize,
970    pub total_simd_operations: usize,
971    pub total_memory_delta: i64,
972    pub average_gate_execution_time_ns: f64,
973    pub bottlenecks: Vec<String>,
974    pub optimization_opportunities: Vec<String>,
975    pub scirs2_optimization_score: f64,
976}
977
978#[derive(Debug, Clone)]
979pub struct MemoryAnalysis {
980    pub peak_usage: usize,
981    pub average_usage: usize,
982    pub memory_growth_rate: f64,
983    pub efficiency_score: f64,
984}
985
986impl Default for MemoryAnalysis {
987    fn default() -> Self {
988        Self {
989            peak_usage: 0,
990            average_usage: 0,
991            memory_growth_rate: 0.0,
992            efficiency_score: 1.0,
993        }
994    }
995}
996
997#[derive(Debug, Clone)]
998pub struct SimdAnalysis {
999    pub total_simd_operations: usize,
1000    pub peak_simd_usage: usize,
1001    pub simd_utilization_rate: f64,
1002    pub vectorization_efficiency: f64,
1003}
1004
1005impl Default for SimdAnalysis {
1006    fn default() -> Self {
1007        Self {
1008            total_simd_operations: 0,
1009            peak_simd_usage: 0,
1010            simd_utilization_rate: 0.0,
1011            vectorization_efficiency: 0.0,
1012        }
1013    }
1014}
1015
1016#[derive(Debug, Clone)]
1017pub struct OptimizationRecommendation {
1018    pub priority: RecommendationPriority,
1019    pub category: String,
1020    pub description: String,
1021    pub expected_improvement: String,
1022    pub implementation_effort: ImplementationEffort,
1023}
1024
1025#[derive(Debug, Clone)]
1026pub enum RecommendationPriority {
1027    Low,
1028    Medium,
1029    High,
1030    Critical,
1031}
1032
1033#[derive(Debug, Clone)]
1034pub enum ImplementationEffort {
1035    Low,
1036    Medium,
1037    High,
1038}
1039
1040#[derive(Debug, Clone)]
1041pub struct ProfilingSessionReport {
1042    pub session_id: ProfilingSessionId,
1043    pub total_duration: Duration,
1044    pub circuit_metadata: CircuitMetadata,
1045    pub performance_summary: PerformanceSummary,
1046    pub scirs2_enhancements: SciRS2EnhancementSummary,
1047}
1048
1049#[derive(Debug, Clone)]
1050pub struct SciRS2EnhancementSummary {
1051    pub simd_operations_utilized: usize,
1052    pub parallel_execution_detected: bool,
1053    pub memory_optimizations_applied: usize,
1054    pub cache_performance_improvement: f64,
1055    pub overall_enhancement_factor: f64,
1056}
1057
1058// Supporting tracking structures with placeholder implementations
1059
1060#[derive(Debug)]
1061pub struct PerformanceMetrics {
1062    // Placeholder implementation
1063}
1064
1065impl PerformanceMetrics {
1066    pub const fn new() -> Self {
1067        Self {}
1068    }
1069
1070    pub const fn reset(&mut self) {}
1071
1072    pub const fn record_gate_execution(&mut self, _result: &GateProfilingResult) {}
1073
1074    pub const fn generate_summary(&self) -> PerformanceSummary {
1075        PerformanceSummary {
1076            total_operations: 0,
1077            average_execution_time: Duration::from_nanos(0),
1078            performance_score: 1.0,
1079        }
1080    }
1081}
1082
1083#[derive(Debug, Clone)]
1084pub struct PerformanceSummary {
1085    pub total_operations: usize,
1086    pub average_execution_time: Duration,
1087    pub performance_score: f64,
1088}
1089
1090#[derive(Debug)]
1091pub struct SimdTracker {
1092    operation_count: usize,
1093    total_operations: usize,
1094}
1095
1096impl SimdTracker {
1097    pub const fn new() -> Self {
1098        Self {
1099            operation_count: 0,
1100            total_operations: 0,
1101        }
1102    }
1103
1104    pub const fn start_session(
1105        &mut self,
1106        _session_id: ProfilingSessionId,
1107    ) -> Result<(), QuantRS2Error> {
1108        self.operation_count = 0;
1109        Ok(())
1110    }
1111
1112    pub const fn start_operation_tracking(&mut self) -> Result<(), QuantRS2Error> {
1113        Ok(())
1114    }
1115
1116    pub const fn finish_operation_tracking(&mut self) -> Result<usize, QuantRS2Error> {
1117        Ok(self.operation_count)
1118    }
1119
1120    pub const fn get_operation_count(&self) -> usize {
1121        self.operation_count
1122    }
1123
1124    pub const fn get_total_operations(&self) -> usize {
1125        self.total_operations
1126    }
1127
1128    pub const fn record_simd_operation(&mut self, _operation_type: &str, count: usize) {
1129        self.operation_count += count;
1130        self.total_operations += count;
1131    }
1132}
1133
1134#[derive(Debug)]
1135pub struct MemoryTracker {
1136    optimizations_count: usize,
1137}
1138
1139impl MemoryTracker {
1140    pub const fn new() -> Self {
1141        Self {
1142            optimizations_count: 0,
1143        }
1144    }
1145
1146    pub const fn start_session(
1147        &mut self,
1148        _session_id: ProfilingSessionId,
1149    ) -> Result<(), QuantRS2Error> {
1150        Ok(())
1151    }
1152
1153    pub const fn detected_efficient_allocation(&self) -> bool {
1154        true // Placeholder
1155    }
1156
1157    pub const fn get_optimizations_count(&self) -> usize {
1158        self.optimizations_count
1159    }
1160}
1161
1162#[derive(Debug)]
1163pub struct ParallelExecutionTracker {
1164    parallel_operations_count: usize,
1165}
1166
1167impl ParallelExecutionTracker {
1168    pub const fn new() -> Self {
1169        Self {
1170            parallel_operations_count: 0,
1171        }
1172    }
1173
1174    pub const fn start_session(
1175        &mut self,
1176        _session_id: ProfilingSessionId,
1177    ) -> Result<(), QuantRS2Error> {
1178        Ok(())
1179    }
1180
1181    pub const fn record_parallel_operation(&mut self, _operation_type: &str) {
1182        self.parallel_operations_count += 1;
1183    }
1184
1185    pub const fn detect_optimizations(&self, _duration: &Duration) -> Vec<String> {
1186        vec![]
1187    }
1188
1189    pub const fn detected_parallel_benefit(&self) -> bool {
1190        self.parallel_operations_count > 0
1191    }
1192
1193    pub const fn get_parallel_operations_count(&self) -> usize {
1194        self.parallel_operations_count
1195    }
1196}
1197
1198#[derive(Debug)]
1199pub struct CachePerformanceMonitor {
1200    average_improvement: f64,
1201}
1202
1203impl CachePerformanceMonitor {
1204    pub const fn new() -> Self {
1205        Self {
1206            average_improvement: 0.0,
1207        }
1208    }
1209
1210    pub const fn start_session(
1211        &mut self,
1212        _session_id: ProfilingSessionId,
1213    ) -> Result<(), QuantRS2Error> {
1214        Ok(())
1215    }
1216
1217    pub const fn capture_cache_stats(&self) -> Result<CacheStats, QuantRS2Error> {
1218        Ok(CacheStats {
1219            hits: 100,
1220            misses: 10,
1221        })
1222    }
1223
1224    pub const fn get_average_improvement(&self) -> f64 {
1225        self.average_improvement
1226    }
1227}
1228
1229#[derive(Debug, Clone)]
1230pub struct CacheStats {
1231    pub hits: usize,
1232    pub misses: usize,
1233}
1234
1235#[derive(Debug)]
1236pub struct NumericalStabilityAnalyzer {}
1237
1238impl NumericalStabilityAnalyzer {
1239    pub const fn new() -> Self {
1240        Self {}
1241    }
1242
1243    pub fn analyze_state_stability(
1244        &self,
1245        _state: &[Complex64],
1246    ) -> Result<NumericalStabilityMetrics, QuantRS2Error> {
1247        Ok(NumericalStabilityMetrics::default())
1248    }
1249}
1250
1251#[derive(Debug)]
1252pub struct PlatformOptimizationTracker {}
1253
1254impl PlatformOptimizationTracker {
1255    pub const fn new() -> Self {
1256        Self {}
1257    }
1258}
1259
1260#[derive(Debug)]
1261pub struct PerformanceSnapshot {
1262    pub timestamp: Duration,
1263    pub metrics: HashMap<String, f64>,
1264}
1265
1266#[cfg(test)]
1267mod tests {
1268    use super::*;
1269
1270    #[test]
1271    fn test_profiler_creation() {
1272        let profiler = SciRS2QuantumProfiler::new();
1273        assert!(profiler.config.track_simd_operations);
1274        assert!(profiler.config.profile_memory_allocations);
1275    }
1276
1277    #[test]
1278    fn test_profiling_session() {
1279        let mut profiler = SciRS2QuantumProfiler::new();
1280        let circuit = vec![
1281            QuantumGate::new(GateType::H, vec![0], None),
1282            QuantumGate::new(GateType::CNOT, vec![0, 1], None),
1283        ];
1284
1285        let session_id = profiler
1286            .start_profiling_session(&circuit, 2)
1287            .expect("Failed to start profiling session");
1288        assert!(matches!(session_id, ProfilingSessionId(_)));
1289    }
1290
1291    #[test]
1292    fn test_gate_profiling() {
1293        let mut profiler = SciRS2QuantumProfiler::new();
1294        let gate = QuantumGate::new(GateType::X, vec![0], None);
1295        let mut state = vec![Complex64::new(1.0, 0.0), Complex64::new(0.0, 0.0)];
1296
1297        let result = profiler
1298            .profile_gate_execution(&gate, &mut state, 1)
1299            .expect("Failed to profile gate execution");
1300        assert_eq!(result.gate_type, "X");
1301        assert!(result.execution_time.as_nanos() > 0);
1302    }
1303
1304    #[test]
1305    fn test_circuit_profiling() {
1306        let mut profiler = SciRS2QuantumProfiler::new();
1307        let circuit = vec![QuantumGate::new(GateType::H, vec![0], None)];
1308        let initial_state = vec![Complex64::new(1.0, 0.0), Complex64::new(0.0, 0.0)];
1309
1310        let result = profiler
1311            .profile_circuit_execution(&circuit, &initial_state, 1)
1312            .expect("Failed to profile circuit execution");
1313        assert_eq!(result.gate_results.len(), 1);
1314        assert!(result.scirs2_enhancement_factor >= 1.0);
1315    }
1316
1317    #[test]
1318    fn test_simd_tracking() {
1319        let mut tracker = SimdTracker::new();
1320        let session_id = ProfilingSessionId(1);
1321
1322        tracker
1323            .start_session(session_id)
1324            .expect("Failed to start SIMD tracking session");
1325        tracker.record_simd_operation("test_op", 5);
1326        assert_eq!(tracker.get_operation_count(), 5);
1327    }
1328
1329    #[test]
1330    fn test_optimization_recommendations() {
1331        let profiler = SciRS2QuantumProfiler::new();
1332        let analysis = CircuitAnalysis {
1333            total_gates: 10,
1334            total_simd_operations: 0, // No SIMD operations
1335            total_memory_delta: 1024,
1336            average_gate_execution_time_ns: 1000.0,
1337            bottlenecks: vec![],
1338            optimization_opportunities: vec![],
1339            scirs2_optimization_score: 0.5,
1340        };
1341
1342        let recommendations = profiler
1343            .generate_scirs2_optimization_recommendations(&analysis)
1344            .expect("Failed to generate optimization recommendations");
1345        assert!(!recommendations.is_empty());
1346        assert!(recommendations.iter().any(|r| r.category.contains("SIMD")));
1347    }
1348}